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_ A particle code has beéri devised for high-turrent beam simuldtion fha
driver for heavy lon fusion (HIF), SBome suggestions have. been offered for
* efficient implementation of the algorithm. Tb illustiate it’s applications a final -
, ‘f:;cming system of HIPF driver has been designed and & numerical simulstions
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focusing onto. the thermonuclear pellet has been carried out. An - -
advanced "charge-syminetrical” drivet’s scieme has been also considered and -
eothe comparisions with conventional gcheéines have beett made. .
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1  Introduction

An accelerator driver for heavy ion fusion (HIF), which operates with very
intense high energy ion beams, will represent in all respects a state-of-the-art
facility. Due to a very high cost of the driver (see [1}-{4]), a detailed large-scale
numerical simulations play a very important role in preliminary studies. So
far as a detailed analytical self-consistent analysis of beam motion is available
only in frames of simplest models (for beams with 1 degree of freedom, e.g. for
1D sheet beam, etc.) the only practical apprcaches for accurate description of
intense beams are the so-called envelope or K-V equations {5], and numerical
simulation, using particle codes.
The special features of two-dimensional K-V beams have been discussed
in detail earlier (see papers [5,6,7]). This 2D model presents fairly a good
accuracy for intense beam behavior, when the major contributions of space
charge forces (linear terms) are taken into account. K-V model is also convenient
for fitting procedures, because the fast computing of beam parameters gives the
- opportunity to search for the best variants automatically — to optimize the
focusing lattice and to design various optical insértionsfor high-current beams
handling. The limitations of K-V equation are, that they are valid only in the
absence of nonlinearities and when the rms emittance is constant. Meantime,
just these phenomena take place in HIF driver and become decisive factors

. especially at the driver’s final stage ~ within final focusing objective. All that
necessitates to use two- and three-dimensional particle codes.

In the proposed paper a 2D particle code will be described and it’s appli-
cations will be illustrated by beam dynantics simulation in HIF driver. Some
computational blocks, which could be helpful for algorithm implementation, will -
be discussed as well. '
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2 Two-dimensional particle code

Nurmerical simulation using super-particles, represents an universal toal of com-
putational physics and has a number of applications (see Hockney’s book [8]).
Despite of these applications diversity, the most of algorithma include, as usual,
the following computational blocks:

1. An algorithm for initial ions coordinates and velocities arrangement,
2. Calculation of space-charge forces,
3. Numerical integration of beam motion equations,

where second and third steps are being performed in cycle.
A computer program, outlined below, follows this general scheme. At the
- same time, when designing HIF final focusing system, it has appeared to make
serious efforts, in order to upgrade the computational characteristics of the
algerithm in terms of the integration method accuracy and the rapidness of the
calculations. A simple numerical procedure to find a family of rms-matched
beams (initial distribution) has been also developed. ’

2.1 Algorithm for initial distribution

As is well known, for periodical focusing channel, only microcanonical distribu-
tion function allows to find exactly the integral of motion, which is represented

by Hamiltonian H (dH/dt = 0). It was found in (5}, that f(H) = 6(H — Hmaz), °

i.e. all particles belongs to the ellipsoidal shell in the four dimensional phase
space (Z,pz, ¥, Py), all phase-density projections are elliptical, uniform (¢ =

const), and the corresponding space charge forces are linear. Assuming, that

the beam has a crossover (¢} = 0, where g stands for the beam envelopes) in the

initial point, the corresponding Hamiltonian H may be written as the following:

2 2 2 2
B+ +o+a 1)
az aP. “v aP'

The numerical procedure to arrange a K-V phase distribution is assumed to be
well known and we do not consider it.

