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1 Introduction

This paper is devoted to the application of the representation theory to studding integrable
many-body systems. Interrelations between the theory of integrable systems and representa-
tion group theory proved to be [ruitful for the both fields. The subject has become so vast
and diverse that it looks impossible to pick up a few of surveys which would cover all the
important questions. Some topics are covered in reviews [1, 2, 3] and books [4, 5]. Review
[6] is closely related to our consideration. Usually it is possible to find a group theory in-
terpretation for all the important structures of integrable systems. Phase space, symplectic
structure, Hamiltonians, Lax pairs, etc. can be interpreted in terms of an underlying group
symmetry for both classical and quantum integrable systems. However we will not discuss
these questions here.

The main goal of this paper is to demonstrate how representation theory, and, more
concretely, intertwining operators, can be used to obiain relations between wave-functions al
different energy levels. We will work out only the simplest case of the open Toda chain with
two and three particles, but the method can be applied to other integrable systems. The
paper mainly follows the ideas of 7, 8].

Let us recall one of the main ideas of the group theory approach to integrable systems:
solutions of integrable equations usually are matriz elements or traces of the groups elements
in irreducible representations. Main examples we keep in mind are: the tau-function of
the Kadomtsev-Petviashvili which is a matrix elemeut in fundamental representations of
the group GLy, (see [1, 6, 8]), and the wave functions of many-body problems like Toda
or Calogero-Sutherland-Moser, which are matrix elements in infinite-dimensional irreducible
representations of the semisimiple groups (see for example [7]). Let us also mention the fruitfu)
generalization of the considerations of matrix elements - the concept of vector-valued matrix
elements and vector-valued characters developed by Etingof and Kirillov [9].

The idea to obtain different relations for wave functions is quite simple and goes as
follows: let functions f; (g;) be solutions of some integrable system corresponding to some
representation V; (W respectively ) of some group, {it can be the trace or matrix element,
can be a wave function or a tau function, etc.) If one has an intertwinning operator Vi@ V; ®
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RV, 2 W @W,®...Q W, then there 'usually? ezist the following relation: D(fif2...fn) =
b(glgg...g,,,), where D, D are some differential operators. Miraculously enough this simple
idea leads to non-trivial relations. 1t was demonstrated in [8, 10] that in such way one can
obtain famous bilinear identities for KP,KdV tau-functions, which corresponds to intertwiners
between fundamental representations of the GL, S:L(at). In [11], it was shown, that, in this
way, one can obtain the Baxter relation for transfer matrices of integrable lattice models.
The above idea is also used in representation theory approach to Knizhnik-Zamolodchikov
equation [13, 12, 5], and in the theory of special fuuctions (see, for example [14, 15)).

In this paper, we show how to obtain different relations for the Toda wave-functions
applying the above idea. The group theory approach to the classical Toda chain has been
first proposed in [16], group theory approach to the quantum Toda chain has been proposed
by Kostant and Kazhdan at late seventies (unpublished) and further elaborated in [17], [7].
Let us recall it following [7]. Consider the group SL(n + 1,R) with the standard Chevalley
generators e;, h;, f;, and let ¥ be irreducible representations with weight A of the principal
series with weight A\. Let us introduce the so called Whittaker vector |w >€ V), ie. the
eigenvector of generators e;. Then, one considers the Whittaker function, i.e. matrix element
Wi(d1, .0y 9n) =< wlezp(drhy + ¢2h2 + ... + dnhn)|lw >. The main observation is that
function Wy(¢y,...,0,) is a common eigenfunction of Toda Hamiltonians, which turn out lo
be Casimirs of the group SL(n + 1,R), while the weight A marks the corresponding energy
level. (Existence and other issues on Whittaker vectors were deeply explored by Kostant
[18))

The relations between Whittaker functions W) (¢) for different Vi will be obtained as
follows: let us find the intertwinning operators Vi, ® Vi — Vi, then we will show that there
exists a relations D (Wy, (@1, -, #n)) = D (Wa,(1,..., $u)) (see formulas 30,54) where D, D
are some differential operators, and V},,, is any finite-dimensional representation of the group
SL(n + 1,R). This relation is an example of the so-called raising operators [19]. This idea
was suggested to us by S. Kharchev to whom we are deeply indebted. Analogously we will
construct bilinear relations from the intertwining operators Vy, & Vi, = V3, ® Vi,. Onc can
proceed this way to construct other relations like above, for example V3, ® Vi, = @;V), then
one can obtain relation like Wy, ® W), = ¥; D;(W),) (see formula 37).

Let us also note that the existence of the bilinear identities in this situation is quite surpris-
ing, because it means that wave-function, which are the eigen-functions of Toda Hamiltoni-
ans, i.e. eigenfunctions of some linear differential operators, satisfy some system of nonlinear
differential equations. One cannot separate some finite number of wave-functions from this
system , only infinite set of them is closed nonlincar system. Nevertheless it is some system
of nonlinear equations, but we do not know its sense, its hamiltonian description (if it is) or
anything else, it seems to be interesting to clarify it.

Let us describe what kind of technical problems arise in proceeding to the concrete formu-
las. Let |w >y, be the Whittaker vector in representation Vi, let us consider the intertwiner
3 : Vi, = Vi, @ Vyin then @lw >5= i |lw >; ®|i > where |7 > is some basis in finite
dimensional representation Vji,. lo construct the ecplicit relations one needs to find such
polynomials P; that |w >;= Py fi,hi)lw >,, where P; are some polynomials of generators

Pusually’ means that there are no such relations for generic matrix elements, while they typically emerge

for solutions of integrable systems.
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fi, hi, t.e. one needs to express the components of the image of Whittaker vector in spaces
V5, as application of some operators to Whittaker in space Vi, . This is the main technical
problem we treat in this paper, we solve it for the cases SL(2,R) and SL(3,R), but we were
unable to find the general formula for the case of SL(n,R).

Let us mention that the 5L(2) Toda equation reduces to the well-known textbook equa-
tion, whose solutions are Bessel aud Mcdonald functions (depends on necessary asymptotics,
we need Mcdonald one), and the relation from theorem 2.11 one can find, for example in [20].

