— Institute for Theoretical
and Experimental Physics

16 - 01

F.S.Dzheparov, V.E.Shestopal

LITEP- 1k -0

Exactly solvable models of evolution
processes in random environments

il |

0 1160 0DD92400 5

Moscow 2001 ,
e 20 2002

R [ f’«a?
Bk ST o
ws i d wvad B



YK 530.14 M-16

To4HO-peImaeMble MOJIEIH SBOMIOUOHHBIX IPOIIECCOB B HEYTIOPAIO-
YEHHBIX CpeXaX:IIpenpaur UTIP 16-01/

(D.C‘jj;xcenapos, B.E.lUecronan — M., 2001 - 7 c.

Hoxnan, opeacraBienunti 5a Mexayraponayio Kondepenumio no Maremarrueckolt Ouapxe,
noceawmennyw 75-aernio npod. P.Munnoca. Pabora conep:xur kparkuil 0630p COBPeMERHEIX
HCCIENOBAHKH O NOCTPOCHAK ACHMIITOTHYECKH (NpE GOIbINAX BPEMEHAX) TOYHO PEIIaeMbiX
Mozeneit crytadamx 6iayxaaanil B BEYNOPAHOIEHHEX CPEJAX.

Exactly solvable models of evolution processes in random envi-
ronments:
F.S.Dzheparov, V.E.Shestopal !

A talk presented at the Int. Conference on Mathematical Physics, devoted to 75 years
jubilee of Prof. R.Minlos. It contains a short review of modern studies on construction of
asympthtically (for long times) exactly silvable models of random walks in disordered media.

Crnacok gt - 14 nauMm.

@ HHCTHTYT TeopeTHUeCROW M 2KcHepuMenTanbHoii ¢usurn, 2001

!{zheparov@itep.ru, Victor.Shestopal@itep.ru


mailto:Shestopa.l@itep
mailto:ltzheparov@itep.ru

The probability By, (t) (propagator) to find a walker (excitation) at site z at
moment ¢, if it was initially localized at y, for random walk in disordered media
(RWDM) is described by the law

d 5= s = - =
Epzy = "‘(A.P)zy - Z(szpzy - szsz))
z

Pyt =0)= b | )

The symbols z, y, z are assumed here to be sites of some regular d-dimensional
lattice (simple cubic for example) with prime cell parameter a. A transition
to continuous media corresponds to limit, when lattice parameter a — 0, but
distance |z — y| and time ¢ are finite. ‘

The disorder of media is reflected in the transition rates sz and in the set
of positions, allowed for the walker.

One of the most important problems consists in calculation of the propagator,
averaged over distribution of transition rates, assumed as translational invariant:

Pry(t) = (ﬁr,y(t» = Pryo(?)-

The problem belongs to most important in modern statistical physics due to
wide applications in physics, chemistry and engineering, and due to important
connections with the quantum field theory. Prof. Robert Minlos is one of out-
standing researchers, who gave their remarkable pioneering contributions here
(see for example [1,2]). Nevertheless the problem of long-time asymptotics is
unsolved up to now for many important systems with large fluctuations, and,
particularly, for such simplest realistic models as random sites problem and
random bounds problem.

The disorder in random sites problem is created by random positions of
sites allowed to carry the excitation, when transition rate has simple dependence
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on distance. It is useful to rewrite the problem in the representation of occupation

numbers as

ditﬁz” . E nane(z-2)(Bay—By) = = 3 u(z—2)(mPry—naPy),  (2)

Z

a:y(t = D) a:y, (n:&') =6 <ﬂw'n‘z) = C(szz + 02(1 - 523)1

Here v(z) is a regula.r function, and random sites are produced by occupation
numbers n.: n, = 1 if site z is allowed for excitation and n, = 0 in opposite
case. One of representative properties is given by the decay law

(e~ Temavla-alty — e

w here v(z) « 1/|z|*, and continuum media approximation is assumed.
The random bonds problem-

(jt Poy = - ZI Wa x)(sz - z+emy) 3)
po
where e, is @—th basic lattice vectors, wa(a:) isa random variable, and Z is the
coordination number. : :
Only 1d random bonds problem is: soluble now (see for example [1] - first
correct definition of the diffusion coefficient; [2] - discovery of anomalous diffusion,
[3] - a review of more recent progress).

