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1. Introduction 

The hydrogen atom in constant homogeneous electric and magnetic 
fields still remains to be an object of theoretical investigations. A good 
example is the recent work [1], where a recurrent nonperturbative method 
is developed for building the exact wave function of hydrogen atom in mag
netic field in the form of convergent double series. More wide discussion of 
the problem is contained in the review [2]. 

The famous technical trouble, namely the inability to separate the vari
ables, only stimulate application of new investigation methods, including 
perturbative ones. The moment method [3], first used for perturbative 
treatment of the anharmonic oscillator, is not related with variables sepa
ration. The recent application of this method to the Zeeman effect prob
lem [4] allowed to check the behavior of high orders asymptotic of the 
perturbation series. The moment method in the form similar to that used 
in [4], was developed independently of Ader's work [3] by Fernandez and 
Castro [5]. Then it was applied to hydrogen atom placed in parallel electric 
and magnetic fields [6] and later the Zeeman effect problem was considered 
for four sequences of hydrogen atom states [7]. 

It seems to be even more important to apply it to hydrogen atom in 
crossed electric ({) and magnetic (il) fields because only initial terms 
of expansion in powers of t and it were considered for this case up to 
now [8, 9, 10, 11, 12]. As will be shown here the moment method allows 
to compute high enough orders of this expansion. 

The high orders asymptotic can be obtained with the help of the imag
inary time method [13, 14, 15]. This asYmptotic is determined by the 
contribution of an extreme subbarrier classical trajectory into the atom 
ionization probability [16, 17]. A pair of extreme paths replaces this tra
jectory at some value of the ratio of external fields, = 1i/ £. The depen
dence of far perturbation series terms on , reflects this change of extreme 
trajectory and should be especially sharp for perpendicular external fields. 
We study here just this case. 

2. Recurrent evaluation of perturbation series 

Consider the ground state of hydrogen atom, placed in perpendicular 
electric and magnetic fields. These fields are supposed to be constant and 
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homogeneous. We restrict ourselves with nonrelativistic approximation 
and neglect the spin of electron. From the very beginning we take mea
sures to simplify the numerical computations and to achieve high enough 
order of perturbation theory. For this aim we consider / as a fixed parame
ter, replacing the double expansion in external fields by the single-variable 
series 

t/J = 1: £klk) , E = f: E~£2j , (1) 
1:=0 j=O 

where the wave function corrections Ik) and hyper-polarizabilities Et de
pend on /. We introduce also circular coordinates 

x± = x ± iy , 

then all further relations will have real coefficients. In these coordinates 
the hamiltonian of our problem is: 

" " " 2 " ,,1 1 
H = Ho+ £Hl + £ H2 ; Ho = -2~ - ;: ; 

iIl = X + liz = ~(x+ + x_) + r (x+~ - x_~), (2)
2 2 2 8x+ 8x_
 

fI, /2 (2 2) /2

2 = "8 x + y = S-x+x- . , 

The wave function correction of the order k satisfies the differential equa
tion 

Just as in other problems where the moment method was used [3, 4] it 
is not difficult to transform equation (3) into algebraic relation between 
moments of the order k 

pk = (0Ir(f-o:-f3xO: xf3lk) (4)00:{3 + - . 

A recurrence relation results 
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where
 

1 2

Rk - [pk-l pk-l (~)pk-l] + l' pk-2

uOt{3 = 2" u+l,Ot+l,{3 + u+l,Ot,{3+1 + l' a - {J uo.(3 8" u+2,Ot+l,{3+1 

[k/2] k 2· 

- L EtPfT;/'
j=l 

The right-hand side of eq. (5) and hyper-polarizability Et depend only on 
the moments of preceding orders. As usual in the moment method [3], the 
orthogonality condition is accepted 

(Olk) = 60,k pto,o = 80,k . (6) 

An expression for hyper-polarizability arises from eq. (5) at a = a = (3 = 0 
and even k 

..1 1 k-l k-l 1'2 k-2
E k = 2(P1,I,O + PI,D,l) + 8"P2,1,1 . (7) 

The closed system of recurrence relations (5) - (7) allows to achieve, at 
least in principle, an arbitrary high order of perturbation theory. The 
sequence of operations is similar (also somewhat simpler) to that, used in 
the work [4} to compute Zeeman's shift of a non-degenerate state. At every 

order k only moments P:a{3 from the sector (7 ~ a + {3 - 1, a ~ 0, {3 ~ 0 
are necessary. They are evaluated by successively increasing of (7, a and (3 
values with the help of eq. (5). 

We have obtained hyper-polarizabilities in perpendicular fields up to 
80th order, see table 1. This order is large enough to compare the depen
dence of these coefficients on 1', see fig. 1, with the predictions, following 
from quasiclassical considerations. One can see from fig. 1, that the func

tion !Jc(')') == In(IEtl/k!) has two features. It has a minimum at l' ~ 3.4 
and a sequence of singular points to the right of tills value. Besides, the 
function Et(1') changes it's sign at every singular point of ik( ')'). 