Let us argue that the scheme like above can be applied to other integrable models. One
knows that if instead of the Whittaker vector |w > onc considers a spherical vector |s > i.e. a
vector such that it is remains fixed under the action of the maximal compact subgroup then
one can obtain wave function for Calodgero-Sutherland integrable system - zonal spherical
function, obviously if one considers different intertwiners one can obtain different relations
between wave functions. Also instead of finite-dimensional Lie group G one can takes affine
group G, which corresponds to periodic Toda chain, or quantum group U,(G), which leads
to difference equations [21, 22]. Obviously, our scheine of obtaining different relations will
work in this situations also. But of course explicit constructions of these relations seems to
be not obvious. :

We should also mention that raising operators considered here were widely explored re-
cently [19], but all approaches are completely different from our approach, and very simple
idea, that the origin of this relations is presence of the intertwining operators, was not present
in the literature to our knowledge. Let us repeat that from our point of view one can consider
all models in the same setup. Also we see that the group theory approach shows that such at
first sight not related subjects such as Baxter relation important in lattice models [11] and
conformal field theory [23], raising operators in integrable quantum many body problems
[19] and bilincar relations in the theory of classical nonlinear equations [1, 6] have the same
explanations from the point of view of intertwining operators.

Exposition is organized as follows: section 2 is devoted to the case of SL(2) and the
demonstration of the main ideas. In the section 3 we consider the case of SL(3), which is
mainly analogous to the SL(2) case, but that is the case, where first arises the problems in
writing the explicit formulas for the action of the intertwining operators on the Whittaker
vectors. And we show how these problems can be solved for SL(3). Section 4 is devoted to
the SL(N) case. We recall representation theory approach to the SL{N) Toda chain and
discuss the problem of obtaining explicit raising operators.

2 SL(2) Toda Chain.

In this section we will show how to obtain the raising opcrators, bilinear, etc. identities
for the wave functions of SL(2) Toda. We will do it with the help of the intertwining
operators between the tensor products of representations of SL(2). Before doing this in
subsections 1 and 2 we will recall vepresentation theory interprctation of the Toda wave
functions as matrix element in irreducible representation, here we closely follow [7]. Let
us sketch the content: we consider Whittaker vector |w > in irreducible representation V)
of SL(2), i.e. such vector that it is eigenvector for the generator €, consider Whittaker
function W(¢) =< wlezp(dh)|w > , we show that it is eigenfunction for Toda hamiltonian
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182 + exp(—24) + 8, , the reason is that this Hamiltonian is simply the Casimir of SL(2),
then we consider intertwining operator ® : Vi, — Vi ® Vi, where V] is standard two-
dimensional representation of $L(2), and the main technical point is to show that ®(|w >x41
)= Ki?%(h + A +2)|w >, @0 > +urlw >x ®|1 >, it is quite obvious for the case of SL(2),
because we know the representation of the Whittaker vector in terms of the action of the
generator f on the vacuum vector in module Vj, the fact that such representation for the
case of SL{N) is unreasonable is the main problem for writing the explicit formulas for the
SL(N) case . Then we proceed to the bilinear relations, to find them one should find the
intertwining operator between some representations: Vi, ® Vo, = Vi, ® V),. To find such
intertwiners is not an easy problem, but tlere is a trick which is due to [8] that works as
follows: if we have intertwiners : Vay; = Vi ® W and V41 — V, @ Vi we can consider their
tensor product : Vi1 ® V41 = Vi @ V1 ® V., ® Vi then consider intertwiner: Vi @ V4 — C,
then consider the composition: Vi, 41 &V, 41 = V), Vi@V, ® V] = Vis) ® Vi, hence we
get desirable intertwiner (consideration instead of V] other finite dimensional representations
leads to various kinds of necessary intcrtwiners).

2.1 Notations:

Let us denote by (A, n) the product (A)(A — 1){A = 2)...(A — n + 1), we will often use this
abbreviation.
The Lie algebra S L(2) is defined by the generators e, f, h satisfying the following relations:

e, f1=1, [h,e]=2e, [h,f]=-2].

The fundamental representation of SL(2) is delined as follows:

1 0 0 1 . 00
(o) (50) - (10) g
The quadratic Casimir operator:
C:(u_[+fe)+;—h2:2ft+h+%h2, (2)

Highest weight representation:
We consider the principal (spherical) series of representations, induced by the one-dimensional
representations of the Borel subgroup. The space of representation Vj is functious of one real
variable z and matrix elements are defined by integruls with the flat measure. The action of
the algebra is given by differeutial operators:

0 lij 7
=L =22 =222 4.
e= o= h zax+/\,f E: (,)m—i—/\r: (3)
Obviously that Constants are vacuum (i.e. the highest weight) vectors for such represen-
tation i.e. e(Constant) =0, h{Constant) = \(Constant)



2.2 Whittaker function.

Definition 2.1: The vector |w > is called Whittaker vector in representation Vi, if it is
eigenvector for generator e i.e. elw >h= pjw > for some constant u.

Lemma 2.2: For given p aud irreducible representation Vy (A # 1,2,3,...) there exists
a unique (up to a scalar) Whittaker vector jw >{€ V), which can be expressed as follows:

v\ ,.‘nf"
“inl(An)

t

|w >4= ezp{pz) = |vac > )
where we denote (A, n) = A{(A—1)...(A—n+1) and [vac > - vacuum ( the highest weight)
vector in V.
The proof is obvious.

The dual Whittaker vector: % < w| is given 322, < Ol;ﬁ‘("\e—:) = 27" %ezp(—puzx) (see

[7n. .
Definition 2.3: The Whitiaker function WL R(9) is the function given by:

WErR () = A" < wlezp(dh)|w >4 (5)

Remark: we will sometimes omit indexes A, u of Whittaker vectors and Whittaker func-
tions, if they are not important. )

Proposition 2.4: Wi(¢) = ezp(Ad) 520 leallug fleen(-200)

The proof is obvious recalling (5) and < vac|e®|f*|vac >= nl(A,n)

Remark: for.the case SL(2,R) Whittaker function coincides with the textbook Macdon-
ald function (up to some exponents and scalars), this can be easy seen from the integral
representation below, see also {7].

