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The vacuum energy density is obtained for O(V) nonlinear sigma models.
It was shown that non-perturbative contribution is connected with Casimir

operator of the group O(N).
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After the discovery of nonperturbative fluctuations the question about their
function in generating of physical amplitude is of particular concern in the field
* theory. The most eflort goes into investigating these effects in the Yang-Mills
theory, in which we are still far from a complete understanding because it is a
notoriously difficult task. Therefore there is sense to study these problems in
a simple theory to get a new insiglit into the problem. Such simple analogy
of Yang-Mills theory is two-dimensional sigma models with fields transform
according to the vector representation of the group O(N) {1]. These models
provide a possibility to perform the analysis conserving hope that obtained
results are interesting in actual physics.

For along time it has become clear that the dynatmcs is in some way related
to a complicated vacuum structure, therefore investigation of the vacuum
structure turns out to be the key to understanding actual dynamics.

- In this paper, we will discuss the influence of non-perturbative fluctuations
on the vacuum energy density £, in the framework of the two-dimensional
sigma model. We shall demonstrate this by censidering the large N limit. In
these models, non-perturbative effects take place and do not depend on the
existence of instantons for N > 3.

Remind what physicists know about nonperturbative eﬂ'e('ts and o in
sigma models. Lorentz invariance implies that the vacuum energy density
moay be defined as

gnv"-'m—<0|ouv 0>,

where 8, stands for the encrgy—momisntum tensor. Takmg into n.ccouut“tbe
conformal !momaly we arrive at g
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Eoae = '—(-M 2 '7"‘):
M3is regulator mass, a is La.gra.nge multiplier and < a >is eonstant denoted v
by m3/N. The first term is connected with the perturbative fluctuation in the
vacuum, while the second one is due to non-perturbative fluctuations. These -
*-results were obtained in ref. [2]. Let us note that < a > is a fandamental
value of the theory also in the case of phase transitions (3].

To demonstrate how the non-perturbative effects enter into the value <
v a>#00neemploystheLagranpan

=-{(a,,a')’+7=(e‘cr‘- f)} o ®
"' We want to decompose o*(z) and a(z) as o .
| A =SE+dE (2)

oz) = afz) + an(z) ,

where c‘(z) and ac(z) are slowly s varying ﬁelds while q"(z) and a,.(z) descnbe '
fast varying fields. '
The equations: of motion ior slowly vuymg ﬁeids are
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" The equation (5) may be rewntten in a linear form for (8 c‘) Using the
_current symmetry J% and the constraint (4) we get

Yoy, @
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* Deriving Eq. (8) we followed the procedure which may be apphed only for
a special form of the equation.

This equation asserts ndentlcally for all ¢*(z) which are subjcct to the con-
straint (4). Thesc ficlds have a special property: their transformation under .

translations can be compensated by global isotopic transformations: and they
were fitst discussed in [4].
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The energy-momentum tensor 0,, turns out to be proportional to the prod-

" uct of conserved currents in these models. Sxmi!uhctsaewnknmmthe
' ﬁddtheoty [S]mqumemmchma{ﬁl

Toﬁndthemmmgydznﬁ;yem,ndeineditu »
e,.,a'-;-<0|0,,|9>-=Iim.<'0[M3q’(z—A)q‘(z-i-A)’IO}. (10)
The limit of the right-hand-side of Eq. (lo)wcak:uhtedatbl’—-ocoand

~ A? — 0 and under a special condition A?M?* = Const

In equation (10) fast varying fluctuations q‘(z) are net of axbttruy value

-ndmtutn&themm f21 -

2% + q‘q‘ =0. | ‘ (u)
Dﬁaentutmg {11) md implying ¢*9,9° = 0 (which is the first step ap-

proximatien) we obtam

d=-Lrsp o
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. see that ¢*8,¢" = 0. If there exist fields ¢° with property ¢*8,¢" %0, ‘we can |

get af :
8ua" = ~ IR +P0,d")
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Solving. this equation, we find ¢*¢" = 2, but this solution contradicts to
the basic assumption that ¢° describes small fluctuations and the condition
7*0.q" # 0. - :

Equation (12) connects quantum field ﬂuctuahons and non-pextutbatxve
fluctuations.

Our goal is to calculate (10) and we ca: ‘o it knowmg only equation (12).
Indeed, we get i :

<0[6,,{0>= hm—(o <| M’q" 10> — (13)
~ALLM <0| g |0><0] (ﬁ) I > +..)
Using the ot@honorinélity condition we can conclude

<0 (L)IBa 10 5=~ <01 771 0>= +mPgu5*

Remind that the stationary value of a(z) is denoted by m? vN.

“We assumed that the vacuum is an cigen state of Casimir operator of the
group G(N), but this statement can be proved. Howovcr we will not doit as
this is beyond our short report. .

In this paper, we have concentrated on the non-perturbative contribution te
the vaciam energy density. It was shown that non-perturbative fluctuations
.with a special property determine non-perturbative contribution into £,,.. As
a mater of fact, vacuum condensate of < a > is vacuum condensate of Casimir
operator of the group O(N).

The author is grateful to V.M.Belyaev and V.A.Novikov for uscful d:scus~ ,
sions.
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