Meantime, real beams have smooth phase and space charge densities. In
the papers [7] it was proven, that assuming the rms emittance is constant, the
corresponding rms envelope equations are valid for K-V beam (p = const), as
well as for any other beam with g(r) # const. When beam propagates through
the long periodical focusing channel and rms emittance growth is not significans,
the above proposition seems to be quite justified. We shall devise therefore
an algorithm, which forms a class of rms-matched distributions, those which
provide the coincidence of different momenta of f( H) with the K-V distribution.
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Thus, the Hamiltonian H is assumed to be an integral of motion for a family
of phase distributions with distribution function f(H) = (1 ~ Hf Hmaz)*~! and
real space density o(r) = go(s)(1 — r2/rZ) (see figs.la — 1b), where H varies
within H € [0, Hiaz], rm is a beam size, and s > 0. (One can see, that the

singular K-V distribution can be obtained, when taking s = 0).
’ If the distribution function f(H) in the phase space is known, then the
particles number within the clementary volume dV{H) can be found from the
formula

dN(H) = f(H)dV(H) (2)
A general expression for dV can be written as:

dV(H) = dzdpdydpy 3)

If Hamiltonian is expressed by the formula (1), and R = a; = ay, P =

a;+ = ay (circular beam), then, introducing the cylindrical coordinates, we can

“rewrite H = r?/R? + p?/P? and dV(H) = rdrdg.pdpdg,. After integrating,
one can obtain the dependence V(H), as

r}H) P (H)
V(H) = / rdrdgy pdpddy = x° / f dr2dp? @
1] [/
[N

Since r*(H) = HR? and p*(H) = PY(H - r*/R?), one gets
HR? - 1 .
V(H) x x*P* / (H —r*/R?)dr? = §x’P'~'R’H’ (5)
. 5}

Hence, the Eq.(2) can be written as
dN(H) < f(H)HdH

If we consider now a discrete distribution {H;} (H; = H;_, +dH;), then instead
of above differential relation we have

dN(H;) = dN; = Cy f(H;)H;dH;

The derived forinula expresses the dependeuce of particles number from
Hamiltonian. If we now demand the performance of

Si = f(H)HidH; = const  1=1,2,..., M (6)

(where H;_, < H; < H; and dH; = H; — H;_,), then we can form an arbitrary
bivariate distribution, as a superposition of K-V distribution components with
JUH;), if only a discrete set {H;, H, ..., Hp}, will satisfy the conditions (6)
(seefig.1c). The particles numbers in every layer, must be constant, whereas the
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dH; varies: dH; # dH;;,. A possible way to find the corresponding distribution
{H;}, is proposed in Appendix 1.
" (Note, that the alternative way to assign the distribution is to arrange a
superposition of singular K-V distributions on the regular set {H;} with dH; =
const. However, in this case, we have to vary the number of particles within
every K-V layer. For big enough number of particles, the both approaches,
certainly, coincide.) '

Hence, the semiaxes of ellipses (the components, having K-V distributions)
can be found as the following:

Biz = dm\/;;: “\'v = amy\/’: a;z = a:'nc\/’;: . aﬁy = a:ny\[h-"-

where h; = HifHmaz, t = L,..., M and ams,am, are maximal beam’s sizes.
-As long as the rms beam sizes must coincide, one can derive, that

[ KE)rodrds, -pdpds, _ [e(r)ridr _ 12,
[ f(H)rdrdé, - pdpdé, ~— [o(r)rdr = p+2
that determines the magnitudes of ¢mz,@my-

Thus, the above described technique, give a simple algorithm to arrange a
class of rms-matched initial distributions (see [9]). ‘

rg = r? >=

2.2 Space-charge forces calculations

There are two ways to find space charge forces. The first way is to compute all
couple forces between all superparticles in the assembly — PP (particle-particle)
-model. It is clear, that the number of operations required is of the order O(N?)
in every step and is very time-consumed.
Another more cheaper computational approach is to find these forces by solv-
ing the Poisson equation over a bivariate region R with Dirichlet and Neumann
boundary conditions

Viu = —p(zy,z2), (zy,2z2) € R, subject to:

u(z1,23)lr = 0 M

du(z1,z3)
uzlna:g =C‘I7=0

where I' and 7y define the boundaries of the R region.

According to this approach, the differential problem is replaced by a discrete
one, by introducing a spatial discrete grid (PM-approach, "particle-mesh”). A
number of various algorithms exist now to solve discrete Poisson equation for
a wide enough range of regions. (We should remind about the more advanced
combined PP-PM, or P3M method, which is described in {8}, but we use in the
particle code PM approach, which presents a sufficient efficiency). Those which
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are based on Fast Fourier Transformation (FFT) provide, apparently, the most
economical methods in terms of the total computer operations count.