PI‘OpOSitiOIl 2.5: The Whittaker function satisfies the equation:

18 8 o 1, )
294+ g~ 2HmmLE Wi(#) = (GA + ) Wa(¢) (6)

Hence, the function ¥y(¢) = exp(¢)Wi(¢) satisfies two particle open Toda equation:

2
[%;T’g - Q#H#Lﬂ"“} Ui(¢) = %(,\ +1)*0,(¢), (7
The proof is very simple, but we will reproduce it, since it is the same for all kinds
of integrable many body problems. The main idea is.that the Hamiltonian is a Casimir
operators, hence it acts by scalar on every matrix element, that’s how RHS of 6 appears, on
the other hand it is some concrete operator - that’s how LHS of 6 appears.
Proof:  The Casimir operator C = 2fe + h + 1h® acts as scalar $A? + A on the

representation Vi. Hence: < wlexp(#h)Clw >= (1X* + \)W,(4) On the2 other hand <

wlezp(¢h)Clw >=< wlezp(dh)(Lh? +h+2fe)lw >= (L2 + Z)Wa(¢) +2 < wlf exp(¢(h -
2))elw >= (%% + ;—é + 2upiuecp(—2¢) )Wi(é) hence we obtain RHS of 6. QED
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Proposition 2.6 (Integral representation of the Whittaker function) :

-(+1) §
l 0O - . _nLmge 2@_1‘
Me) = (E) /0 O — ey (8)
i (A1)
= 2e(+1¢ (‘ /;i ' K1 (2/ELhRe™?) dz. (9)

- where K)\(z) is the Macdonald function.

Remark: for the convergence we should require Rejipup > 0.

The theorem is tautology after recalling that the invariant pairing < v|u > is realized as
integral f°, and dual Whittaker vector < ] is realized as z-2*+De=5* The second equality
is the textbook integral formula for the Macdonald function.

2.3 Intertwining operators

Denote by V; the fundamental representation of the SL(2, R), denote [0 > the highest weight
vector, |1 > the lowest weight vector, i.e.

|0>=(é),|l>:(?). (10)

hence €0 >= 0, f|0 >= |1 >, A0 >=[0 >;¢[l >= |0 >, f|l >=0,h[1 >= |0 >.
Proposition 2.7: The isomorphism &y = 5, & &1 - : Vo) ® Vaoy — VA® W is given
by the formulas: )

®, 4 [Mvac >ap— fPvac >x Q0 > +nf*Huvae >y R >, (11)
- _ A+1-
Q/\’L s fMrae >y ®10 >— ng._]i)fulvac > 41,
B5L 1 flvac >y ®|L > :\—ql_—lf"“[vac >At1s (12)
©,_: fMvac >i_ 1= F 1 vac >y 10 > +(n — A" |vac >y B >, (13)
- n n—
51 fMvac > B0 >— Xjf-_lf Houe >4y,
-1
;L ¢ [Mvac >, | >~ mf"]vac >a-1 - (14)

The action of dual operators @7, 93,97, on the dual anti-representations are given by the
same formulas (up to scalars) with the change of f to ¢ , which follows from the Chevalley
antiinvolution:

P} 1 a1 < vacle® =, < vac)"® < 0] + ny < vacle® o < 1 (15)
. A+1-
e 1y < vace"® < 0] = (+l-n) a1 < vacle®, (16)
A+1
. 1
71" 1) <wacle®™® < 1| & —— a1 < vacle™ !, (17)

A+1
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l
®*, 11 < vace™ — n—l(’\ < vacle™ ' < 0]+ (n — A)x < vacle®® < 1})  (18)

n—1
)

‘D:r 1 < vacle®™® < 0] = (nA) a1 < vacle
B-1% ) < vacfe’® < 1| = (—A) ao1 < vac|e™ (19)
The invariant pairing is given by: < 0|0 >=1,< 01 >=0,< 1|0 >=0,< 1|l >= 1.

The proof ‘is obvious, let us only note that in order to find the intertwiners &3] from
Vizr ® Vi — Vi it is more convinient to express them via the dual intertwiners: Vi, —
V;* ® V), which can be easily found.

Proposition 2.8: Intertwiners act on Whittaker vectors as follows:

hw >xe1—> (—I;%&J%)‘l—)lw > ®[0 > +£‘Tlu' > @1 >, (20)
Jw >yo1— %l(—-h + A)|w > Q0> —Alw > ®|l >, (21)
jw >, B0 >— |w >\ +m|w >x-1s (22)
fw >, Bl >— (/\—J;II—QI W >4t —A—g&—“l-lw >a~1y (23)
A<W® <0l = pp a1 <wl+ A < wl (24)

A <wl® < 1]—;—h—%\/\—il— A1 <w| < 1{+1\—i‘>i_—}1 a1 < wl. (25)

Proof: The proof is simple, let us consider only the first equality. We will use the following
trivial fact:
A—n+ l)f"lvac >)\= 2()u + 2+ h)f*vac >,
b (Jw >A+1) =& 0% ,T‘(Tfi St vac >a0) =
= Zn—l) n'(x-n ﬂ)(f"|va|: >x ®10> +nfr M vac >, @) >) =

'\“ T (") & n)(/\ n+ 1) f*rac >, ®|0 > +#Bfw >y @l >=

= ’2\;‘:\2_;')‘ [w > @0 > +£&}w >, &L > .

Q.E.D.

Remark: let us note that such simple formulas like above cannot be true for an arbitrary
vector Jv > € V, i.e. of course from the irredicibility of repsentations follows that there exist
series O(f, k, €) such that ®1(Jv >.41) = O(f,h,€)|v >, but in general such expression will
be complicated.

Let us find the intertwiners between tensor product of infinite-dimensional representa-
tions. . )

PI‘OpOS]tJOIl 2.9: the isomorphism @ = Lo Py : VA ® V, = @2y Vayr—k in realization
(3) is given by the formulas:

Op:z" @™ = Oy / (_1) ( " ) ( T:l ) ((L))]E(()’;)k Ixn+m—h’ (26)

(ﬂ 1(1(1/7(/\—z+1)+/\2(u~1+1)))
(Ao k) '

o W) (M~

where (27)
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Or one can rewrite it as follows. Denote by mul; operator Vi @V, — Vi, which acts:
f(z) ® g(z) = f(z)g(z). Then:

k

B0 J(2) 8 glz) — Cutmudy) x (3 5= T D@ o). @9

The proof can be found in the literature, or proceeded as follows: from the equality:
@ x h = h x & follows By (2" ® 2™) = cumz™ ™ ¥, using ¥x X € = e x @, one obtains the
recurrence relation for the cocfficients ¢, . Solution of this relation can be guessed after
considering several examples of small k = 0,1,2.