As follows from table 1, at not very large l' values all E.J:J coefficients 
have negative sign, as in the case of Stark effect. In intermediate region of 
l' values the sequence of E.J:J signs is irregular and for sufficiently large ,),'8 

the series has normal Zeeman's sequence of signs (-1 )i+I. 
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3. High orders asymptotic 

As is well known [16], a dispersion relation connects asymptotic of high 
orders coefficients Et with the ionization probability of the atom i.e. with 
the penetrability of the potential barrier. This relation arises as a conse
quence of the fact, that the energy eigenvalue E = EO(£2) - if(£2) has 
essential singularity at £2 = 0 and a cut along £2 > 0 semiaxis. (And 
similarly E(1-{2) has essential singularity at 1-{ = 0 and a cut 1-{2 < 0.) 

To evaluate the ionization probability r the imaginary time method was 
previously developed [13, 14, 15]. The leading term of the asymptotic Et 
of Et coefficients at k ~ 00 is determined by the classical subbarrier path 
with extremal value of the abbreviated action. Time takes complex values 
during this subbarier motion. There are two kinds of complex classical 
trajectories. Like in the Stark effect case, the ionization may be caused 
by electric field, at stabilizing influence of the magnetic field. The path of 
this kind creates the asymptotic 

(8) 

at not very large magnetic field, for 'Y below some critical value Ie. Accord
ing to [18] Ie = 3.54 for perpendicular external fields. And it is possible 
to cross the barrier also at 1-{2 < 0, like in the Zeeman effect problem. 
Subbarrier trajectories of this kind are responsible for the form of Et( 'Y) 
in the opposite case I > Ie. This change of asymptotic explains the origin 
of the left minimum in fig. 1. 

Having in mind to get estimate for the function a('Y), entering Et, we 
apply the results of [18, 19] and write here some necessary expressions for 
the special case of perpendicular external fields. More general considera
tions related to arbitrary t and it mutual orientation are contained in the 
work [18}. 

The time of subbarrier motion satisfies the equation (19]: 

(9) 

which has a set of solutions Tn = in1f' + T~. The minimal value of the 
imaginary part of the subbarrier action is provided by TO for 'Y < 'Yc and 
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by a pair of solutions 7±1 for...., > ....,c. In the region, < ,e the energy 
half-width is 

r(f') = B1') exp [- 2~~)], g(,) = :;3 (,' -Jr' - ,.) (10) 

The dispersion relation in £2 then leads to 

-l.. = _~ jOOr(z)dz t'V (2')' 2jE (11)2J 27r 0 zj+l J . a , 

where 
3 

a(....,) = 2g(,) . (12) 

The last equality is valid also in the region...., > ,c, where g(,) and a(,) 
are complex functions. At ...., < ""'C the resulting approximate expressions 
for a(,) are 

a(,) = ~ (1 - ~....,2 - .2!.-....,4 + ...) ...., ~ 1 ; (13)
2 30 2100 ' 

4....,3 
a(....,)~ (....,2-1)2(1_2e--y2-1)' ....,~l. (14) 

And in the region...., > ""'C another representation works 

...., [ 2 (81f2 
) 1 ]la(....,)I=- 1--+ -+3 -+ ... (15)

1f ....,2 3 ,4 

On the other hand in the limit of large k a simple relation appropriate for 
numerical evaluation holds: 

(16)
 

Evaluating a(....,) above ,c, we used smoothed function E{(,), with the 
nodes vicinities excluded. A comparison of this way numerically obtained 
function a(....,) with expressions (13) - (15) is presented in fig. 2. 

Now we turn our attention to the region, > ....,c. Two solutions of 
eq. (9) 71 and 7-1 lead to complex conjugate values of g(....,). Substituting 
approximate T1 value into second expression (10), it is possible to get the 
phase of the function a(....,): 

arg (a) = -arg (g) = -21f + a(....,) , 



6 

Finally the sign-alternating asymptotic arises: 

1Et = 2IB (,)1 (2j)! jal 2i+ cos [(2j + 1) (-i + a(,)) + ,6(1')] 

rv (-1); (2j)! lal2i+1 sin [(2j + l)a(,) + ,6(,)] , j ~ 1 . (17) 

Here 13(,) = arg (B) is the phase of the preexponential factor. Its relative 
contribution to the total phase falls like 1/j . 

When the order of perturbation 2j is fixed and , increases, expression 
(17) changes its sign at every point where the argument of the sinus turns 
to zero. This could explain the singular points in fig. 1 in the language 
of asymptotic. But rather lengthy calculations are required to establish 
detailed quantitative correspondence between asymptotic (17) and exact 
Eh coefficients, including nodes vicinities. Simple approximate expression 
for a(,) is not enough for this aim. 

