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UDK 530.1 

ON THE THEORY OF TUNNEL AND ABOVE-BARRIER IONIZATION OF' ATOl\ffi AND 
IONS IN THE FI~D OF LASER RADIATION: Preprint ITEP 17-00/ 

V.S.Popov - M.,,2000 - 28p. 

The energy and angular distributions of photoelectrons in the tunnel ion
ization of atoms or ions by laser radiation are calculated. The results ob
tained are valid for all values of the Keldysh parameter /. The cases of 
linear, circular and elliptic polarizations of light are considered. Using the 
adiabatic approximation, the probability of above-barrier ionization of hydro
gen atoms by strong low-frequency radiation is calculated. Several remarks 
on the quantum tunnel interference and on the contribution of other authors 
to the problems considered are made. 

TYHHeJIhH8.5I H HaJJ.6apbepHaJI HOHH3aUIHI aTOMOB 

H HOHOB B nOJIe JIa3epHoro lf3JIyqeHH5I. 

B.C.IIoilOB 

PacCQHTaHbI 3HepreTHQeCKHe I! yrJIOBhIe pacnpe.n;eneHIUI $oT03JIeKTpOHoB 
rrpl! TYHHeJIbHOlf HOHH3aIJ;HH aTOMa HJIH HOHa no.n; .n;eiicTBHeM MO:W;HOro JIa3ep
lIoro H3JIYQeH1UI (.1lJI1I Bcex 3HaQeHHH napaMeTpa KeJI.llbIllia /). PaCCMO
TpeHhI CJIyQaH JUIHeHHoH, IlHPKYJUIPHOH H3JIJIHIITHQeCKOH IIOJI1IpH3an;HH 3JIeK
TpoMarHHTHoH BOJlHbI. BbI"tJHcneHa Bep01lTHOCTh Ha,U6apbepHoH 1I0HII3aUHH 
aTOMOB Bo,nopO.lla B HH3KOQaCTOTHOM (, «: 1) JIa3epHOM nOJIe. IIpHBe.n;eHhI 
~OPMyJIhI .llJI1I HMnyJIl>CHoro cneKTpa 3JleKTpOHoB npn HOHH3aunH aTOMHoro 
ypOBHa: IIepeMeHHhIM 3JIeKTpH"tJecKHM IIoneM o6mero BHAa (0 CJIytIae JInHeH
HOH nOJI1IpH3a.n;HH). PaccMoTpeH 3ep~eKT TyHHeJIhHOH HHTep<}lepeHUHlI B 
3HepreTWIecKoM cneKTpe ~OT03JIeKTpoHoB. 

Fig - 8, ref. - 31 names 

C£) HHCTHTYT TeOpeTHQeCKOA H 3KcnepHUeHT8nbHoA ~H3HKH. 2000 



The theoretical investigation of ionization of atoms and ions by laser radi
ation had been initiated in 1960's [1-5]. The results of subsequent investiga
tions in this field are reviewed1) in Refs.[6,7]. The character of the ionization 
process depends essentially on the adiabaticity parameter , introduced by 
Keldysh [1]: at , « 1 there is tunneling while at , » 1 multiphoton ioniza
tion. 

Formulae for the ionization probability (including the pre-exponential fac
tor) which are valid for arbitrary values of, are obtained in Refs.[3-5]. The 
goal of the present letter is to study the energy and angular spectra of pho
toelectrons and their variation with the , parameter increasing for different 
polarizations of radiation. In addition, we have calculated the probability of 
the above-barrier ionization of H-atoms in the strong low-frequency (, « 1) 
electromagnetic field. Owing to progress in the laser physics, these quantities 
have now become an object of experimental investigations (see, for example, 
the review [7] and the literature therein). 

2We use the atomic units n= e = m = 1, Fa = m e5/n4 = 5.14.109 V'cm- 1 

is the atomic unit of electric field strength, € = F / ",3 Fa is the reduced 
electric field (€ == F for the ground state of a hydrogen atom), Ei = ",2/2 
is the ionization potential and Ko = ",2/2w is the multiphoton parameter. 
Hereafter we everywhere imply that € « 1 and Ko » 1, which provides 
applicability of the quasiclassical approximation in the problem considered. 