PI‘OpO&:lthn 2.10: The action of @, on Whittaker vectors is given by:

k )i
B : |lw > Qw > C“'Z (k( 11))'“((”)) o )

1) 7 (p2) Y w >4t (29)

This easily follows from 28.

2.4 Relations for the Whittaker wave functions.

Theorem (Raising operators) 2.11 The following relations holds:

8¢+/\+2 B¢,+,\

Wanr(9) = eopl(d) 550

WA), 10 Wh-1(9) = ~exp(d) 52 WAG). (30)
Remark: easy to see that thesc relations arc consistent: application of one then another
gives that W), satisfy Toda equation.
roof: We will calculate , < w|® < 0] ®rexp(dh)|w >r41 in two ways, first we will
apply @, to ezp(¢h)|w >,41 and then take pairing, hence we will obtain the RHS of (30); to
obtain the LHS of (30) we will apply ®} to » < w|® < 0| and consider the pairing after.
< wl® < 0] Drexp(dh)lw >rp= < W@ < 0  exp(dh)Pr|w >ip= ) < WO <
0} exp(dh)( %‘%}?]w >3 80 > +&lw > @l >) =\ < w|® < 0] %*’Tzlezp(qﬁh)lw >\
Qezp(¢h}l0 >= ea:p(q&)—d;—,_"t—}g}i,\ <wl® <0 exp(dh)hw >x . Hence we get RHS of 30.
A< wl® <0 Greap(gh)lw >ri= (r < w]® < 01&]) lezp(dh)lw >rs1=
= 1 < w]ezp(dh)|w >r41= Wis1(d). Hence we get the LHS of (30). QED
The proof of the second equality in (30) is the same.
One can deduce directly from the (30) or deduce representation theoretically (as we will
do for the demonstration of the idea) the following relations:
Theorem (Baxter like relations) 2.12:

ezp($)Wi(¢) = S{;iﬁl)w’\"((ﬁ) + Wi ().
P o\ 2 2
exp(—$)Wi(¢) = (Mﬂ) Wi-i(¢) + : ("Jﬁi:gi) Wini(d).  (31)

2 MLILR 2
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Remark: analogous considerations for the infinite-dimensional algebras leads to Baxter re-
lations for the quantum transfer matrices in lattice models, see [11].
Proof: We will use isomorphism @ : Vi @ Va1 — Vi ® Vi and calculate the pairing
< 0] < wlexp(ph)|w > |0 > first directly, obtaining LHS, then applying isomorphism &~ to
Jlw>]0>and 7" to < w| < 0], and obtain RHS.

erp()Wi(d) = » < w|® < 0[up(¢h)|0 > Rw >\=
(BL a1 <wl+ s < 10()8$P(¢h)(mlw >a-1 Hw >an) = (32)

= —):(Ef% A1 < wlexp(@h)w >ic1 + aq1 < wlezp(dh)|w >irp1=

MLER
mWA ~1(®) + Wiz (9).

Q.E.D.The proof of the second relation is the sanie. but one should cousider , < w|® <

lexp(¢h)jl > ®|w >, instead of y < w|® < Olexp(ph)|0 > ®|w >,. Obviously 0 = » <

w|® < 0lexp(4h)|l > ®@|w >, so one cannot obtain any more relations like above.
Theorem (Bilinear relations) 2.13:

( piezp(ds — ¢2) exp(¢r — d1)uf
20+ 1) (v +1) 20+ )(v + 1)

=(_V+l~8¢2+/\+1—0¢;) “"“‘(¢1)W“""’ )

(o FA+2) + (O +v + 2)) Wit (Wi (4,)

2uf 2uf .

Proof: let us denote by ®,, the interswiner: Vi3 & V41 — V4 ® V,. we will construct
that intertwiner using a trick due to [8]: let us denote by § the intertwiner ¥,  V; = C,
than @, , is given by composition: (1d® § @ 1d)(Px+ & Puy).

Lemma. 2.14: The action of the ®,,, on Whittaker vectors is given by the formulas:

'3
B, 1 exp(dih)|w >,\+1 Rexp(¢ah)|w >‘,:?H—~)

h+A+2 Rex [;
—ezp( — ¢2) = (/\ +1) “ezp(pih)|w >\ 0 M——;{—Wewp(@hﬂw >‘,ff +  (33)
I Rezp ¢,h) uF (h +v+2) R
+ezp(ds ~ ¢1) Ot jw 2( Y ezp(éah)|w >}, (34)
1-—h
¢f\",:“'b,\<w|®ff?<wl——)w>\+]<w|®,+1< |‘V—-+2—“L—
2
L A+1—h
< w|~2—#¥,—— ®2, <wl (35)

The proof of the lemma follows from (11) and recalling the fact that action of S is given
by: S(0>1>) =0, S(1>0>) =0, S(1>[0>) =1, S00>1>) =-1and
respectively: S™: C = V; @ W acts as follows: 1 §" = — < 0| < 1|+ < 1] < 0.

The proof of the theorem easily follows from the lemma:

y < wl®, < w(Ly.exp(dih)|w >rp1 Qexp(¢h)|w >.41) equals to LHS of 33 and
(A <wl®, < w['i]?,\'v) exp(Pih)lw >ry) ®exp(d2h)|w >, equals to RUS of 33.
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And obviously » < w]® , < w[ (@) .exp(dih)jw >ry1 Qezp(Pah)|w >,4) =
= ()‘ <wl®,< wltbf\,u) exp(Prh)|w >4 Bexp(dh)w >pya- Q E
Theorem 2.15 (Nonlinear equations):

(B + A +2)

2(A+1)
v+1—20,,
= —W,\+1(¢)—‘,—I'L—d¢wq+l(¢) +
“H

Rey _ ¢ R
WAL= 2w () 4 B ) B2 A2 4 o) =

v+1. v+1
A+1-9, )
T Wan(@)0 Wi (9). (36)
1

The proof is the standard procedure of deducing nonlinear equations from the bilinear
ones: one should substitute ¢, = ¢, + 4 and consider the Taylor expansion of the W(¢,) in &
and necessary relations are obtained as equalities in different powers §*, the above one is for
k = 1. In this way one obtains Kadomtsev-Petviashvili hierarchy from the Hirota bilinear
relations.

