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Optimal surfaces of non-spherical lenses with upgraded optical character-
istics were found as a solution of a constrained variational problem. The ap-

plications of the developed numerical approach could be found in mechanics,
s charged particles and light optics design.
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1 Introduction

Spherical lenses are widely used in light optics and have those advantages, that
the fabrication and control of spherical surfaces are rather easy to provide. An-
other circumstance, which facilitate a theoretical analysis and practical design
of optical systems, is that high order aberrations for these lenses are expressed
by the same universal formulae. However, some imperfections of spherical
lenses are inevitable and deteriorate the quality of focussing especially when
using non-paraxial large aperture ratio and/or inclined off-axis beams. As
a result, well-known aberrations arise, such as astigmatism, coma, spherical
aberrations, distortions and field curvature [1, 2].

A possible way to improve parameters of optical devices is to use aspher-
ical lenses. Application of these lenses becomes very important, if we want
to build optical objectives with large relative and angular apertures, with in-
creased brightness, sharpness and extreme resolving power. Best brands of
photocarneras, available now on the market, use aspherical high-performance
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lenses. Meantime, the idea to use non-spherical glass surfaces originates from
Descartes and Huygens (3], who had studied some features of aspherical lenses
and derived formulae for their surfaces.

Nowadays, the optimization of optical systems uses widely computer meth-
ods. A search of optimal surface of a lense can be formulated as a solution of
a variational problem:

®(F(s)) = min (1)

subject to:

FOE) = 7P FOGE)=FP p=01,...P 2)

where the functional ®(F) expresses a quantitative criterion of optimization
and the unknown function F(s) can vary within an interval {8, 8] (§ =5, —8p is
its length); F? = d’F /ds? and P stands for the number of constraints. The set
of conditions (2) defines the function and its higher derivatives on the boundary
(the specific construction of the functional ®(F), which estimates the quality
of focussing, and corresponding boundary constraints will be considered in
section 2). .

In the paper [4] we developed a “shaping algorithm” to find the optimal
solution F**(s) of the problem (1)-(2)), providing min ®(F). Numerical exper-
iments demonstrated an efficiency of that method for mechanics and charged
particle optics [4] and in this paper we try to systematize and broaden appli-
cation of this algorithm for light optics.

In section 2 aspherical lenses with improved optical characteristics will be
designed, when their shape will be found as a solution of the problem (1)-
(2). The optimization will allow to suppress spherical and other high-order
aberrations and may help to reduce a number of lenses, installed in optical
objectives. In addition, in section 3 we develop further the computational
scheme of the “shaping algorithm”.

2 Design of Aspherical Lenses

Basic physical formulae. In this paper we restrict ourselves by consider-
ations of monochromatic light beams, omitting the wave nature of the light.
Optimal surfaces of lenses will be found purely in frames of geometrical ray
optics, based on the Fermat’s principle of least time. The physical model,
realized in the block of ray tracing, uses only the refraction law, which gives
a relation between the angle of incidence v; and the angle of refraction ¥, as
the following:



where the coefficient ng, stands for the refraction factor (as is well known,
ngy > 1 and ng; = 1 for vacuum; for glass lenses this coefficient is about
na1 & 1.5 — 1.65). When a lense thickness is relatively small in comparison
with its size, there is a relation between the image distance L*™%% and the
object distance Lebiect:

1

1 1 1
Limage .D1 - Lobject — D, = (n'll - 1)(E - E) (3)

where R, 2 are curvature radii and D, are thicknesses of the lense from the
corresponding surfaces to the center. The validity of the equation (3) takes
place when D) ; < |Ry | and all rays are paraxial. This model is the so-called
“thin lense approximation”.

Let us consider an example. We take a symmetrical spherical lense (with
both radii |[R,2| = 5), whose surfaces are described by the shape function
Fpn(s), as the following:

+(y+4)P = %,2

Substituting in the formula (3) Ry =5, Ry = —5, L¥e® = 10, Dy, =1
and assuming the refraction factor ng; = 1.50 (such a magnitude is close to a
refraction factor of a usual glass), we find that image distance must be equal
to L9 = —12.25,

For numerical simulation let us consider N rays, ejected from the object
point (0,L*™9¢) with different angles. Firstly we consider a narrow beam
(all rays are paraxial), focused by a spherical lense with the shape function
Fopn(s). As shown in Fig. 1, all paraxial rays have a fine focus in the point
Limoge — _ 1223, that coincides pretty well with analytical result. 2

When we use non-paraxial rays, the quality of focussing will be spoiled, as
shown in Fig. 2, that illustrates the well known effect of spherical aberrations,
relevant to any spherical lense. For the focusing regime, using the full aperture,
the dilution in the focus will be even worse.