4. Discussion 

For the general case of the ground state energy expansion in powers 
of crossed external fields, the term of the forth power was known long 
enough [9]. 

E = -~ + f E(2i) ; E(2) = -!£l + ~H2 ; (18)
2 j=l 9 4 

E(4) = _3555 [4 159f2il2 10 [Ht]2_ ~il4 (19)
64 + 32 + 3 192· 

The value of E(4) is confirmed for perpendicular fields by the work [12] 
and for parallel fields - by [12, 17, 20]. The Et coefficient, computed by 
means of recurrence relations (5) - (7) exactly agree with (19). But we have 
noticed numerical difference between our coefficient Et and corresponding 
quantity from the work [12]. Therefore the sixth order of perturbation 
theory was analyzed in details. 

The magneto-electric susceptibilities, Le. coefficients of the double 
series in powers of external fields, can be easily obtained from 
hyper-polarizabilities EtC,). Thus, in the sixth order, taking into account 
that Stark's and Zeeman's coefficients are fixed, it is enough to choose 
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four different 1 values and to solve the system of four linear equations. 
The following representation results 

E.1. = __1_ (2512779 _ 521353 2 953869 4_ 5581 6)
6 512 1 + 27 1 9 1 

3 
= ,"".1. (''1J/ <:')2j 
- L....J 16-2j 2j / (. (.,. . (20) 

j=O ' 

(The last identity introduces notation of [12].) Using linear relation be
tween expansions (1) and (18) and the known magneto-electric suscepti
bilities in parallel fields [20], it is easy to obtain another term of series 
(18): 

E(6) = _ 2512779 16 254955 {4if2 133199£2 [iil] 2 
512 + 512 + 256 

_ 49195 e'2v4 _ 255557V2[V C]2 5581"'6 
1536 '-' /(. 6912 H /(.(.,. + 46081i . (21) 

Some next terms of series (18) can be obtained in the same way. Expres
sions (20) and (21) are convenient to check term by term the sixth order 
correction. As follows from [12] 

.1.[12] 1610197 and .1.[12] _ 2417015 
124 (22)27648 142 - 1536 

while the results of our computation are 

.1. 953869 .1. 521353 
(23)124 = - 13824 and 142 = ~ . 

All other corresponding coefficients of [12] and of present work coincide. 
We carried out additional independent calculation by means of the method 
from the work [9J and get 

.1.[9] _ 953869 
124 - - 13824 ' (24) 

see Appendix. Note, that [9J contains complete correction of the sixth 
power in external fields for the case of parallel fields and only a part of it 
for the case of perpendicular fields. These "celebrated" sixth order terms 
result as a by-product of forth-order calculations in the work [9]. The agree
~ent between high-order hyper-polarizabilities Et and their asYmptotic 
Et presents additional confirmation of correctness of recurrence relations 
(5) - (7). 
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5. Concluding remarks 

The considered above problem demonstrates once more the high effi
ciency and convenience of the moment method. The obtained recurrence 
relations have allowed to advance up to 80th order of perturbation theory. 
Besides the unusual "oscillations" of hyper-polarizabilities as a function 
of the ratio of external fields were noticed. The high orders asymptotical 
behavior was analyzed as well. Basic parameters of this asymptotic ex
actly agree with those, previously obtained on the ground of quasiclassical 
approximation with the help of imaginary time method. 
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Appendix 

Extending the described in the work [9} calculations we obtained, by the 
same method, the ground state energy correction, which is proportional 
to Q == '}-{2[HE]2. The perturbat.ion in [9] includes Stark's term ~ = 
fr, paramagnetic Vp = ~Hl and diamagnetic VD = H1trj2 terms. The 
entire perturbation is inhomogeneous, therefore terms of the sixth power 
in external fields are presented in corrections of the fourth, fifth and sixth 
orders in V. 

e(4) = _ 151347Q + '" , (AI)
2047 

e(5) = (21(V - e(l)!2) - 2e(2)(211) - e(3)(111) , (A2) 

e(6) = (31(V - e(1» 12) - e(2)((212) + (113) - 2e(3)(211) - e(4)(111) . (A3) 

In the following an abbreviated mnemonic notation will be used, reflecting 
the origin of each term and the powers of entering this term external fields. 
This notation helps to omit all not essential terms. Operation signs are 
encircled in the abbreviated notation. In the first order in V 

11) == {a}(r)(lT) + ~(a2(r)'}-{2 + a3(r)[Ht)2HIO) §{Vt:EfjVD}IO). (A4) 

The next correction 12) contains 

z ..........
 