The algorithm, described in the paper [11], is applied for the aimplest circle
.and rectangular regions with symunetrical boundary conditions (the particle
code uses only rectangular grid to provide & simple compatibility with density
biock). Namely, the algorithm operates, in the following regions (see figs.2a -2c)

Ry= {(z1,22) : —~d) € 21 < d,~d; <23 < d3}
Ry = {(£1,23) : —d; < 2y < d), ~dz <22 < 0}
Ry = {(:1,2'3) 1—dy <3y <0, "'#3 <z2< D}

The algorithm is based on Fourier decomposition in one dimension, using
FFT techmique, and solve a series of tridiagonal systems in the second dimension
(i} ;

According to PM-approach, the g(x;,y;) function & being determined at
the grid points by a epecial redistribution acheme: the particle’s charge is being
assigned proportionally to the shape factor of the particle’s cloud. The foliowing
options of superparticle shape-functions are available in the particle code:

Si=)= g - Si(#') = g1~ £3)
Sae) = ghe(l+coo(BE)  Sufs) = g1+ eon(ZD)  (9)
Ss(x') = (1~ 57’

and in fig.3a one-dimensional slices of the clouds are plotted (aaturally, the
particle clouds themselves are two-dimensioual).
The corresponding ®(z,a) = [ S(z')dz’ (see fig.3b) are the following

[ ue.0)= 550 ti(e0) = Bozel g

®3(z,0) = %‘3—14— (sin—'g'- -nin-"f),fzr
®y(2,0) = E38 + ﬁ;{s(.m*-g- — sin %)-Hin?ii—sin?g&}

| oo = Bigza) o | 3e—ah

®

ln the figs.4a ~ 4b an uniform density is shown, which has been obtained by
means of various algorithms.

The criterion to make a right choice of superparticles sizes and the shape of
the cloud is to reduce nonphysical effects due to spatial grid, the finite size of
the superparticles, etc. Usually, a series of test simulations should be carried
out before the large-scale simulations, to choose the sppropriate parameters.

o
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2.3 Numerical integration of motion equations
The equations of ion’s motion can be written, as
) 1

x"(z)} = Py

{F*(x,2) + f,e-v(x, 1)} = F*'(x,2) + F(x,z)  (10)

where vector x = (x1,z3) denotes the transversal coordinates and z is the
longitudinal coordinate of the ion; vector F*=* = ¢{, B] stands for external
magnetic focusing and vector B denotes the external magnetic field, vector
E? = (~Ou(x, z)/8zy, —Ou(x,z)/0z;) s a strength of space charge electrical
field, with the (u(x, z) potential from (7)), M is ion mass, v = dz/dt and v is
relativistic factor. We shall use below the notation F(x) = F***(x, z}+F*(x, z)
for the right-hand side of Eq.(10).

The Runge-Kutta fourth order method presents a very effective tool to in-
tegrate the motion equation. However it is acceptable for those cases, when the
F(x) function can be precisely calculated in z + Az, 7 + Az/6 = + Az/3. As
long as the F*P(z) is define by the actual ion’s distribusicn (2 self-consisteacy of
the model), the Runge-Kutta algorithm can not be applicd without a violation
this consistency, we have to use therefore for integraticn inultistep algorithms.
Then, in frames of multistep integration, there are explicit and implicit schemes.
"The implicit integration is also superior to the explicit ” predictor-corrector” ap-
proaches in terms of the stability, though is somewhat time-consumed.

We introduce now (see [12]) an implicit fourth-order muitistep algorithm for
numerical integration of Eq.(10). The following relations can be derived from -
the equation {10):

/.:"ﬂ{x'(r) - xi(n)}dr = /:-u /‘: (<6 :

[ e -z [ [ F@),dear

- Y 2N

Subtracting the second equation from the first, we obtain the equivalent
expression for original Eq.(10) ’

, h . h
X(Zkp1 ) = x{2¢) — --i-'f—l—{r(n} ~xpy} =I2— k:lfl (11)

where the 7 2 notations are

I, = J/"' " F(x(€), €)ded: = / * (ther = DF(x(2), 2)dz

That Y EN .Y Il

o= [ [ eexte).esas = [ (s = PG, )
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The expression (11) is equivalent to the original Eq.(10) and describe the
same class of the integration achemes. The next step is to find an approximation

for the above integrals 7, 3 (see Appendix 2).