Optimal “shaping” of lense surfaces. Now we apply the “shaping algo-
rithm” {4] to find aspherical lenses with improved quality of focussing. Let

2The image distance L™%9¢ = —12.23 is a precise result of numerical simulation, based
on the refraction law. The abovementioned analytical formula for a thin lense (3) gives only
approximate result,
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us consider N™®¥° rays, ejected from the object point (0, L"™%) with different
angles. The current coordinate and slope of every ray are given by z.(1), z.(I)
with { is a current distance from the object point. The most natural and simple
construction of optimization criterion is a minimum of rms deviation from the
image point:

. NTeye 1/2
B(F) = A(F) = —ﬁl—y—{ 5 x’,’(L‘"‘“Qe)} " min @)

The minimal possible value of & is zero, that corresponds to ideal focussing
without dilution.

Fig. 3 shows the shape function F,p;(s) of a usual spherical glass lense in
comparison with the shape function Fops (s), corresponding to the optimized
aspherical lense. The shaping algorithm finds the optimal surfaces for various
combinations of constraints (the central thickness and boundary derivatives)
and for desirable object and image distances. In Fig. 4 the profiles of the
optimal shape functions Fop1(s), Fops(s) are plotted and Figs. 5,6 show the
optimized focusing regimes with small focusing spots for |L*™9¢| = 15 and 10.
The pictures with reduced image distance |L'™39¢| = 5 are demonstrated in
Figs. 7,8 and again we obtain a fine focussing. The corresponding shape
functions are shown in Fig. 9. Note, that F,p4(s) has a rather complicated
profile, that was a result of specific boundary limitations, assigned as an initial
data for the “shaping algorithm”.

Distortion. The next question, which arise after suppressing the spherical
aberration is a minimization of distortion. If the object has a height h**7e¢ and
the image has correspondingly A"™29¢, then the presence of distortion means a
changing of magnification factor K for different “h” magnitudes.
pobiect
K (F) = m -

And the distortion will be absent when K{(F) = const. The suppression of
distortion is important, when we wish to obtain the true image picture for the
full aperture.

A possible way to estimate the change of K(F) numerically is to compute
the rms deviation

1 NTays xr(Lobject + lobjecf.) ) (Lobject + lobject) 2y 1/2
d= ‘N' rays{ ; [I’_(Limagc + limagc) - zl(Limagc + limage)J }

where the object is shifted from focus coordinate by the distance 1°*¢* and
image has a corresponding shift [*%%¢ from the image point.
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Obviously, for § = 0 we have no distortion at all. If we want to obtain a
true image picture and maintain the fine focussing, then the minimization of
A from Egs. 4 should be combined with mind. Therefore, the construction of
the functional ®(F) from (4) should include an additional “distortion term”:

O(F) = A+ — min (5)

In the Fig. 12 one can see the distortion factor for various shape functions
Foma(s) and Fy,3(s). For optimal shape function Fj,;3(s) the behaviour of
K(F) is practically constant for the full aperture range. Note, that the both
functions are rather close as plotted in Fig. 11 that assumes a high precision
in fabrication of such lenses. To maintain the distortion-free focussing for wide
ranges of the image points requires additional studies”

We could see, how one optimized lense managed with spherical aberrations
and distortion for non-paraxial beams, using the full aperture. Meanwhile, the
other optical imperfections, relevant to off-axis effects, the focussing of inclined
beams and those, which deal with the wave nature of the light {e.g. chromatic
aberrations), could be suppressed using two or even more lenses with different
refraction factors. The construction of ®(F) will include new summands, re-
sponsible for corresponding imperfections. Technically the work of the shaping
algorithm, which minimize the functional ®(F), will not be changed, however,
the convergence of the minimization procedure may be slower. This is why in
the next section we pay attention to possible modification of the method to
speed up the convergence to the optimal solution.

3 Numerical Method

A detailed computational scheme of the “shaping algorithm” to solve the con-
strained variational problem (1)-(2) was described in the paper [4]. We make
now minor changes in the computational scheme, which however could increase
the flexibility of optimization and upgrade the convergence of the minimization
process. For sake of brevity let us consider only the function values and its
derivatives on the boundary. For higher derivatives the computational scheme
can be easy generalized.

The shape function can be splitted as F(s) = Fyqe,(5) + Fiz(s) where the
summands satisfy correspondingly

{ Fuar(go) = -7'-0 Funr(gl) = }-1

F:Jar(g()) =0 Fll,a,.(gx) =0 (6)




and

Fﬁz(gg) =0 Fﬁz(gl) =0
Flo@o) =F)  Fra@)=F | @

Such a representation allows to formulate an auxiliary optimization prob-
lem (1) subject to (6)-(7), where the function F,,,(s) will vary and the function
Fiz(s) will not change during the optimization. In this new formulation we
should find only the solution of (1) with boundary constraints (6).

