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1 Introduction 

Spherical lenses are widely used in light optics and have those advantages, that 
the fabrication and control of spherical surfaces are rather easy to provide. An­
other circumstance, which facilitate a theoretical analysis and practical design 
of optical systems, is that high order aberrations for these lenses are expressed 
by the same universal formulae. However, some imperfections of spherical 
lenses are inevitable and deteriorate the quality of focussing especially when 
using non-paraxial large aperture ratio and/or inclined off-axis beams. As 
a result, well-known aberrations arise, such as astigmatism, coma, spherical 
aberrations, distortions and field curvature [1, 2]. 

A possible way to improve parameters of optical devices is to use aspher­
ical lenses. Application of these lenses becomes very important, if we want 
to build optical objectives with large relative and angular apertures, with in­
creased brightness, sharpness and extreme resolving power. Best brands of 
photocameras, available now on the market, use aspherical high-performance 
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lenses. Meantime, the idea to use non-spherical glass surfaces originates from 
Descartes and Huygens [3], who had studied some features of asphericallenses 
and derived formulae for their surfaces. 

Nowadays, the optimization of optical systems uses widely computer meth­
ods. A search of optimal surface of a lense can be formulated as a solution of 
a variational problem: 

cP(F(s)) -+ min (1) 

subject to: 

(2) 

where the functional <.L>(F) expresses a quantitative criterion of optimization 
and the unknown function F(s) can vary within an interval (so, ad (5 = 51-SO is 
its length); FP = dPF/dsP and P stands for the number of constraints. The set 
of conditions (2) defines the function and its higher derivatives on the boundary 
(the specific construction of the functional <t>(F), which estimates the quality 
of focussing, and corresponding boundary constraints will be considered in 
section 2). 

In the paper [4] we developed a "shaping algorithm" to find the optimal 
solution ?Pt(s) of the problem (1)-(2)), providing min <.L>(F). Numerical exper­
iments demonstrated an efficiency of that method for mechanics and charged 
particle optics [4] and in this paper we try to systematize and broaden appli­
cation of this algorithm for light optics. 

In section 2 asphericallenses with improved optical characteristics will be 
designed, when their shape will be found as a solution of the problem (1)­
(2). The optimization will allow to suppress spherical and othe.r high-order 
aberrations and may help to reduce a number of lenses, installed in optical 
objectives. In addition, in section 3 we develop further the computational 
scheme of the "shaping algorithm" . 

Design of Aspherical Lenses 

Basic physical formulae. In this paper we restrict ourselves by consider­
ations of monochromatic light beams, omitting the wave nature of the light. 
Optimal surfaces of lenses will be found purely in frames of geometrical ray 
optics, based on the Fermat's principle of least time. The physical model, 
realized in the block of ray tracing, uses only the refraction law, which gives 
a relation between the angle of incidence 'Y1 and the angle of refraction /2 as 
the following: 
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where the coefficient n21 stands for the refraction factor (as is well known, 
n21 ~ 1 and n21 = 1 for vacuum; for glass lenses this coefficient is about 
n21 ~ 1.5 - 1.65). When a lense thickness is relatively small in comparison 
with its size, there is a relation between the image distance Lima.ge and the 
object distance Lobiect: 

1 1 1 1 
Vma.ge _ D Lobject _ D = (n21 -l)(R - Rz) (3)

1 2 l 

where R1 2 are curvature radii and D1 2 are thicknesses of the lense from the 
correspo~ding surfaces to the center. 'The validity of the equation (3) takes 
place when D1,2 < lR1,21 and all rays are paraxial. This model is the so-called 
"thin lense approximation" . 

Let us consider an example. We take a symmetrical spherical lense (with 
both radii IR1,21 == 5), whose surfaces are described by the shape function 
F sph (s), as the following: 

x2 + (y ± 4)2 = Ri,2 
Substituting in the formula (3) R1 == 5, R2 = -5, Lobject = 10, D1,2 = 1 

and assuming the refraction factor n21 = 1.50 (such a magnitude is close to a 
refraction factor of a usual glass), we find that image distance must be equal 
to Limage = -12.25. 

For numerical simulation let us consider Nra.ys rays, ejected from the object 
point (0, Vmage) with different angles. Firstly we consider a narrow beam 
(all rays are paraxial), focused by a spherical lense with the shape function 
Fsph(s). As shown in Fig. 1, all paraxial rays have a fine focus in the point 
Vmage = -12.23, that coincides pretty well with analytical result. 2 

When we use non-paraxial rays, the quality of focussing will be spoiled, as 
shown in Fig. 2, that illustrates the well known effect of spherical aberrations, 
relevant to any sphericallense. For the focusing regime, using the full aperture, 
the dilution in the focus will be even worse. 