1. For linear polarization the momentum spectrum of photoelectrons has 
the form 2) 

w(p) = w(O) exp { -~[ Cl(')p~ + c2(,)pi]}, (1) 

where Cl = Arsh ,_,(1+,2)-1/2, C2 = Arsh", = W/Wt = w",/F, wand F 
- are the laser radiation frequency and the electric field strength, Wt = F / I'\, 

is the tunneling frequency of electron in the field F and p = (PII ' Pi-) is the 
momentum of the outgoing electron, PI! being the momentum projection along 
the field F(t) = F cos wt, while Pi- is normal to it. 

Formula (1) requires almost no discussion. From it immediately follows 
the energy-angular distribution of electrons 

w(E,8) ex: exp { dh. E s-in2e} , (I')1+, W 

where Pi- = P sinO, E = p2/2. At,« 1 this distribution has a sharp 
maximum towards direction of the electric field and p1- JF / '" « "', e~ , , ("V 
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while PII '" 1'-lp.L may even exceed K (a characteristic momentum of electron 
in the bound state). On the other hand, at l' :» 1 one has P\I rv P.l rv 

(wJln 2/ )1/2 ~ "'. 
For the mean transverse and longitudinal (with respect to the direction of 

the electric field) electron momenta we get: 

1/2 l' « 1,{0.577 1', 
(Pi>1/2/(Pn>1/2 = l' =(1 _ ) 

J[RArsh1' 1 - (2 In1')-l, 1':» 1 

2. For circular polarization the probability of n-photon ionization of 
atomic s-level is [4] 

(2)
 

where 

Arth u - U t2 + 1'2 
<p (t, 1') = 1 + t ' U = 1 + 1'2 ' (3) 

(we have introduced instead of n an auxiliary variable t = (2I1c/n) - 1, such 
that 
-1 < t 5; 1), lie = K o(1 +1'-2) is the photoionization threshold for linearly 
polarized radiation and C" isthe asymptotic coefficient of the atomic wave 
function at infinity 3). 

The function cp(t,1') has a minimum at the point t = to(/) corresponding 
to the maximum ionization probability and determined from equation t = 
l-uJArth u (see Fig.l), this point corresponding to the number of absorbed 
photons nO(/) = 2I1c/(l + to). Note that at l' ~ 1 

1 2 28 4 1 3 16 5 
2 

2to = 31' -1351' +..., cp(to,1') = 31' - 451' +..., no = Fw3 
( 1+ 31'2) ,(4) 

while at l' » 1 

Near the maximum, n ::::::: no, the n-distribution , i.e., the electron energy 
spectrum, is Gaussian 4): 
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W n = W maz • exp{-c3(n - no)2/no } = W maz • exp{-(En - Emaz ) 
2/2~2}, (6) 

where En = (n - vc) w, 

(6') 

~ = [wEi(1 + "1--2)/(1 + to) C3('Y)]1/2, (6") 

~ f"V 'Y-3/2JwEi for "1 ~ 1, and ~ = JwEi/2 In'Y at "1 » 1. The most 
probable energy of photoelectrons is 

The numerical calculation according to the above formulae gives the curves 
in Figs.2 and 3. The most probable number no of absorbed photons for "1 « 1 
is twice as large as the photoionization threshold V c , approaching it, though 
slowly, at "1 -t 00: 

2 21 - 3'''1 , "1 « 1, 
(no - vc)/vc = (8)

{ (2 In'Y)-l, "1 » 1, 

see also the curve in Fig.2. The coefficient C3('Y) in Eq.(6) increases mono
tonically with "1 (Fig.3) and 

2 
{W n = W maz • exp - 2(In'Y)K 

o 
(n - 2}no) , (9) 

Since 
~n {W/VKF = 'YV€, "1 ~ 1, 

-;;; f"V (.;KQ In'Y)-l, "1 » 1, 

the distribution over n has the form of a comparatively narrow peak [3,4] (in 
units of Vc or no). We note that for "1 « 1 the distribution W n (6) is much 
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wider than the Poisson distribution and, conversely, for "I » 1 it is narrower 
(~n = vno for "I ::::::: 0.468). 