After simplification, we obtain
B4l

Xos1 — {1+ He)xg + Hgxper = Iz — Hih = }: 5 Fe (12)
izd=1

where Hi = App1/he, he = 23 ~ 231 and S; coefficients are the following

3
Sier = gp=(2H + H} = 1)

Saer = g%ﬁ(—ﬂk +2/H + 1/H}) (13)
S = %(HE +4H2 +4H  +1)
with ke = (har + he)/2.

The above formnlae (12)-(13) represent an implicit integration scheme. The
coordinates X4 can be found by solving the system of non-linear equations
iteratively. When we deal with linear focusing terms, only one iteration is

rog

sufficient and a possible "prognosis” x,"f can be found from
Xpp1 = (1 Hy)xg — Hpxper + SpFe.

However, when nonlinear strengths appear, the number of iterations increase
up to 2 or 3. Naturally, we should try to reduce this value, and the informa-
tion about the previous coordinates x;,x; .3, X4 2 2nd strengths Fy ,Fi ), Fi_2
might be very helpful to find a prognosis x§ "] more precisely, that helps to avoid
extra jterations. :

Up to now, it has been assuming, that F(z) function is a smooth one and has
the smooth derivatives up to !‘(‘)(z). This assumption is absolutely justified
for space charge forces. As regards to the external focusing forces, the situation
is not so clear. Naturally, the fringing fields at the focusing eiements have

~ asmooth ramp, though, in practice, designers deal with the "effective Jength”,

which takes into account the influence of the fringing fields in the whole, and the
external force in such a lens is abrupted sharply. We adopt now the integ.ation
scheme for the class of the functions F**

G-p(x,z), for z< 2
4 _ hS
F= —{ Gto(x,z), for z>

where (x, 2) - B smooth function.
As an illustration. for quadrupole lens exit, one obtains:
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v - Gz, for 7<n
: ':‘-{0. for z>2

E;"" =G, for z2< 5
- g, for 2> 2

with G~ = kB/a,G* = 0. It is denoted B is a pole tip magnetic field and a s
an aperture: radius (& is a scaling factor).
Foroetupahhmentrmomom '

® qQ, for z> 2z

F& =

3

-G*y(32 - y?), for z<
a, far z>n
Thus, we should devise an fourth order integration scheme for-the following
equation
x(2) = F**(x, z) + F**(x, 2) (14)
where F** is an abrupt function, whereas F*? and  functions are smooth.
A general expression can be derived now

~

k41
xep = (I+ B+ B = L=Hh= Y (SEi+am) (19

i=le—1

where S can be found from eqs.(13), and s, are equal to
c k3
shat = prp-{G (2HE + HY) - G-
ths = LG By +G-(2/B +1/H])) (18)

2
0 = N {GHAHD + B +4G (B +1)]
For G+ = G~ these equations can be-easily reduced to Egs.(12).

To find %343, one should solve a system of non-linear equations ita-atively,'

as earlier.

One can see, that the devised integration scheme necessitates to keep avail-
able the information about the particles dynamics in the previous steps; saving
the xx.1, Xk, Fy-1, Fy. Naturally, it needs an auxiliary arrays, which consume
the additional memory resources. On the ather hand, dealing with symmetrical
beams (see above), we can save the memory capacities considerably. Namely,
the opportunity to use only a part of the total symmetrical distributions allows
to reduce the NV, in the model, preserving the farmer accuracy: for Ry region
we consider only a half of the beam and for B3 ~ the quarter. Beside that, the
symmetry save the mesh-arrays.
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2.4 Discussion )
The numerical studies have confirmed, that the propc‘)sed particle code is well

.adopted for beam motion simulation through HIF final objective (see below the

section 3). As it was mentioned, this system must arrange a very "rigid” fo-
cusing with very big envelopes modulation. To avoid nonphysical effects, the
program should operate with a Jarge number of particles, that makes the calcu-
lations of coupled forces too time-consumed, and rapid Poisson solver, based on
FFT, seems to be preferable. It is available to use 75000 particles and a spatial
grid 128 x 128 in our algorithm. Beside that, the developed multistep integra-
tion scheme maintains an overall accuracy of O(h*) that radically upgrades the
computational characteristics of integration block, in comparison with the sec-
ond order ”leap-frog” technique. The typical time of calculations for HIF final
focusing objective (= 300 steps) is about 4 hours (a personal computer PC/AT-
486, supporting 4 MB memory, has been used). The usage of symmetry helps
to economize the memory and does not lead to essential loss of generality.