Optimal "shaping" of lense surfaces. Now we apply the "shaping algo­
rithm" [41 to find aspherical lenses with improved quality of focussing. Let 

2The image distance Limage = -12.23 is a precise result of numerica.l simulation, based 
on the refraction law. The abovementioned analytical formula for a thin lense (3) gives only 
approximate result. 
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us consider Nrays rays, ejected from the object point (0, vmage ) with different 
angles. The current coordinate and slope of every ray are given by X r (l), x~ (l) 
with l is a current distance from the object point. The most natural and simple 
construction of optimization criterion is a minimum of rms deviation from the 
image point: 

N r 111 o.II • 1/2

x; (vmage . ~(F) = ~(F) = Nrays { ~ ) } --t min (4) 

The minimal possible value of ep is zero, that corresponds to ideal focussing 
without dilution. 

Fig. 3 shows the shape function Fsph(s) of a usual spherical glass lense in 
comparison with the shape function Fopt! (s), corresponding to the optimized 
asphericallense. The shaping algorithm finds the optimal surfaces for various 
combinations of constraints (the central thickness and boundary derivatives) 
and for desirable object and image distances. In Fig. 4 the profiles of the 
optimal shape functions Fopt! (s), Fopts (s) are plotted and Figs. 5,6 show the 
optimized focusing regimes with small focusing spots for ILimageI= 15 and 10. 
The pictures with reduced image distance Ivmagel = 5 are demonstrated in 
Figs. 7,8 and again we obtain a fine focussing. The corresponding shape 
functions are shown in Fig. 9. Note, that Fopt4(s} has a rather complicated 
profile, that was a result of specific boundary limitations, assigned as an initial 
data for the "shaping algorithm". 

Distortion. The next question, which arise after suppressing the spherical 
aberration is a minimization of distortion. If the object has a height hooject and 
the image has correspondingly himage , then the presence of distortion means a 
changing of magnification factor K for different "h" magnitudes. 

hooject 

K (F) = himage 

And the distortion will be absent when K (F) ;; canst. The suppression of 
distortion is important, when we wish to obtain the true image picture for the 
full aperture. 

A possible way to estimate the change of K(F) numerically is to compute 
the rrns deviation 

= _1_ { Nra 
l/4 [Xr (Lobject + lobject) _ Xl (Lobject + tobject) ] 2} 1/2 

Q Nrays ~ xr(Limage + [image) X1(Vma.ge + [image) 

where the object is shifted from focus coordinate by the distance zooject and 
image has a corresponding shift timage from the image point. 
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Obviously, for t5 = 0 we have no distortion at all. If we want to obtain a 
true image picture and maintain the fine focussing, then the minimization of 
~ from Eqs. 4 should be combined with min 6. Therefore, the construction of 
the functional c.P(F) from (4) should include an additional "distortion term": 

'l?{F) = .6. + t5 -t min (5) 

In the Fig. 12 one can see the distortion factor for various shape functions 
Fopt3(s) and F~t3(S). For optimal shape function F~t3(s) the behaviour of 
K{F) is practically constant for the full aperture range. Note, that the both 
functions are rather close as plotted in Fig. 11 that assumes a high precision 
in fabrication of such lenses. To maintain the distortion-free focussing for wide 
ranges of the image points requires additional studies: 

We could see, how one optimized lense managed with spherical aberrations 
and distortion for non-paraxial beams, using the full aperture. Meanwhile, the 
other optical imperfections, relevant to off-axis effects, the focussing of inclined 
beams and those, which deal with the wave nature of the light (e.g. chromatic 
aberrations), could be suppressed using two or even more lenses with different 
refraction factors. The construction of ~(F) will include new summands, re­
sponsible for corresponding imperfections. Technically the work of the shaping 
algorithm, which minimize the functional 'l?{F), will not be changed, however, 
the convergence of the minimization procedure may be slower. This is why in 
the next section we pay attention to possible modification of the method to 
speed up the convergence to the optimal solution. 

Numerical Method 

A detailed computational scheme of the "shaping algorithm" to solve the con­
strained variational problem (1)-(2) was described in the paper [4]. We make 
now minor changes in the computational scheme, which however could increase 
the flexibility of optimization and upgrade the convergence of the minimization 
process. For sake of brevity let us consider only the function values and its 
derivatives on the boundary. For higher derivatives the computational scheme 
can be easy generalized. 

The shape function can be splitted as F(s) = Fvar{s) + Ffiz(s) where the 
summands satisfy correspondingly 

F'lJor(Sl) = F 1 
(6)

F~or(Sl) = 0 
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and 

Ffi.z(sa) = 0 FfiXeSl) = 0 

{ F/ia:(so) = :F~ ~fix(Sl) = :F~ (7) 

Such a representation allows to formulate an auxiliary optimization prob­
lem (1) subject to (6)-(7), where the function Fvar(s) will vary and the function 
Fjix(S) will 'not change during the optimization. In this new formulation we 
should find only the solution of (1) with boundary constraints (6). 