VpVt:10)@2 b1 (r)([H£]T)10) , 

Vt:VDIO) §~((lT)(b4(r)[Hrf + b5(1·)1-(2) + b6(r)H2([Ht1rH/0). (A5) 

The polynomials ai(r) and bier) are given in the article [9). Abbreviated 
notation allows to verify that in each of the right-hand sides of Eqs. (A2) ,r 
and (A3) only the first matrix element yields contribution rv Q. 

e(5) = A + B1 + B2 + C + ... , 

dots stand for all omitted terms. 

A@(OI(VpVt:}VD(VpVt:)IO) , 
B} §(O!(Vt:Vn)Vp(VpVt:) 10) , 

(A6)
B2@(01(VpVt:}Vp(Vt:Vn)10), B2 = B} , 
C@ - E(1)(OI(VpVt:}(VpV£) 10) . 
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Corresponding explicit expressions are 

A = 3~ (0Ibi(r)([i{f]'r)2[H17fIO) = 5:1 Q , 
4

B1 = 1
1
6 (0Ib 1(r){b4(r) [HiJ2 + (b5 (r) + b6 (r))1{2}([Rt]T) 2 10) 

=	 299623 Q = B 
(A7) 

18432 2 , 
1 

C = -161{2(0Ibi(r)([ift]17?10) = - ::~:Q . 
Only one term of the third correction to the wave function is essential 
that of the lowest power in external fields: 

The differential equation for Cl (r) [9J is satisfied by the polynomial: 

1 
cl(r) = -144 (450 + 225r + 62r

2 + 6r3
) . (A9) 

As a consequence we get 

(A10) 

and 
E(6) = -1~ (Olb1(r)cl(r)([H[ilt)JT)2 10) + .... (AIO') 

The total energy correction of the desired form is 

(All) 

One should not forget also the "isotropic" contribution to the energy cor
rection, originating from £(4): 



Table 1. Hyper-polarizabilities Er of the hydrogen ground state. 

k 1=2.0 1=3.0 1=6.0 ,= 70.0 
2 -1.2500000 +0.0000000 +6.7500000 +1222.7500 
4 -26.755208 -3.1875000 -114.42188 -6587135.8 
6 -1861.2023 -449.50781 -1167.7324 + 1.4083939 x lOll 
8 -231011.83 -39518.994 +3563855.9 -5.5211341 X 1015 

10 -4.3046334 X 107 -4415104.3 -1.9148046 x 109 +3.2420587 X 1020 

12 -1.1108858 x 10lD -7.8928562 X 108 +8.7798001 x lOll -2.6154136 X 1025 

14 -3.7903062 x 1012 -1.9681752 X 1011 -2.7563534 X 1014 +2.7647695 X 1030 

16 -1.6565997 x 1015 -6.0102169 X 1013 -1.4386041 X 1017 -3.7128281 X 1035 

18 -9.0515867 x 1017 -2.2599584 X 1016 +5.1094372 X 1020 +6.1877660 X 1040 

20 -6.0598915 X 1020 -1.0569584 X 1019 -8.5724488 X 1023 -1.2555439 X 1046 

22 -4.8865029 x 1023 -5.9768835 X 1021 + 1.0371317 X 1027 +3.0513954 X 1051 

24 -4.6763388 x 1026 -3.9866393 X 1024 -3.8968989 x 1029 -8.7572953 X 1056 

26 -5.2434742 x 1029 -3.1103268 X 1027 -3.2330568 X 1033 +2.9313099 X 1062 

28 -6.8121442 x 1032 -2.8159706 X 1030 +1.5576520 X 1037 -1.1320123 X 1068 

30 -1.0154266 X 1036 -2.9246470 X 1033 -4.7085047 X 1040 +4.9954972 X 1073 

40 -4.4829424 X 1052 -2.1028668 X 1049 -6.2371218 X 1058 -4.7347888 X 10102 

50 -2.3374671 X 1070 -1.7764719 X 1066 -8.3813757 X 1077 +4.7994225 X 10132 

60 -8.8335861 X 1088 -1.0843471 X 1084 -5.8480016 X 1097 -3.1030447 x 10163 

70 -1.7441216 X 10108 -3.4513657 X 10102 +1.9127476 X 10117 +8.3761299 X 10194 

80 -1.4229765 X 10128 -4.5336207 X 10121 +1.3366049 X 10140 -4.3789967 X 10226 

.... .... 
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Fig. 1. Functions h:(,) = In '~f' resulting from the recurrently com": 
pnted hyper-po1arizabilities. 
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Fig. 2. Parameter a(,) of the perturbation series asymptotic. 
The solid line follows from the quasiclassical estimate at, «: 1, see eq. (13); 
the same estimate for, ~ 1 is presented by dashed lines, see eqs. (14) and 
(15). Numerically obtained values are denoted by stars. 
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