3 Beam simulation through HIF final objective

3.1 Conventional scheme

HIF driver, which accelerates and forms the ion beams, should provide an ex-
tremely high energy deposition into the thermonuclear pellet: the total power
illumination, to ensure the pellet’s ignition, should be about 500 TW and the
corresponding energy contribution must be 5-10 MJ (the output energy, after
pellet’s explosion, is expected to be about 50-150 times more, see for more de-
tails {1,2,3,4]). Such an energy can be delivered to the thermonuclear target,
when using heavy ions beams, accelerated up to 10 — 20 GeV, and the cur-
rent in every beam channel attains a few kA. The handling of such high-energy
beams-is a difficult problem by itself, when strong magnetic elements are re-
quired. Space charge forces complicate the situation by weakening the external
focusing, moreover, a series of instabilities arise during the transporting through
the accelerator. They can lead to rms emittance growth and deteriorate beam

- parameters additionally (see {13,14]).

The situation becomes even more difficult in the driver’s final stage, when
beam current attains its maximum and ion focusing onto the small thermonu-
clear target occurs — very strong quadrupole lenses with big apertures must
be taken. The typical magnifying coefficient X = 100 where A = gmaz/dmin (g '
stands for the beam’s sizes). Such a large envelopes modulations occur within a
fairly short distance (8-10 meters), and, as it whs mentioned above, the situation
becomes very sensitive to beam current variations and ions momenta spread.

Let us consider the ion beam.Bit? with energy 20 GeV, the emittances
€ = ¢, = 4.5mcm - mrad and the beam current 2.25 kA, which should be fo-
cused onto the thermonuclear pellet with radius r=3 mm. In the paper [16] a
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quadrupole focusing objective was designed. The optical parameters of the ob-
jective were found by the fitting algorithm, in frames of K-V equations and fig.5
demonstrates the beam envelopes through the objective. As it was found, the
pole-tip fields attain a few (5-8) Tesla, that necessitates to use the superconduct-
ing lenses and the magnifying coefficient A = 90. In the paper [16] beam losses,
due to ion bunches longitudinal non uniformity, were minimized and it was
found, that the non symmetrical focusing regime (Zmar X Ymaz = 3.0x2.5 mm?)
at the target may reduce the losses due to momenta dispersion.

The designed final focusing systemn has been studied by particle simulation,
when ion beam has a microcanonical K-V distribution at the entrance of the
objective. As it was mentioned above, the density of K-V beam has uniform
projections and a sharp edge at the beam’s boundary. Since the finite-sized
particles are used in the particle code, this edge will be diluted and the car-
responding density ~ smoothened, that will contribute nonlinear terms in the
space charge field (see for example figs.4a - 4b). Beside that, K-V equations
are valid only in a free space, whereas our 2D code operates within finite space
region (that seems to be more practical). Particle simulation, therefore, must
produce the result, which will differ from the K-V equaiions integration.

Meantime, computer modeling by our code has dernonstrated, that beam
sizes are close to the idealized envelope model, zs it has been plotted in fig.5. At
the target (Sp=37.1 m) the difference from theideal focusing becomes more sig-
nificant, but, not critical still. Namely, we have: z,,.2 X Ymasz = 3.06 x 3.4 mm?
and (< z? >< y* >)Y? = 147 x 1.7 mm? (correspondingly 3 x 3 mm? and
1.5 x 1.5 mm? for ideal model); the rms emittance growth is practically absent
(|Aez,y/e2y] < 0.5%), that indicates a good coincidence with the singular K-V
equations. The ions coordinates at the target (in phase-space and in real space)
shows the good enough quality of the focusing (see figs.6a ~6¢. The ions losses
are about 8.9%. (Since the longitudinal density is not uniform, the total losses
will be more. To take into account this circamstance, however, 2 more advanced
3D code must be used).