The distribution of photoelectrons over the angle 'ljJ between the emergence 
direction of photoelectrons and the polarization plane of laser radiation is 
also of interest. It is determined by Eq.(64) of Ref.[4] , into which one should 
substitute the values of n = no and of the momentum Pmax = J2w(no - vc), 

corresponding to the maximum ionization probability, 

~ 1- tijw('ljJ) <X [Jno (no()]2, (= 1 +72 cos'ljJ, (10) 

where Jnll(z) - is the Bessel function. Using for it at no » 1 the Langer 
asymptotics [10], we find (see Appendix A for details): 

(11)
 

where 

s = 2 [Arth TJ-1]-(Arth uo-uo) ], 1] = Jl - (2, UQ = J(t~ + "12 )/(1 + "12), 

(12) 
variable TJ changing within Uo (at 'ljJ = 0) up to 1 (at 'l/J = 1rj2). The angular 
distribution width is ~'l/J "10 for, «: 1 and ~'l/J Kr;1/2 for, » 1, sofV f'J 

~ t/J «: 1. As is shown in FigA, the function s('ljJ, "I) varies rather slowly with 
the parameter "I increasing. That is why the variation of w('ljJ) when going 
over from the adiabatic region to the case of "I ~ 1 is mainly determined by 
variation of no(,), i.e., the most probable number of absorbed photons. 

In the adiabatic region Eq.(9) simplifies: 

w(,p) = (1 + X2)-1/2exp{ - ~; [(1 + i)3/2 - I]}, l' ~ 1, (13) 

where X = 1/J/,. For very small angles we get the Gaussian distribution 
[7,11-13J: 

w( t/J) ~ exp( - ~~ t/J2), 1/J ~ "I « 1 (13') 

However, the number of electrons decreases then more rapidly: 

"I ;:S t/J « 1, (13") 
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and most of the photoelectrons always emerge near the plane of polarization 
of light. 

As ~) --+ 0 (and for any value of,) we have s(-l/J,,) = uo'l/;2 + O('l/;4). For 
this reason, in the small angles region 

w(1/J) = const· e.xP{ -C4(,)~:'l/;2},	 (14) 

C4 = v(1 + ,-2)(t5 + ,2)/(1 + to). If, «: 1, then C4 = 1 + ~,2 and the 
expression (14) goes over into (13'). On the other hand, for , ~ 1 the 
coefficient C4 = ,/2 and w( 'l/;) ~ exp(-Ko1/J2). 

With, increasing the angular distribution noticeably broadens, but even 
for, » 1 it still remains rather narrow (Fig.5). In the two limiting cases we 
have 

2 [ Arth(sin 'l/;) - sin 'l/; ), , -7 0, 
s('l/;,,) = (15)

{ -2 in cos 'l/;,	 , --+ 00 

which determines the limiting curves in Fig.4. 
One can find the photoelectron distribution over the components of the 

momentum P1- (in the polarization plane) and pz (along the direction of 
propagation of the electromagnetic wave): 

(we omit here the pre-exponential factor). Hence 

w(P.L,Pz) oc exp { - ; [p; + (P.L - ~ )2]} , , «: 1 (16') 

(see also [12,13]), and for, » 1 , up to logarithmic accuracy 

A[ 2 2
W ()P1-,Pz ex exp{-- pz + 2(p.L - Pmar) ]}, A = Zn((,vZn,) ~ 1, (16") 

w 

where Pmaz = v'2Fmax is the most probable electron momentum, see Eq.(7). 
3.	 For the case of a monochromatic wave with elliptic polarization 

F(t) = exF cos wt + ey ~F sin wt, - 1 ::; ~ ::; 1 (17) 
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(~ - ellipticity of light) we give here the energy spectrum of photoelectrons 
En = (n - v)w in two limiting cases, , « 1 and, » L In the first case 

W n = .5rrA f3/2,2 a(,n') exp { -~(1- e),3n'} , n > no, (18) 

where n' = n - no, no = (1 + 3~2)p2 /4w3 = v(l + 3~2)/(1 +e), 

{2 [ 1( ~2 ) 2]}A = r;,2 2 C exp -- 1 - - 1 - - , (19) 
~ 3€ 10 3 ' 

a(x) = e-Z Io(x) is a slowly varying function: a(x) = 1 - x + lx2 + ... at 
x ---t 0, a(x) :=::: (21rx)-1/2 at x ~ 1, and Io(x) is the modified Bessel function. 
The main contribution to the total ionization rate W comes from the region 
n' ;C; ,-1, in which 

"" A exp(-(} n') rv = ~(1 _ (2);y3 (20)W n""-~' r:; , lA 3 "/ 
. 21rKo vn' 

For the mean number of absorbed photons (n) and its dispersion ~n from 
Eqs.(18) and (B.4) we obtain 