Theorem 2.16 (Product formula):

;o kad P Eo(—1)ih (1 (k-4)
Wpeen W) = 3 Ok )y R )
k=0 =0 e

() (1)L () (7)

To prove the theorem above oue should note that LHS in 37 equals to ), < w|®, <
wlezp(dh)|w >x ®lw >,, on the other hand one can compule this expression by use of
isomorphism from proposition 2.9 and obtain RHS of 37. The calculation is very similar to
the one in proof of the theorem 2.12 (Baxter relation).

So in this section we demonstrated how to deduce different relations for the Whittaker
wave function of Toda by use of intertwiners.

3 SL(3) Toda Chain.

In this section we will show how to obtain raising operators and the bilinear identities for the
wave functions of SL(3) Toda. The idea is completcly analogous to the case of SL{2): the
wave functions are matrix elements of SL(3) in irreducible representations, so considerations
of the different intertwiners: VA ® Vyinite—dim —+ Vaz1, Va, @ Vi, — V,, @ V., etc. gives
different relations for the wave functions. The main technical problemn here is to find the
explicit expression for the image of the Whittaker vector [w >, through the Whittaker vector
fw >x1: find P(f, k), such that ®(jw >5) = P(f,h)|w >r41, pay attention that we need
expression of the operator P in terins of generators of the SL(3), (expression in operators
%, Oz, , in Borel-Weil realization one can easily find). In the case of SL(2) such problem
was easily solved by the fact that there was an explicit realization of the vector |[w >, :
lw >y= Y0 %lvac >y, but in case of $L(3) such formula is not reasonable or useable.
So one need to find the main formula: ®(jw >} = P(f,h)jw >4 using more or less the
only information about vector jw™>.that it is eigenvector of the generators e;. So it is the
main difference with the case of SL(2) and we will mostly pay attention to this question and
we will be brief in questions analogous to the case of SL(2).
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3.1 Notations:

The Lie algebra SL(3) is defined by the gencrators ¢, €3, €12, h1, 2, f1, f2, f12. Sometimes we
will refer €13 as €3, and fi; as fa. The commuation relations can be found, for example, in
the next section where we consider the gencral SL(N) case.

Quadratic Casimir operator:

& 2 (&,
Cy=7 [eifi+ fie) +3 (‘}T hi + h1h2) = . (38)
=1 i=1
3 2 9 2 ’
=25 fiei +2% hi+ 3 (7 hi + hlh?) : (39)
i=1 i=1 i=1

Highest weight representation:
We cousider the principal (spherical) series of representations, induced by the one-dimensional
representations of the Borel subgroup. Let us describe Borel-Weil realization. The space of
representation Vi A = (A;, ;) is functions of three real variable z,, 2, z12, which are matrix
elements of the 3%3 upper triangular matrices, i.e. coordinates on the biggest Schubert cell of
the SL(3) flag variety G/B. Matrix elements are delined by integrals with the flat measure.
The action of the algebra is given by tle differential operators:

ST B BN
e a:l:;-‘ L 8::2 183:,2’ 1= al'n’
o] 9 a 0 7] (7]
by = ‘23718—:1:1‘'f'?»‘-za—:c2 —Inm +A, A= 31% - sza—zz —JllzaTu-f-/\Zy
fi=hay—gl— —zizp— — (2 -—a:z)—i
1= AT e g 0
. a 17
J2 = Xaza + Trag— x%ég,
fiz =Mz —z\(a:a:‘——r»)—z.z:-i+r.(rz ~z )—?——12—Q— (40)
12 = AiZ12 — A2(T1%2 — 212 g 2{T1Z2 - 12,

Obviously that Constants are vacuum (i.e. the highest weight) vectors in such represen-
tation, i.e. e;(Constant) =0, hiConstant) = X;(Constant).

3.2 Whittaker function.
Definition 3.1: The vector |w >4 is called Whittaker vector in representation V4, if it

is eigenvector for generators €, €, i.e. ¢ilw >4V = g w > and egw S5 = pyfw S5
for some constants w;. Obviously eglw >4""*= 0. \We will sometimes omit jndexes A, g, if

they remains unchanged during the calculations.
eImina 3.2: For given g, aud the irreducible representation Vi (A # 1,2,3,...) there
exist a unique (up to scalar) Whittaker vector |w >€ V), which can be cxpressed as follows:

lw >= exp(p1z1 + p222) (41)
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The proof is obvious.

Remark: in case of sl(2) we also gave an expression for the Whittaker vector lw > in
terms of the generator f, i.e. |w >= 3,6 ﬁ%\-%har > one can see that such expression in
case of s(3) is rather complicated and unusable.

Lemima 3.3: The dual Whittaker vector: < w| is given by the formula:

< UJ' = (1‘12 - ;l'11’1)_(/\2+2)Z;«}’\1+2)6—u§{_11?_‘#1[‘ -7)4‘;“-‘12 . (42)
see [7].
Definition 3.4: The Whittaker function WEEHR (e, ¢2) is the function given by:

WEE25(r, da) =< wlexp(drhy + d2ha)w > (43)

We will sometimes omit indexes A, p.
PI’OpOSlthD 3.5: The Whittaker function satisfies the equation:

2{8* 0 & 0 9 LR g2 _ L R -2
(3 (Tﬁ+@+_a¢,a¢z)+a¢l+am utpfe phide Wi(#1, ¢2)

= @+ 2+ 208+ 0+ M)W, ). (44)

Remark: the proof is based on idea that this hamiltonian is the second order Casimir operator
for the SL(3), and completely analogous to the SL(2) case. The function Wy (¢, ¢2) is also
eigenfunction for the third order Lamiltonian, which is the image of the third order Casimir
for the SL(3). So we see that Whittaker function is the wave function for the SL(3) quantum
Toda chain. These [acts are standard so we are very bricf.