As it was shown in the papers [5, 6], this solution F?* may be found via
Fourier representation, as the following

Fuar(s) = fo+ i frcos(km(s — 8g) /) (8)
k=1

with {fi} satisfying to

{ fot A+t .+ fu=F ©)
fo—h+fa—. . + ()" fo=F

A search for the optimal function F%! was reduced to a minimization of

®(Fy,r) subject to (9). To find the optimal vector fPt we used a step by step
descent gradient minimization procedure:

f’n+1=f"n_6_§P (10)

where & corresponds to min ®(f™*1(§)) and § stands for a gradient projection
§ = grad ®(f™) onto the hyperplane “P”, described by (9). The validity of
the boundary constraints of this minimization procedure are being maintained
automatically and the function F ;. satisfies (7), since it is fixed by definition.
When finding the vector f Pt we get immediately F2% (s) and the corresponding
solution Fop; of the general variational problem (1)—(2).

The splitting of the original shape function F(s) occurs to be helpful from
the point of view acceleration of the convergence. We could observe during the
numerical experiments, that even functions (cosine functions) in the represen-
tation (8) allow to speed up the convergence of minimization for some specific
foundary limitations. The absence of odd functions, such as sinus, allows to
use rather a short Fourier expansion and make the whole procedure more flex-
ible. As the Fy;; function in particular cases we can choose, for example, a
cubic interpolation.



4 Discussion

The introduced algorithm was applied to find the optimal shape of a single
lense. We emphasize, that the found aspherical surfaces were found numerically
and their family is more general, than second order analytical functions (e.g.
hyperbolical, elliptical etc.). When increasing the number of harmonics in
Fourier representation, we can approximate very special functions, moreover,
we can even manage with infinite boundary derivatives, as it was shown in [4].

Beside that, there are no limitations to generalize our approach to multi-
lenses systems and/or multi-layers lenses design; the optimization may be per-
formed also for lenses with different refraction fartors to minimize the dis-
persion of the light. The construction of the optimization criterion ® will
correspond to the desireable optical regime and will include the terms, respon-
sible for the particular optical effects, as we could see above; it can include
also the factor of weight and costs. This last circumstance might be important
for compact cameras.

In comparison with charged particles optics we have that advantage, that
computations for rays tracing are very fast and straightforward. We are not
really limited in using a big number of rays in light beams and the most
time-consumed block in our program is the “shaping algorithm” itself. Sim-
ulations of charged particles propogation through the spacial electromagnetic
fields takes much more time. The particles tracing should be combined the
fast Laplace solver and uses the motion equations integrator (if the space
charge effects are negligible, it could be the Runge-Kutta 4-th order integra-
tor). As a result, the optimal shaping of electrodes for charged particle optics,
requires rather powerful computational capacities. Nevertheless, as it was
demonstrated in [4, 5, 6] the optimal shape of electrodes for axially symmetri-
cal cases could be done within a reasonable time.
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Figure 1: Paraxial rays z,({) (r=1,...,10) passing through a spherical lense
with the shape function F,ps(s). The object distance is L°¥°®* = 10 and
the image distance is L¥™%° = —12.2 (here and below the axes units are
dimensionless). The focusing spot is small.

15

104

o
FO S ST

-5

-10]
1

-154

-3

1 object

11
" {1l
2 ap

R

3

Figure 2: Non-paraxial rays z,(I) (r=1,...,20), passing a spherical lense with
the shape function F,p(s). The object distance is equal L®7® = 10, and the
image focusing spot is diluted.
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Figure 4: Shape functions F ;4 (3), Fope(s) for optimized lenses.
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Figure 5: Non-paraxial rays (the full aperture is used) through an optimized

lense with profile Fop (s), providing a fine focussing. The object distance is
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Le7et — 10 and the image distance is Li™2#¢ = —15 (units are dimensionless).
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Figure 6: Non-paraxial rays (the full aperture is used) through an optimized
lense with profile Fop,0(s), providing a fine focussing. The object distance is
Letiect = 10 and the image distance is L™?9¢ = —10.
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Figure 7: Non-paraxial rays (the full aperture is used) through an optimized
lense with profile Fyp:3(s), providing a fine focussing. The object distance is
Lebject — 15 and the image distance is Li™2% = —5.
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Figure 8: Non-paraxial rays (the full aperture is used) through an optimized
lense with profile Fopq(s), providing a fine focussing. The object distance is
Lobect — 15 and the image distance is L™e9¢ = -5,




Figure 9: Shape functions Fop3(8), Fopa(8)-
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Figure 10: Non-paraxial rays through an optimized lense with profile F,3(s),
providing a fine focussing and reduced distortion for the full aperture. The
object distance is L°*/¢* = 15 and the image distance is Léma9e = —5,
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Figure 11: A deviation function Fopus(s) — Fyps(s). The solid line shows the
difference between upper surfaces and the dashed line corresponds to the lower
surfaces.
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Figure 12: A normalized distortion factors for F,us(s) (rectangulars), for
Fopta(s) (triangles) and for Fg,s(s) (circles). The distortion factor was cal-
culated for al} [obfect — jimage — 5 .
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