( ) ') p2 ( 2 3€) 3E p2 ) 
n = no + (n = 4w3 1 + 3~ + 1 _ ~2' ~n = 23/ 2 (1 _ ~2) . w3 (21 

if 1-e » E. On the other hand, in the case of circular polarization (~ = ±1) 

~
3 p2

(n) = no ~ p2/W3, ~n = -- = 0.71,v' €·- (21')
2 w4 r;, w 3 

(P2 /w 3 = 1/E,3 » 1). In the transitional region close to the circular polar
ization (1 - ~2 € « 1), the width of the distribution W n sharply decreases,('oJ 

and Eq.(18) goes over into (6). 
Summation of (18) or (20) over n gives 5) 

3£3 
W(F,w) = ~Wn = 1r(1- ~2) A, 1 - ~2» € (22) 

(in the case of s-level), in accordance with the result of the adiabatic approx
imation [4,14]. 

On the other hand, for ""I ~ 1 the Gaussian distribution holds, 

W n = W max ' exp{ -(n - no?/2J.l2no }, n > v (23) 
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with dispersion ~n = J.L..;nG and 

1 + ~2)v=Ko 1+-( 2,2 

Here TO = TO (" {) is determined by the equation 

e"'[I- e(l- ~rr2 = (24)21', 

so TO = In( 2,/~ ), J.L = ro3/2J~2/(1 - ~2) for, ~ 1 and 1 - ~2 » f. 

For ~ = ±1 (circular polarization) one has J.L = 1/2To, TO = In(,~, 

and Eq.(23) coincides with (6). Since Jt ~ 1, the distribution W n (23) is 
much narrower than the Poisson distribution with < n >= no. The ratio 
p(,,~) = no/v for some values of ~ is shown in Fig.6. 

4. The above-barrier ionization of atoms holds in strong fields, F '" 
(0.2 -7 O.5)Fa , when the level energy is above the top of the potential barrier 
(along the direction of the electron emission). The ionization probability 
per a unit time (or the ionization rate of a bound state) for the case of a 
low-frequency laser field is calculated in the adiabatic approximation: 

2 n4 1 k 
Wa = T f Wst(F(t)) dt ="2 k Wst (F(lj») dlj>, , ~ 1, (25) 

-T/4 7r 

where lj> = wt is the phase of the field, T = 21r/w - its period, and Wst(F) is 
the value of the ionization probability, or of the Stark resonance width, for 
the static electric field F. 

We use the values Wst(F) for the ground state of a hydrogen atom, ob
tained by summing the perturbation theory series over powers of F and l/n
expansion [15,16]. Note, that in the region F ::; 0.15 these calculations agree 
quite well with the results of other authors done by independent numerical 
methods - see, f.e., Refs.[17-19]. For the case of elliptically polarized wave 
(16) we have F(lj» = Fy'cos2lj> + ~2sin'l.lj>, and wa(F, 0 can be readily found 
from Eq.(25) numerically. 

The results of the calculations are given in Fig.7 from which it is seen that 
the F -dependence of W a in the above-barrier region is surprisingly close to 
the linear one that holds also for excited states of H-atom [15], as well as for 
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He-atom [20]. This approximate linearity of the Stark widths in strong field 
was explained in [21] using l/n-expansion, which, as is known, in quantum 
mechanical problems has not only high accuracy for large quantum numbers, 
but continues rather frequently even to the region n 1.I"V 

In the subbarrier region from (25) it follows the relation between adiabatic 
and static ionization rates: 

Wa(F,~) = I~I-l a((1- ~2)/6~2f) . wst(F), , ~ 1, (26) 

which is asymptotically exact at F -4 0 and any ellipticity~. Here a(x) is 
the same function as in Eq.(18). The comparison of Eq.(26) with the results 
of numerical calculations shows that this simple formula has an accuracy of 
rv 5 -;-.10% in the region 0.2 .$ F ~ 0.5 that is of interest for above-threshold 
ionization (note, however, that it is important to employ here exact values 
of the static ionization probability Wst). 

If 1 - ~2 ~ f, Eq.(26) is equivalent to (22). At ~ = ±1 (i.e., for left 
or right circular polarizations) Eq.(26) gives: wa(F, ±1) = wst(F), which is 
evident, since I F(t) 1= F = const in this case. In the transitional region, 
1 - ~2 I"V € « 1, the F -dependence of the pre-exponential factor in W a is more 
complicated than the power one. 