PI’OpOSlthIl 3.6 (Integral representation of the Whittaker function) ([7]) :

wﬂ¢h@):euwnwﬂhﬂ»{/dﬁihﬁm(ﬁ2_xﬂ“vh4&gh—”x (45)

L E L 2 R_ _er—2¢; __ R ,91—2
e T B Tty TR T et T2

(46)
The theorem is simple corollary of the facts that the invariant pairing < v]u > is realized

as integral [ with the flat measure, and dual Whittaker vector < w]| is realized as (12 —

~2g=2) o, (=21-2) L L__z2
I‘Ig)( 1, )-’”12 e‘tp(_’lil ;{1‘; —Hr 1‘11’:-112).

3.3 Intertwining operators

Denote by V(;0) the first fundamental representation of the SL(3,R), denote by [0 > the
highest weigl{t vector, by |1 > the vector f1|0 >, by |2 > the vector f£1|0 >= f3|0 >.

PI’OpOSltiOI] 3.7: Let us denote by @5 = @ (41,0)D Pa (-1.1) D P (0,-1) the ismorphism
Vat(1,0) ® Vag(=1,)® Vasr0,-1) > VA®Wi. The operators @3 (41,0) and <I),\v(+1‘gf‘ in Borel-Weil
realization are given by the formulas:

i 410) 1 2 27220 > ®0 > 2P 232250 > 04010, ' (47)
Par0) ¢ 21 2322500 >0 B > 22310 > 0400 {48)
D) (+1.0) 1 TP 7R |0 >y @2 > sP 2P0 >a+(1,0) - (49)
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1
(A4 DA+ A2+ 2)
((anazs + (M1 + 2)ns + ngna)eyze)eP Tay? P 0 >y ©2 > +
(1M1 4 Ag + 2 = n2)xs + na(Ay — uy)ngzy)e P lep?aB N0 >, R > +
(—ninazd + na(—Aa + n) 222 + M+ DA+ X+ 2) =M + A+ 2) +
+mng — ns(Ay + 2) — nona)zyraxs)2 agn, — 1270 >, ®[0 ). ' (50)

This proposition is auxillary for us. We use it to fix the constants in the formulas from
the next proposition, which is really crucial for us.

To prove the formula 49 one should only note that the representation V1,0 also have Borel-
Weil realization and the above intertwiner is given by the multiplication of functions from
the two representations. The proof of the formula 50 is more complicated, but it is standard
representation theory reasoning, and should be available in the literature, but we were not
able to find it. So we sketch the proof. Let us denote the three components of the operator
(lq’)\,(u,u))_l by Wo, ¥3, ¥y, ie. (¢,\‘(+1.0))—1|U >=Yy(l» >I®|0 > + ¥, (Jv >)R|1 > +T,(jv >
) ® |2 >, first simple, but useful step in proving 50 is that all the three operators ¥; can be
easily expressed one throw another, so it’s enough to find only one of them. Actually it is easy
to see that, for example: ¥; = [0, f3], ¥g = [¥3, f3]. Looking at the formula 50 it is clear that
operator ¥; is much simpler than the other two, so it is rather useful that we can express them
through the operator ¥;. Second step is to find ¥,. It goes as follows, first let us note that:
Uy(ehiabealn) = g iy mzP 7 2B 2R 4 Bl T 022571 That easily follows from the
equahtles. Wahy = Wy, Uohy = ¥y and 1My, (0 t"’z?) = 0, W, (2 e eh) = 0.
the second point is to use the commutation relation of e; and ¥; and to find recurrence
relations for aux, k, kys Bky ke ks» they cau be solved directly after some work. Hence we find ¥,
and as explained above it follows that we find @y, ®,.

Remark: Let us note that it is rathcr casy to find the formulas for the intertwiners in
Verma realization, not Borel-Weil, but the problem is that expression of the vector z¥'zf2z%
through the vectors f7 f72 f3* is rather complicated and untreatable.

PI‘OpOSlthll 3.8 The action of the intertwiner (®y (11 ,0)) on the Whittaker vector can

be expressed as follows:

(¢\[+l 0)) Jm LHQI'HIU>\+(I0

(®r(510) Y > )0 > Jw >‘\‘¥2‘lzu)—— eeplprty + 262)]0 > p1.0) (51)
(1.0 w >3 W[l > Aqfw ST = vicaplpes + p22)|0 >a400),  (52)

1 . -
(Pr(+1,0)|w >3 @2 >— N—(fg + Aé/lg — AAg)|w >:$:‘1"‘0)= zr2exp(py 1 + p2T2).
1

A 2(2 Ag=2h1 —h A A g —hy =2k
where A; = Jﬁl);’ﬁ_”u and A, = | x+l)+3 2 —hy~2hs

52
The action of the intertwiner (CIJAV(“'O))'I on the Whittaker vector can be expressed as

follows:
1

(,\ + )(M + A +2)

1 - -
p (Az + 2)|lw >5"* @1 > + f, v—(Af — (A2 = 3)A))fw > ©)0 >). {(53)
2 \

(®rger0) e Ay — (p2w >0 B2 > +
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where A, = Zuthatiisds and |, = Zathifaity

This proposition is crucial in this section. The relations for the Whittaker wave functions
(54,55) easily follows from it. Let us sketch the proof and explain the difference with SL(2)
case, which is mnuch more simple. We discuss the analogous reasonings with more details in
the next section in the case of SL(n). Let us denote by Py, P, P, the operators such that:
(<1>,\'[H'0))'1|w >a41= P0|w >a ®|0 > +P1|w > @Il > +P2|UJ >N\ ®|2 > . We will look for
them as some polynomials P;(%;, f;) from the generators e;. From the commutation relations
with the operators ¢; and uniqueness of the Whittaker vector it’s easy to see that the operator
P, is some constant depending only on g;. To fix this constant we look on the formulas 50,
41 and sec that P; = pypa. Also from the commutation relations with operators e; follows
the following relations: [P, e;] = 0, [Py, €3] = €3 + Constant so A, equals %Az + C), where
A; are fundamental coroots, i.e. elements of Cartan subalgebra such that [A;, e;] = &;;, the
constant 'y can also be fixed by the formulas 50,41. Analogously A satisfy the identities:
[Po,e2] =0, [Py, e1] = ZAre; + 8P, wherea + 3 = L. the solution of this equation is given
by the ansatz P = ;‘;(fl + :—Z(A¥ + CoA;)) the constants co,a, 3 also can be fixed by the
formulas 50,41. So the necessary formulas for P; are obtained.