Fig.7 shows the real space density of beam with water-bag phase density at
the objective entrance. Again, beam behavior is similar to that, which is plofted
in the fig.5. Fig.8a shows the rms emittance growth due to the nonlinear space
charge forces: |Ag;,/ex,] < 25%. The ions coordinates at the target, plotted
in figs.8b ~ 8d, indicate the dilution of focusing spot at the target. The total
ion losses grow up to 20%.

In the above described parameters of HIF driver it has been assumed, that
the target illumination must be symmetric. Strictly saying a spherically syin--
metric beam focusing in the thermonuclear reactor chamber must be arranged
(up to 24 beam channels should be constructed); beside that, the ion bunches
must be thoroughly synchronized (pulse duration is as 15-20 ns) to ensure a
uniform illumination of a pellet. It’s clear, that this sophisticated scheme can
scarcely be realized in practice. More realistic way is to use the so-called "indi-
rect target”, when the thermonuclear pellet ablates by X-ray radiation, induced
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by the heavy ion beam (see reference [17]). However, the specific power de-
position tequired to ignite this target, should be of the order 10'® W/g, that
necessitates to increase beam current magnitude significantly.

At the same time, during the numerical experiments, we could see, that the
further beam current growth in frames of the designed focusing objective, can
be hardly realized: too big ion losses occur at the target, as well as very strong
focusing lenses, with big apertures, are to be used. Thus, the indirect target
demand a serious reconsideration of the driver’s concept.

3.2 Charge-symmetrical scheme

Recently a new idea has been reported (see ref. [18]) to suppress the space
charge effects by use of beams with equal currents of negative and positive ions.
In the capacity of the accelerated ions, some heavy metals, may be chosen,
which give stable enough negative ions. Notice, that the neutralization should
be combined with the use of a family of negative and positive ions with different
masses (isotopes), that permits to upgrade the accumulated energy of jons. We
omit, however, these effect, assuming the beam current is constant. In the paper
[18] the optimal choice of ions was discussed (four platinum isotopes should be
used), and the following driver’s parameters were declared: total energy is 9
M]J, total power illumination is 600 TW, ions energy is 10 GeV, specific power
depaosition is 10*® W/g, that will ensure a reliable ignition of the target.

One can see, that the ideal neutralization is valid, when positive and negative
ion beams have the same sizes. If these beams differ from each other, then
the nonlinear forces arise and when using quadrupole (alternative-gradients)
focusing, the influence of nonlinearities becomes inevitable. At the same time,
during beam propagation through the long periodical focusing channel, one
can reduce these effects essentially, by decreasing the focusing channel’s phase
advance (see figs.9a — 9b). The corresponding envelopes modulation will be
decreased ‘as well, and, as a result, space charge influence will be suppressed.
Taking, for example, 4 = 40°, we obtain quasi-symmetrical quasi-neutralized
beam, whereas on choosing u = 80°, the difference between the positive and
negative envelopes will contribute the undesirable non-linear components in the

. space charge field.

As regards to final focusing objective, the beam dynamics, as we could see
above, must be non symmetrical. The nonlinear Coulomb effects, therefore,
will arise and deteriorate the focusing. We try, however to control the influence
of these effects, taking into account the above considerations. In the figure
10 one can sce a zero-current beam through the final focusing system. The
periodical channel, which precedes the final cbjective, has phase advance gp =
40°. Platinum ions have been considered (see reference [18] for more details).
The optical lattice has been designed by means of matching algorithm from [16].
Then, a numerical experiment has been implemented by our 2D particle code
on beams dynamics with beam currents J = 5 kA for each component of the




beams (the total current will attain, obviously, 10 kA) (see fig.11a).

One can see, that the envelopes behavior remains similar to zero-current
beam motion, whereas the conducting such a significant ion currents through
the final focusing system without space charge compensation would necessitate

unattainable strong focusing lenses with very big apertures, that seems practi- .

cally unrealizable. Qn leaving the channel, a quast-adiabatic beam behaviar is
being maintained up to s = 60 m, when rms emittances growth |Ae; 4 /e 4] is
absent. However, within a short interval 60 < s < 75 m, we observe emittance’s
blow-up, due to nonlinear space charge forces (see fig.11b). We can see ion’s
pbase coordinates (z,z’) and projections into real space (z,y) at t ;rmonuclear
target (See figs.12a — 12d). The total ions losses are 47%.