5. There is also a specific effect in the energy spectrum of photoelec
trons, which manifests itself in tunneling ionization of an atomic state by 
linearly polarized laser radiation. Its origin is explained by the interference 
of transition amplitudes (from initial bound state to final states of contin
uum) corresponding to two saddle points in the complex plane of "time" t 

within the same period of the field F(t) = F cos wt. If the longitudinal elec
tron momemtum PI! -# 0, some phase shift of the above mentioned amplitudes 
arises. As a result, an additional factor in the electron momentum spectrum 
appears [4]: 

(27) 

where, in the case of n-photon ionization, 

c/> = 2K ~ [ 2, +,(1 - ,2) . pIT ] (28)o 
n w 1 +~ 3(1 + ,2)3/2 ,.,,2 ' 

V = K o(l + 2,2)/2,2 is the ionization threshold for linearly polarized radi
ation, Pn = J2w(n - v), while w(p) is the same function as in Eq.(l). In 
particular, for the adiabatic case 
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¢n= ;(EiPII+~PIT)' ,«1 (28
/
) 

In the quasiclassical region the phase ¢n is large, ¢n » 1, since K o » 1 
or l/E » 1. Therefore after integration of (28) over angles of emission of 
photoelectron the contribution of the second term in Eq.(27) becomes small. 
So, this term (ex cos ¢n) gives negligible contribution to the total ionization 
rate, but it leads to rapid oscillations of the ionization probabilities Wn, i.e. 
in the energy spectrum of photoelectrons w(En ). In the recent papers [22,23] 
such effect was called the "quantum tunnel interference" . 

Note that from Eqs.(27) and (28) the threshold behaviour [3] of the prob
abilities 'Wn immediately follows: W n oc (n - v) 1/2 at n ,. v and n odd, while 
W n oc (n - v)3/2 for n even. 

6. In conclusion, we would like to make some remarks concerning the 
review by N.B.Delone and V.P.Krainov entitled "Tunneling and barrier
suppression ionization of atoms and ions in a laser radiation field" [7]. 

a) The principal formulae of SecsA.l and 4.2 of the review [7] for the 
energy and angular distributions of photoelectrons at tunnel ionization of 
atoms had been obtained in Refs.[3,4] long before papers [11-13] appeared. 
In addition, the problem of atomic level ionization by strong laser radiation 
had been solved in Refs.[3,4,14] for arbitrary values of the Keldysh parameter 
" not only for the adiabatic region, « 1 (low frequency, large intensity of 
electric field), which is considered in Refs.[7,11-13]. For example, the electron 
momentum spectrum in the case of linear polarization of radiation had the 
form (1). At, « 1 we obtain: CI = !,3+... , C2 =,- ~,3+ ..." = wJ2Ei/F, 
and Eq.(l) directly gives 

W2(2E.)3/2 (2E.)1/2]}
w(p) = w(O) . exp {- [ 3F~ PTI + ~ pi, (29) 

that completely coincides with Eq.(lO) in Ref.[7]. From this formula it follows 
Eqs.(12)-(17) of Ref. [7], which determine the widths of the energy and angular 
distributions of photoelectrons, etc. 

Similarly, the results of SecA.2 of Ref.[7] for the case of circular polariza
tion of low-frequency radiation can be readily obtained from a more general 
Eq.(2) valid for all values of,. If,« 1, then u ~ (t2+,2)1/2 = ,(1+z2)1/2 « 
1, Arth u- u ~ lu3 and 
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where z = tl, ""J'. Thereby, determination of the maximum (n = no) 
ionization probability reduces in this case (, ~ 1) to finding the minimum 
of the square trinomial, z = Zm, that immediately yields 

2 , ( ,2) w3 
( 2)

Zm = 3 + 0(,3), no = 2vc 1 - 3 = F 1 + 3,2 , 

2 
W4K, K,

W n = W maz • exp { - F3 (n - no)2} , w(E) ex exp {- W
F3 (E - Emax )

2} 
, 

(30) 

where I\, = V2Ei and Emax = (no - vc)w = [,,22(1 + !,2). These expressions 

coincide with Eq.(19) in Ref.[7], with (33) in Ref.[12] and with Eqs.(8),(11) 
of Ref.[13] obtained by a special method under condition, « 1. 