Let us one more time emphasize the difference with the SL(2) case, where we had the
formula for the Whittaker vector [w >= ¥ ;o -'ﬁ(%\%lvac >. Hence the proposition 2.8,
which is analogous to the proposition 3.8 above immediately follows from the formula for
the action of the intertwiner on the vector f"|vac >. In the present case the formula for
|w > in terms of the generators f; is too complicated to extract something from it, so the
proof of the proposition above was based mostly on the property of the Whittaker vector:
elw >= p;|lw >.

3.4 Relations for the Whittaker wave functions.

Theorem (Raising operators) 3.9: The following relations holds:
ezp(¢1)

- R e
Wasi{1, ¢2) = WOy F D)0 +,\2+2)(.“1 exp(—2¢1 + ¢2) +
1,285, + +04, + A1+ 2X2
Sl Lt
# D, + A+ 20
20y, + gy + M + 200 .
(=)l TMTIN o, 1)Wa(dr, o). (54)

3

This proposition follows from the 51,53 in a way completely analogous to the SL(2) case
(proposition 2.11), so we omit the details.
Theorem (Bilinear relations) 3.10:

1 —dg — 204 + (2 + 1) + 214\
((—,L(u'z“erp(—%+2¢x)+(( 4 4 ,(L2 ) ')
K2 3y
—3¢; - 26¢; + (V2 + 1) + 214

e -

=(»)
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—284, = By + 2N+ 1) + Ao =20y — By + ez +1) + 1,

3ul 3k
2
1. r. —J, — 20y, + (U17+ 1)+ 2u,
+(E(#1 exp(—¢1 +2¢2) + (( 3k
—0, — 20, v + 1 + 2v, , iR R
— () =20 =%, 3P(L : B Wb (g, gyt g gy =
2
1 1

(A—,+ DO+ A2 +2) (2 + (i + 12+ 2)

204, + By + M +2X
(( r(uecp(=2s +d2) + R(( bl )

204, + B¢, + A1 +2X
~(a =)0 Te LTI g, )l

(3,;, -+ 26.52 + 2A1 + .)\22 (()¢; + 20¢1 + 2"’1774‘?_’/.1_). _
3z 3#1
1
—ttta( 'UTR(I‘;L“P( 263+ 9) + o ((
28y, + By, + 12 + 21
3

28¢2 + 9y +u2+2u1>
3

LILrRR

(11 —3) — 2o — YT 2 (¢, Go)WiHa 0 (¢ ).

The proof is also completely analogous to the SL(2) casc, so we tefer the reader to the
previous section.

One can obtain the nonlinear equations from this bilinear one, as it was done in the SL(2)
case, but we omit these considcrations due to their length.

4 SL(n) Toda Chain.

4.1 Notations.

Algebra sl(n) is completely given by the generators ¢;, by, fiy 7 = 1,...,n~1 and commutation
relations:

[ei, bl = —Aijexs, [fihi] = Aijex, e, fi] = 8ijhj, 4,j=1,...,N—1, (55)
and the Serre relations
ad! ™% (¢;) = 0, ad) " (f;) =0, (56)

where ad®(y) = [z, [z, -.., [z, y]..]].

k times
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Where A;; is Cartan matrix, which is for the algebra si(N) is equal to

he
—
<
<
<

-1 2 -1 0

<

Quadratic Casimir operator is -

N 1
Cy = 51‘ Cafa+ fata+ 3, A hih;j (57)
o€A iy

where the first sum goes over all positive roots.

We consider the standard Borel-Weil realization of highest weight repsentations on the flag
manyfold B\G, the biggest cell of which, in turn, may be identified with the strictly upper-
triangular matrices NV;. Hence we obtain realization of the representation of the SL(n) in
the space of functions of z;; , 1 £ i < j £ n, where z;; are the matrix elements of n xn
upper-triangular matrices Ny. The explicit formulas can be found for example in {24, 25].

4.2 Whittaker function:

if it is elgenvector for generators el,. wenoy Le. glw >a= p:lw >, for some constants
pi. Obviously [e;,¢;]jw >57**= 0. We will sometimes omit indexes A, u, if they remains
unchanged during the calculations.

Lemma, 4.2: For given y; and irreducible representation V) there exist a unique (up
to scalar) Whittaker vector [w >€ Vi, which can be expressed as follows:

fw >= exp(pusT12 + p2T23 + ... + fn-1Zp_1.n)- (58)

The proof is obvious due to explicit formulas for generators e; in Borel-Weil realization.
Generators e; acts on such vector as 3;,,,, see (7] for details.

o, L R
Definition 4.3; The Whittaker function W: T (y, gy .oy $u=1) is the function given
by:
“' " (b1, 2) =< wlexp(drhy + d2ly + .. + Gpoy oy Yw > (59)

We will sometimes omit indexes A, p.
Pr OPOSltIOIl 4.4: The Whittaker function satisfies the equation:

LR
() A 04.04, + 25‘ A0, — ”YF. pi exp( r:A-‘.jfi)j)) Wi () =

J

= (A= )W (). (60)
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where p is one half of sum of positive roots.

Remark: the proof is based on the idea, that this hamiltonian is the second order Casimir
operator for the SL(n), and completely analogous to the SL(2) case. The function Wi(¢;)
is also eigenfunction for the higher order hamiltonians, which are the images of the higher
order Casimirs for the SL(n). Heuce, we see that Toda is completely integrable system and
the Whittaker function is the wave function for all Hamiltonians of the SL(n) quantum Toda
chain. These facts arc standard so we are very brief (sce [7]).

Pr OpOSitiOll 4.5 (Integral representation of the Whittaker function) ([7}) :

. N-1
H(lﬂlij H A;(Eklﬁk,w\ﬂ»l)(zsgl) x

i<s i=1

o (xg=)
”’.Rzl.wl‘(zk Ak'lx")_“k'—'%‘_?a_(s:sr)_), (61)

Wi(gi) =€~ Z"\m"/

X=B\G

xe

where A; - is i-th principal minor of matrix z; ;, A1 - determinant (r—1)*(n—1) submatrix,
which obtained by interchanging 1 — 1 and n columu. Malrix S is given by S;; = §iyjn-

The theorem is corollary of the facts that the invariant pairing < vfu > is realized as
integral with the flat measure, and the realizations of the Whittaker and the dual Whittaker
vectors. The most nontrivial part is to find dual Whittaker vector. We refer to [7] for detailed
exposition.