As regards to computational aspects, we notice, that during calculations we
have varied the longitudinal step of integration A, when ion’s trajectories change
slowly (see fig.11a). Namely, it has appeared to be helpful to increase k within

- the drift space interval (20 < s < 60 m) and to decrease A magnitude, when
beam modulations are significant (60 < s < 70 m). This cpportunity speeds up
the calculation and does not violate the accuracy. -

Thus, after the preliminary numerical studies, we could see, that the neutral-
ization allows to conduct very intense beams through the periodical transport
channel without essential growth of effective phase volurne, whereas a serious
beam parameters deterioration occurs within a very short distance in the final
objective. Hence, a further optimization of final focusing should be performed,
in order to reduce the ions losses at the thermonuclear target. After that an

universal 3D particle simulation, which takes into codsideration all longitudinal

effects must be performed.
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Appendix 1
To find the distribution {H;}, one should solve the following noa-linesr. pro-
gramming problem:

2

o(sl,...,a,,,_,);f{ /H if‘+“ f(}f)mﬂ-é /: '}(H)Edﬁ} L. min

£=1

subject to
C m=1

z:vsa'=Hm

i=1
where §; = Hipy — H;.
The numerical procedure to find & (and hence, the dlstnbutaon {H}}) is
described in [9] in detail.

Appendix 2

According to Simpson’s formula, an appraximate value Ij of the integral Z; can
" be calculated, using F(zz_1), F(zi), F(z541) valnes:

h
= '5"‘-{0 + 4(2e-1 = 24-1/2)Fa1/2 + (2ot — z2)F s}

Since zp_y — Zx_y1p2 = —he /2, z4_1 — 2 = —hy , we obtain

, A2 ' !
L= “"61{2&-1/:4* F3). _ an
Ana logically, Iy can be calculated fram

. hl
L=+ ';“ {2Fa41/2 + Fal- (18)

The following expansions can be written
{ Feer/z = P+ Fiboin /2 + Fi(As 1 /2772 + Savr iy
Fu 1y =Fu— Fihe/2 + Fy(he /2 /2~ Guhy

where B341 = FO(€y1)h w1/, Be = F‘.a’(&)hils and

Fy=Fopy——

(19)

ke ! hs
T ,“ + n{;_ } Foigp o+ O
. Z.
F::Ehﬂh‘ 7 “I; TR vy +0("2
Finally, substituting the expressions (19) in (17)-( LB), we obtain the scheme
(12).
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Figure 1:  (3) f(H)H for & = 05, s = 1.0 'snd s.= 135, (b) g(z,y) for
e=0.5, 2=10and s= 15, (c) {H;} and {5) for F(H)=1.

Figure 2: Space charge density ¢(z,y,0) for (a) general case, (b) double sym-
metry, (c) quadruple symmetry. -

Figure 3: a) Shape functions S(z’), b) [, S@")dz’.

Figure 4. Space charge density ¢(z,y,z) (KV-distribution) for various forms
of particle’s cloud a) NGP-method, b) Shape function is Sa(z’).

Figure 51 KV-beam motion through final focusing objective (envelope equa-
tions modei}.

Figure 6: lons coordinates at the target: (a) (z,2'), (b) (1,.¥'), (¢) (=, 1)

Figure 7: Space charge density ¢(z,y,z) for WB-distribution (shape function
is 53(z')). :

Figure 8: (a} RMS emittances through final focusing objective (WB initial
distribution), 1ons coordinates at the target: (b) (z,2z'), (¢} (v,v'), (d) (z,¥).

Figure 8: lons coordinates for charge-symmetrical beam in periodical channel:
(a) p = 80°, (b} p = 40".

Figure 10: Zero-current beam through final focusing objective (1 = 40° in the
regular transport channel).

Figute 11: (a) High-current beam I = 5k A through the final focusing system,
(b} Corresponding RMS emittances within the focusing system {for negative
beam sclid iine will correapond to ¢y and the dash line — to ..

Figure 12: lons coordinates at the thermonuclear target: (&) (z,2'), (b) (y,¢)
{for negative ions - visa verma), (¢) (z, p) for positive ians, (d) (z,y) for negative
1ons. : ’
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