Finally, the angular distribution of photoelectrons is determined by 
Eq.(10) first derived in Ref.[4]. If, « 1, then 

-1 1 2 Fpmaz 1(2 2)
Pmaz = Fw (1 + 6' ), ( = --2COS t/J = 1 - -2 ' + t/J + ..., t/J « 1. 

no w 

Taking account the known asymptotics [10,24] for the Bessel function
 
Jno(no() at
 
no ~ F 21w3 ::» 1, one obtains Eq.(12) which coincides with Eq.(23) in Ref.[7]
 
for small angles, 'IjJ «: , -«: 1.
 

Thus, all the results of SecsA.l and 4.2 of the review [7] easily follow 
from more general formulae of papers [3,4]' if one puts in them, « 1 (that 
corresponds to the low-frequency intense laser radiation). This fact, however, 
is noted neither in the reviews [6,7] nor in the other papers of these authors. 

b) When considering the Coulomb correction (see Sec.5.1 of Ref.[7] which 
is based on the paper [13]), the authors restricted themselves to the case of 
stationary electric field, for which this correction had been known for a long 
time (25,26]. We note, however, that in Ref.[5] this correction is calculated not 
only for, -« 1 but for a considerably wider range of the values of parameter 
,. And here the method used in [7,13] does not in fact differ from that 
proposed earlier in Ref.[5] (namely, the account of Coulomb interaction using 
quasiclassical perturbation theory). 

It is rather surprising that the revelant references are absent in Ref.[7], the 
more so as papers [3-5,14] were well known to the authors of the review [7] 
and in due time were discussed in detail by the authors of the above papers 
with N.B.Delone. 
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c) When discussing Eq.(6) of Ref.[7] obtained in [4], the authors of Ref.[7] 
made an error. This formula 6) 

m (F) = (21 + 1) (1+ Im I)! K,2C2 22n"-lm l €l m l+1-2n" exp(-2/3E) 
1m 21ml(1 m 1)!(1- Im I)! Kl 

(31) 
is true not for the hydrogen-atom states (as is well known [25], for the lat
ter, in the presence of external electric field F the orbital monlent 1 is not 
conserved), but for the 1m-state of an arbitrary atom without an accidental 
Coulomb degeneracy. That is why to apply this formula to an arbitrary atom 
there is no need to generalize it using the quantum defect method (contrary 
to the statement of Refs.[7,30]). Furthermore, the authors of [7,12,30] use 
the expression for the asymptotic coefficient CKI of atomic wave function at 
infinity proposed by Hartree even in 1927: 

22n,,-2 

C 2 
- n* > 1, (32)

Itt - n*(n* +l)! (n* -l-I)!' 

(Eq.(7.6) in Ref.[27]' see also [28,29]). After replacing factorials according to 
the Stirling formula, x! == r(x+ 1) ~ v'27rx(xle)Z, they obtain Eqs.(7)-(9) of 
the review [7], which are called by the authors of [7] as "ADK formulae". 

Naturally, it is difficult to reject one or another name, but one should 
still note that the original contribution of the authors of the" ADK-theory" 
(Ammosov, Delone, and Krainov) reduces to applying of the Stirling formula 
to the coefficients (F-independent) obtained earlier in [4,27]. Thus, for the 
case of the circular polarization the ionization rate of s-level of a neutral atom 
is 

W(F) = N",2€1-2n" eXP[-:€(I- 11512)], 1« 1, (33) 

where € = F 1",3 is the reduced electric field strength, n* = 11'" and N = 
22n"C; is a dimensionless numerical coefficient. 

The"ADK-formula" can be hence obtained by substituting 

22n*-1 ] 1 (4e)2n.
N = --- -t N ADK = -- - (34)[r(n* + 1) 87rn* n* 

The F-dependence remains the same as in Refs.[3,4], the effective quantum 
number n* being of order of one. As for s-electrons in neutral (Z = 1) 
atoms, the values of n* vary from 0.744 for He up to 1.869 for Cs , while for 
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singly charged positive ions Z = 2 and n· = 2/ K. varies from 0.848(Li+) to 
2.221 (Sr+). The use of the Stirling approximation in this region has neither 
sufficient grounds nor any numerical advantages, and only systematically 
overestimates absolute values of the ionization probability. In particular, 
for a hydrogen atom (the ground state) it is proposed [7,13] to replace the 
coefficient N = 4 in the well-known formula [25] W(P) = N p-1 exp( -2/3F) 
which is asymptotically exact within the weak fields, by NADK = 2e2/1f ~ 
4.70 which can hardly be considered as a good approximation (the error is 
18%; for the case of He-atom it amounts to 25%, etc). 