As it was shown in the papers [5, 6], this solution F~ may be found via 
Fourier representation, as the following 

Fvar(s) = fo + L
m 

ikcos(k1r(s - 80)/8) (8) 
k::::l 

with {ik} satisfying to 

fa + 11 + 12 + ... + fm =:Fa (9){ 10 - !l + h - ... + (-1)m . 1m = ;:1 

A search for the optimal function F:~ was reduced to a minimization of 
~(Fvar) subject to (9). To find the optimal vector i opt we used a step by step 
descent gradient minimization procedure: 

in+! = in - 8 . 9p (10) 

where 8 corresponds to min 'P(fn+!(8)) and 9p stands for a gradient projection 
9 = grad 'P(fn) onto the hyperplane "P", described by (9). The validity of 
the boundary constraints of this minimization procedure are being maintained 
automatically and the function Ffix satisfies (7), since it is fixed by definition. 
When finding the vector f opt we get immediately F:; (s) and the corresponding 
solution Fopt of the general variational problem (1)-(2). 

The splitting of the original shape function F(s) occurs to be helpful from 
the point of view acceleration of the convergence. We could observe during the 
numerical experiments, that even functions (cosine functions) in the represen­
tation (8) allow to speed up the convergence of minimization for some specific 
foundary limitations. The absence of odd functions, such as sinus, allows to 
use rather a short Fourier expansion and make the whole procedure more flex­
ible. As the F fix function in particular cases we can choose, for example, a 
cubic interpolation. 



4 Discussion 

The introduced algorithm was applied to find the optimal shape of a single 
lense. We emphasize, that the found aspherical surfaces were found numerically 
and their family is more general, than second order analytical functions (e.g. 
hyperbolical, elliptical etc.). When increasing the number of harmonics in 
Fourier representation j we can approximate very special functions, moreover, 
we can even'manage with infinite boundary derivatives, as it was shown in [4]. 

Beside that, there are no limitations to generalize our approach to multi­
lenses systems and/or multi-layers lenses design; the optimization may be per­
formed also for lenses with different refraction fartors to minimize the dis­
persion of the light. The construction of the optimization criterion 4? will 
correspond to the desireable optical regime and will include the terms, respon­
sible for the particular optical effects, as we could see above; it can include 
also the factor of weight and costs. This last circumstance might be important 
for compact cameras. 

In comparison with charged particles optics we have that advantage, that 
computations for rays tracing are very fast and straightforward. We are not 
really limited in using a big number of rays in light beams and the most 
time-consumed block in our program is the "shaping algorithm" itself. Sim­
ulations of charged particles propogation through the spacial electromagnetic 
fields takes much more time. The particles tracing should be combined the 
fast Laplace solver and uses the motion equations integrator (if the space 
charge effects are negligible, it could be the Runge-Kutta 4-th order integra­
tor). As a result, the optimal shaping of electrodes for charged particle optics, 
requires rather powerful computational capacities. Nevertheless, as it was 
demonstrated in [4, 5, 6] the optimal shape of electrodes for axially symmetri­
cal cases could be done within a reasonable time. 
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Figure 1: Paraxial rays x,.(l) (r=I,... ,10) passing through a spherical lense 
with the shape function FBph(s). The object distance is Looject = 10 and 
the image distance is Limage = -12.2 (here and below the axes units are 
dimensionless). The focusing spot is smalL 
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Figure 2: Non-paraxial rays xr(l) (r=l,... ,20), passing a sphericallense with If 
the shape function Fsph(s). The object distance is equal Lobject = 10, and the 
image focusing spot is diluted. 
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Figure 3: Shape functions Fsph(s) and Foptl(S), 
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Figure 4: Shape functions Fopt! (s), Fopt2 (s) for optimized lenses. 
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Figure 5: Non-paraxial rays (the full aperture is used) through an optimized 
lense with profile Foptl(s), providing a fine focussing. The object distance is 
Lob;ect = 10 and the image distance is Lim4ge = -15 (units are dimensionless). 
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Figure 6: Non-paraxial rays (the full aperture is used) through an optimized 
lense with profile Fopt2(s), providing a fine focussing. The object distance is 
Lobject = 10 and the image distance is L i m4ge = -10. 
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Figure 7: Non-paraxial rays (the full aperture is used) through an optimized 
lense with profile Fopt3(s), providing a fine focussing. The object distance is 
Lobject = 15 and the image distance is Li"",ge = -5. 
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Figure 8: Non-paraxial rays (the full aperture is used) through an optimized 
lense with profile Fopt4 (s), providing a fine focussing. The object distance is 
Lobject = 15 and the image distance is Limage = -5. 
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Figure 9: Shape functions Fopt3 (s), Fopt4(S), 
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Figure 10: Non-paraxial rays through an optimized lense with profile F~t3(S), 

providing a fine focussing and reduced distortion for the full aperture. The 
object distance is Lobjea =15 and the image distance is Limag" = -5. 
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Figure 11: A deviation function Fopt3(S) - F;"t3(S). The solid line shows the 
difference between upper surfaces and the dashed line corresponds to the lower 
surfaces. 
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Normalized Beam Size 

Figure 12: A normalized distortion factors for Fopt3(S) (rectangulars), for 
~. Fopt4(S) (triangles) and for F~(s) (circles). The distortion factor was cal­

culated for allZobject = zimage = 0.5. 
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