4.3 Intertwining operators

Denote by V[, q,..0) the first fundamental representation of the SL(n,R), which is just the
standard action of the n * n matrices on €, denote by [0 > the highest weight vector, by
{1 > the vector f,|0 >, by |2 > the vector f,f1]0 >= f4]0 >, etc.

To construct relatious for the wave functions, one needs to cxpress the action of the
intertwiner on Whittaker vector, in terms of the geunerators fi, h;. For cxample the crucial
formula for us in the case of SL(3) was:

1
w >4 )(ll])l,g[“? S 12 > + (62)

MFDM F A +2
1. 1 1 - .

F—(A2 +2)|w >4 %]l > +; (h+ F—(A? — (A2 = A1) w >4 ®]0 >). (63)
2 2 2

L
Where A; were fundamental coweights minus some constants.

We need analogous formulas for the case of SL(n). We are unable to find them. We
present only the equations for the componcents of the desired intertwiners and first steps
towards their solution. As a corollary we obtain higher degree terms of the raising operator
for the SL(4).

Let us consider the most simple intertwiner @ : Vi, 10,...0) = V2 Q@ V10,0 We need to
find such polynomials P;( fi, ki), 0 < j < n that:

n~1

(Dlw >,\+(I.u....,(}]: ‘/‘T, Pj(.fis"x}l’“‘ > ®b > (64)

7=0
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P l‘OpOSitiOIl 4.6 The following relations holds :
exPj(fir ha)lw >y +8j 51 Pl f, h)w >a= i P (f. h}lw > (65)

The roof 15 obvious.
orol ary 4.7: One cau look for Pj{f,h) as an elements of the U(sl(n)), satisfying the
following relations:

(e, P(f, )] = Hiy(f, m(;-‘; ~1) fork#j+2 (66)

[exs Pe—a(f, )] = ax Pior(f, h)% + Bk Pe_i (f, k), wherc ag + O = 1. (67)

where Hy j(f,h) are some polynormials.

This allows one to orgaunize itterative search of polynomials F;: if P; already found
then P;_, is defined by conditions: [ex, P-i(f,h)] = Hija(fLh)(E 1) for k # j +1
and [ej41, Pj-1(f 2)] = axPei([, h)ek + BxPi-1(f, k). Despite some unknown polynomial
Hi ;1(f, k) and parameters o, 3 enters the equations, they are restrictive enough, and even
overdetermined in general, to define the polynomial P;_

We can conclude from the considercd examples that the highest degree part of the P;_,
can be defined uniquely from this relations. The problem is that we do not know the way of
solving such recurrence relations. Let us present the first 4 polynomials P; found by hands.

PI’OpOSitiOIl 4.8: Polynomials £y, P2, B3, P4 are given by the formulas:

Py = piptaetinet, Paca = (Auo1 + Constani)upiz...fin-2, (68)
Pu-s = (pn-2fn-2+ ptn-sfa-a + .. +p1fi +
H(AL_; — Anc2Anes) + (/\,._3 = AnZaBoa) + o+ (AD)Dpapaepin-a + Fi(A:),  (69)
2y _
Pn.—4 = fn—3(An»2 + An— - v1—4) + fn-d(/\n-(i f‘n 2 + An—E ’Fn 4) +

n—3 n-3

+fn_5(An_.'iIJ’"_5 +A“_4Fn—5 _ Aﬂ_ﬁ/"n-S) + fn—G(An—Sﬂu_s + An_sﬂ"‘,ﬁ —
Mn-3 ﬂu—-j Hn-3 Hn-3 Hn-3
I L e T
Il'n.— Hn-3 P — 3
+[fn-25 fn.—!!]l‘n—Z + [fn——f}, fn—41ﬂn—1 + [fn—dyfn-ﬁ] n—S'u""—4 + .. + [f’h fl #IMZ
n—! n—3

(A3_3 — 2A] 3Anes + 20 sl ) +

ﬂn—:{
A
/1 ( An._4Aﬂ_5 + (A,L—S - An—SAn 6) + ‘u~—b - An—-h n-—T) + ...t
n—3
+(AZ — A2Ad) + A7) + n-alis = Af_iMass) +
n—3 :
e (AuosAZ g — A2 Avie) + o+ ——(AsA? = AZAY) + Ba(A, £). (70)
Hn-3 Hn-3

~where A; - fundamental coweights, F; are some polynamials of degree i.
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The proof is straightforward check that given polynomials satisfy relations (66) and one
can see that they are the only with this property. Let us note that the system for the £,
is overdetermined, but nevertheless it has solutions.

So we see polynomials P, _; are of degree j. It's easy to guess that it also holds true for
j > 3. It’s casy to understand that to write the simplest raising relation one should find Fy,
which should be some polynomial of degree n — 1. Our first hope to do that was to find some
recurrence formula: Pj_; = A;P;, but we did not succeed, looking at 69 it seems that such
formula may not exist. Another idca is that may be £; are somehow related to the Casimirs
of subalgebras SL(n — j), which one can guess looking at 69 and at commutation relation:
lex, ;) = Hy;(2 — 1), which roughly means that P; and e, almost commute for k # j + 2.

Let us also note that it is possible to write intertwiner Viyao,..00 = V2 ® Vyo,..0) In
Borel-Weil realization so it is possible to find the expression for P; as some polynomial of
operators of multiplication on monomials 2, ; but the problem is then express such operators
via the polynomial of the f;, ;.

As a corollary of the formula 70 we present the highest degree terms of the raising operator
for the SL(4).

Corollar Y 4.9: Highest degree terms of the raising operator for the Whittaker functions
of the SL(4) are given by the formula:

30¢1 + 26(2,, + (3?‘,5

‘ I
War.00)($1, b2, 63) = fﬁxl’(ﬂ’)l)(;l—l( 1 )+
50, 60 34
+uflep(~21 + )P T I Wbl eap(— gy 62)) Wil b ) +
+(F2( &, 8g))Wa(dr, d2, ¢3). (711)

where F3(¢, 94) is polynomial which contains lower degree terms in @, 3.
The proof is the same as in the SL(2) and SL(3) cases.
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