It is worth mentioning a peculiar method used by the authors when cit
ing Refs.[3-5,14]: even if these papers are mentioned somewhere, this is done 
not in connection with their principal content but for some or another sec
ondary problem, the reader being as a rule referred for details to papers by 
Delone and Krainov. Some examples of such kind can be easily found in 
Refs.[7,12,13], in the monography [6] and in other papers of these authors. 

I would like to hope that the above remarks will be useful to readers and 
will help to restore the truth. 

7. Thus,. we have analysed the form of the ~nergy and angular spectra 
of photoelectrons in tunnel ionization throughout the whole variation range 
of the Keldysh parameter, 0 < I < 00, for linear and circular polarizations 
of electromagnetic radiation. The general case of elliptic polarization also 
can be considered for arbitrary " but the expressions obtained are rather 
complicated [14] and require a separate discussion. The total ionization rate 
of hydrogen atoms in the above-barrier region is calculated (for 'Y « 1 and any 
€) l and formulae for the quantum tunnel interference in the energy spectrum 
of electrons are presented. 

The author is deeply indebted to V.n.Mur for useful advices in the course 
of the work, to S.P.Goreslavsky, V.I.Kogan, A.I.Nikishov, L.B.Okun' and 
V.I.Ritus for discussions of the results obtained and for the moral support, 
to S.G.Pozdnyakov and V.A.Gani for numerical calculations, and (last, not 
least) to N.S.Libova, M.N.Markina and V.M.Weinberg for their help in trans
lating and preparing the manuscript. 

This work was supported in part by the Russian Fund for Fundamental 
Research under Grant 98-02-17007. 
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Footnotes 

1) Unfortunately, it should be said that the authors of Refs.[6J and [7] con
sidered the contributions of papers [3-5J quite unobjectively. For details see 
Ref.[8] and Sect.6 below. 
2) See Eqs.(44),(53) in Ref.[4]. 
3) These coefficients are often encountered in atomic and nuclear physics. 
Tables of their numerical values for s-states of neutral· atoms and positive 
ions can be found in Ref.[9]. For instance, Cit = 1 for the ground state of a 
hydrogen atom. The pre-exponential factor R is also calculated in [4], but 
there it is of no need for us here. 
4) For the case of, « 1 this result had been obtained in Ref.[3]. 
5) See Eqs.(B.1),(B.2) in Appendix B. 
6) See Eq.(4) in Ref. [4J. Here n* = Z/J2Ei is the effective principal quantum 
number [27-29], which is calculated according to the experimental energy of 
atomic state ( Z is the charge of atomic or ionic core). Thus, for the valent 
s-electron in Rb atom Hartree [27] gives n* = 1.805, that is very close to 
the modern value n* = 1.80477. For the (non-degenerate) ground state of 
a hydrogen atom n* = 1, C/C = 1 and Eq.(31) gives the ionization rate 
Woo = 4F-1exp( -2/3F), in accordance with Ref.[25]. 
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Appendix A 

For the angular distribution of electrons Eq.(10) contains the Bessel func
tion at large values of argument and index. The Langer uniform asymptotic 
expansion is known for it: 

J.(n() = Mh~ r2K1/3( nh(../I- (2 ) + O(n-4/.), (A.I) 

see [10,24] (it should be noted that formulae 7.13.3(34), (25)-(27) in the 
Russian edition of the reference-book [24] contain some misprints). Here 

~x3 + tx5 + ..., X ~ 0 
hex) = Arth x - x = (A.2)

{ 
2"1 1n 1-1x - c+ ... , x ~ 1, 

c = 1 - 41n2, K 1/3(Z) is the McDonald function and 0 < ( < 1 (classically 
forbidden region for the Bessel equation: turning point (0 = (1-1/4nZ)I/2 ~ 
1 as n ~ 00). Unlike WKB formulae, Eq.(A.1) remains valid in direct vicinity 
of the turning point. 

