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The recently proposed first ;symptoncally (at large t or smnll Luplm ;:arupeter’
A) exactly soluble models of multidimensional oscillations in multidimensional random
media are considered. In this report we formulate & respective vmion of the coherent
potential method and show that it gives a true asymptotic expansion in X'and 1/t fox i
averaged propagator of this madels. . B
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1 Wave propagation

in disordered systems is a topical problem of physics. Among many processes of this kind
we see at least two processes related to the neutron scattering. The first one is the dynamic
neutron scattering itself. The second process is the phonon migration which can be observed
by a neutron scattering. It is the subject of our work. '

The mean-field-approach is one of the most popular in the theory of disorder. The coher-
ent potential method (CPM) (see for example [1])} is one of the most flexible and profound
version in this approach. Nevertheless this methods needs a pérmanent confirmation. The
best way to check it is an application to exactly soluble models.

The theory of small oscillations in disordered media is not rich in models having exactly
calculated long-time asymptotics of averaged solutions. As we know, the firat essentialiy
multidimensional nontrivial system has been proposed in [3].

Here we will consider the CPM in application to models of oscillations from [3]. We show
the possibility to obtain long-time asymptotical expansion within this formalism.

2  Our models

have following description. ”Molecules” of unit mass oscillate near the sites z = (z,,1,)
of regular lattice Z2 with an even sum i, + rz. Each molecule interacts with two nearest
coordination sphere from the same sublattice. The dispiacements u}, n = 1,2 salisfy the
equations:

Pufdt? = —0¥Edu, uw=(u'v?), u(t=0)=wv, dult=0)/dt=w )

gmn — [ @Vh —0BVE, @V —obVE,
W T VL, +oeaVE bV + 04V

(f);:ny" =€ "6y, V:y = brteny — Or-enys ' er = (1,0), ez = (0, 1)7 o =1

Here a, b are real vectors. The disorder is reflected in an array {&; ; z € 2%,z +z; 1 odd}
of random, independent, identically distributed, positive definite, real symujetric matrices
which must have finite negative moments < (£;)"N > for a sufficiently large N.

It is easv to specify the casc of isotropic models: @y = a5.8; = —by. 0 = 1. and distribution
of ¢; commutes with rotations of the lattice. Moreover, in this case the averaged (over {{.})
long-time asymptotical solution of (1) in a continuum media approximation is invariant to
two-dimensional rotation group S(2, R).

The formal solution of (1) may be written in Laplace representation (u(t) — u(}) =
J° dte=u(t)) as

u(d) = (3 - 0%7¢60) (v + dw). &)
The small A asymptotics has been obtained in (3] by means of expansion of u(}) in powers
of X2(1/6— < 1/¢ >). The asymptotics of u{A) at X — 0, ReX > 0 gives us the long-time
asymptotic of u(t).
The correctness of this solution may be proved by methods which are described in [2].
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3 Coherent potential method

starts with decomposition: ) )
M_ord=A-) B, 3)
A=2—8%E 0, B =% (Lys— £, (7*)5y = Smnbzybys;
here we see the "effective field” (&ors)y = (éers)™ 82y, which will be defined below.
For the propagator P we have an expansion:

_ N def .
P=(N-0%0)'=G+GY. Y t"Gt"G...t*G+ Ry, (4)
n=1 2123..Zn
def _
*= B (1-GB*)™, Rnyi=G Y. (G*G...t5"GB™ P,
2232841

def . R
where G = A"*and Y. denotes the summation with the condition 2; # 24,4 = 1+j—1.
T 2323..25

{For convenience we give a simple derivation of the chosen form (4) i.c. the main CPM
decomposition. In an obvious relation:

(A=Y B)'=G+Y B*(A-3 BY)"],
z z 9
the following equation must be iterated:

B (A=Y B '=B(A-B)'1+ ). BYA- > B,
q 9, 9¥#2 4
and an evident relation B*(A — B*)~! = ¢*G should be used.}
‘The next standard step of CPM is the definition of £.;; by means of equation:

< >= B < (g = £)77® [1 — GO (bogy — £)m ] >= 0. )

4 The following properties of CPM

are ilﬁportant and sufficient for the solution of system (1) for A — oo and A — 0.
A. After averaging of (4) we obtain:

N def
P=<P>=G+GY. Y <t"Gi*G...t*G >+ < R4 >, (8)
n=4 Z122..2Zn
i.e. decomposition begins with n = 4. It follows from the mutual independence of different
&.-es and (5). Properties of this expansion at A — oo (or ¢ — 0) are evident.
B. Due to the same independence only those terms contribute to the sum in right hand
side of Eq. (6) in which each value z; is repeated at least once in the string (z1,22,...,2n).
C. The asymptotical smallness at A — 0, Rel > 0 of averaged terms in (6) follows from
point B. and relation:

t*Gt? = ®* D, 1*®(l — G®* D,n*@]" ' GO 7157 = ¥ D, n*{1 — @GR D, 77| 9GP 7S =
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=&t D,[1 ~ (2GPT),, D,| ' @GRt 1799, (7
where D, = €5y — &, 19 = ®F w987, z £ q. It is evident that 7*7? = 0, (72)* = 7* and
T OGP T = P B[N — BV, 0] TR Y =
= ﬂ‘z¢¢+[/\2 — fcf!@¢+]—l7rq = ﬂzfe_flf{l + /\2[/\2 - f,ﬂ@@*’]‘l}rq =
= ,\2“3{;!1][,\2 = f‘,H(D(D*]*lr".
D. Simplifying the equation (5) we have:
< (fegr = &)1 — TRGR* (Eepy — &))" 7! >=

= 7% < (begy — &)1 — (9G®H )ao(€esy — E:)] 7' >= 0, (8)

(see the derivation of (7)). Taking into account that at small A limit @G+ — &, we
obtain:
bepsA = 0)7F =<7 > 9

As a result we may check the main asymptotical term in (6) for the system (1):
PrG=[ -0 0" (10)

The last relation coincides with result of [3].

But if we have exact or approximate solution of Eq. (9) and if this solution is exact at
least for A — oo and A — 0 then Eq. (10) produces a uniform approximation for P which is
exact both at A — oo(¢t — 0) and A — 0( — oo).

If the distribution of £, is invariant to symmetries of Z?2 (rotations and reflections) we
have: < f,"l >™r= x~1§ .. In this case the "effective” matrix of forces has the form:

Bty @ = kOHD =

_ a?(vl)? + b2(v2)2 (az - bi)a.vlvﬂ b —-2UVIV2 (V1)2 — (vZ)Z
=k (az _ b2)0V2V1 b2(v])2 + a’(V’)Z + ka (VI)Z _ (vz)z 20 VIV2 .

In the above mentioned isotropic case of model (1) when o = 1 and ab = 0 we obtain the
ionowing eiiecuive mawnx (A = (v:)* + (V';)"; :

20 (10 2 _gy [ (V)2 VIV2
¢*¢=bA(0 1)+(a —b)(vZvl (Vz)z)'
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