Since 

e-Z(rr/2z)1/Z(1- 7~z + ...), z ~ 00 

K 1/3(Z) = 

13J/~~~;/3)Z-1/3 [ 1 + O(z2/3) ], Z ~ 0 

it follows from (A.1) that 

J~(n() ~ 1 exp{-2n he'll)}, n ~ 00, (A.3)-2
rrn'll 

where 1] = ~ and n'll3 » 1 (or 1 - (» n-Z/ 3). At (= 1 

_ 2
1

/
3 

-1/3 -5/3 (AA)I n(n) - 32/ 3r(2/3) n + O(n ), 

see also 9.3.31 in [31}. Further, if n-2/ 3 «: 1 - , «: 1, then 

-1/4 {2V2 }I n (n() ~ [8rrZ n 2(1 - ()] exp --3- n(l - ()3/2 (A.5) 

In our case 
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. 2~1 t2 2~/, 2 

(
2 _ szn If) + 0 COS If" +, _ ,,1,2 2

1 - - 2 -0/+,+'" (A.6)
1+, 

at " 1/J ~ 1 (see Eq.(9)). Since n(l - (2)3/2 > no,3 = €-l » 1, therefore the 
use of the asymptotics (A.3) yields Eq.(ll) of the paper. Analogously, from 
(A.5) and (A.6) Eq.(13) immediately follows. 

( 

., 
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Appendix B 

Here we consider limiting case of the constant electric field, w ---t O. In this 
case the energy spectrum En = (n - v)w is practically continuous. Changing 
summation over n to integration and taking into account that 

00 1 
azJo(a,[3) = f e- a([3x)dx = J ,a(x) = exp(-x)Io(x), (B.1) 

o a(o: + 2(3) 

we obtain from (17) the total ionization rate of s-level: 

W.(F,O = ,,2C~ 1r(13~ e) exp {-:. [1 - 11 (1 - ; I)]}, '/'« 1 (B.2) 0 

This equation is valid for 0 ~ € $ 1 - € and coincides with the result of the 
adiabatic approximation [4,14]. In addition to (B.1), the following identities 
hold: 

a+f3 2a2 + 4af3 + 3f32 
(B.3)J1 = (0:2 + 20:(3)3/2 ' .12 = (0'.2 + 20:(3)5/2 ' 

where 

OZ.:Tn == 1e- a({3x) xndx 
o 

In the adiabatic region 0: ex '"'13 , f3 ex '"'I, so Q «f3. From (B.1), (B.3) and (18) 
we have 

, O'.+{3 1 ( 0: )
(n) = 0:2 + 20:{3 = 20: 1 + 2(3 + .., , 

/!;.n' = v(n") - (n')2 = .ja2a~ ~a:a; 2jJ2 = ~ J1+ ~2 + ...), (BAl 

and Eqs.(21) follow. 
The probability of n-photon ionization by linearly polarized radiation is 

[3,4] 
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where, « 1, v = p2/4w3 , Ao is defined in Eq.(19) for ~ = 0 and w(x) is 
the well-known transcendental function [31]: 

x~o 

(B.6) 
x~oo 

Note that 

Vi . 2 1 /1 2 dy
w(x) = ~er j(zx) . e-:Z: = 2 x 0 e-:Z: yy"I""=Y' (B.7) 

(B.8) 

Integrating the probability distribution W n (B.5) over n and using (B.8), we 
arrive at Eq.(B.2) in the case of ~ = O. 

Eqs.(18) and (B.5) differ only in the pre-exponential functions, a(x) in 
(18) and a(x) = 27r-1/ 2w(V2X) in (B.5), where x = ,(n - v). At x > 1, 
a(x) ~ a(x): 

1 ( 1 ) _ 1 ( 1 )a(x)= ~ 1+-+ ... , a(x) = .M=: 1+- + ... ,
y27rx 8x V27rX 4x 

see also Fig.8 (the region 0 < x ~ 1 gives negligible contribution to the total 
ionization rate W = Ln>1I wn). 

Finally, in the case of circular polarization it follows from (6) that 

(B.9)
 

where 

~ wlK 2 f' ,,(3/2 
C5 = 7rp3 =, V;: =/'FffKO« 1, (B.10) 

W maz == wno is the maximal value of the ionization probability and [3,4] We = 

= K
2C;E . exp{-i (1 - ft,2)}. This expression can be obtained from (B.2) 

by the formal change in the pre-exponential factor: J3€/7r(1 - ~2) ~ 1. 
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Fig.2. The ratio p = nO/lie in the case of circular polarization.
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Fig.3. The coefficient C3({) in Eq.(6) as a function of {. 
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Fig.4. The function s( 'lj;, 1') determining the angular distribution of 
electrons. The curves (from bottom to top) correspond to 
l' = 0,0.5,1.0,1.5 and 00. 
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