Simple (asymptotically) exactly solvable model.
Random Jumps model (RIM):

;i ay = Zw(w—z )(aPry — &:Pyy), P@(t=0)=5,,,,. (4)

Here w(z) is a regular function and £, is random variable.

The 1d RJM is isomorphic to the 1d random bonds problem [6]. Basic works:
1) Transport to nearest neighbors, w(z) = wed(|z| = a):
a) Haus, Kehr, Lyklema [7]:
Z
24" ;lf = <E1">'

X

The diffusion coefficient D here is connected with Dy, corresponding to the
transport on regular lattice with transition rate w(z — z).
b) Refs. 6,8 - a way to formal long time expansion.
2) general (long range) interactions and correct construction of asymptotic long
time expansion ~ Ref.9.

D=D0-.‘K, Dg



The method
Next transformations are basic for our construction:

PR = fom dtP(t) = (A + A), A=A,

(AO)ZZ = b;, Zw(x - y) - w(x - Z), Erz = 0s26s,
14

1 1 1
w) = X(l - Aom)- (5)

It is an important representation, because
1) due to general properties of random walks and Laplace transformation the
long time asymptotics is connected with small A expansion of P()), and
2) random £ and small ) are collected together in A/€.
Our next step is expansion in terms of fluctuations

1 1 1 1

=T ;=(§—z)' (6)

P= (0 Aot) ™ = £(1— At

Starting with identity
Q=\E+A) " =(\n+ A - =CG1-mG)" =

M
=G (O™ + (MG xnQl, G = (N + A0, (7
m=0
the (small ) asymptotic expansion can be obtained if
1) ((1/€™) <00, 1<m<M;
2) correlation radius for random 7; is finite;
and taking into account that
3) |IP|| < 2D/X? & ly-norm, D =sup, 3, Waz, A — 40,
4) |(FPYgyl? < (FFY) .0 (P'P),,, - Schwarz inequality;
5) representation

dk _ exp(ikz)

GV = [ 3, X3 Ag(k)’

Aolk) = Ao(K)|k) G

gives direct way to obtain small A expansion of G, here Vg as a volume of
Brillouin zone.



How small parameter is produced?
In first terms

Q=G +GCMG+GMG)? +---. 9)
There is no small parameter here, because AG o« A? = 1; but
Q) = G+ G ))Goo + - - = G(L + AG - A\Goo(n2) + -+ ), (10)

and AGygp is small in any dimension d.
Applications

1) Checking of numerical studies. For example physically important 3d random
site problem with dipole transport (w(z—z) x |z—z| %) was studied numerically,
and the program was shown as correct in computing for corresponding RJM with
similar scale of fluctuations [10].

2) Construction of new solvable models, having more realistic properties
[11,12]. Simple estimation: random bonds model on cubic lattice has d (or Z/2)
random parameters per lattice site, when RJM has one parameter per site only.

Generalizations

If the generator —A is of the form » ,
A= B¢C, (11)
where B and C are translational invariant operators, then using the identity

P=(O+A)"'=(0+BtC) ' =

1 1 1 1
=-(1-Bf——==—C)=-(1- B+——-C
we again came to expansion in terms of
1 1 1 1
A=A~ g), ~= (g)-
Examples
a) 1d.

If 1d lattice is separated into elementary cells with length N, then a coordinate
x can be presented as

z=nN+v, 1<v<N.
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Next model gives a generalization of simplest 1d random bonds problem,
introducing a correlation between hopping rates in different points:

B=V & (Bf)s=for1— fo, C =B
#1‘;1 = mn&;wv gﬁu = 45;;51111 + Xn» (13)
Combining the Eq.12 with

_ i Xn 1
Wa 2 _An > =
€ on ¢ﬁ¢#§(1+xn - ¢%)’

we obtain, that

P(t — o0) = exp(=VxVit) = (—2)”1‘

(14)
The example has evident generalization to any effectively invertible &.
b) Arbitrary dimension d.
Let us consider a lattice with prime cell consisting of two sites, 1 and 2, and
a generator of the form

A v Oz P
N V] (15)
AW — ( Eq(aq:: + qu)(szq — Oz —bz, )
rx —bzz Zq (bqa_— + ctzx)éz - Cg;z

The methods works here directly and
1
P(t — 00) = exp(—Aesst), Aefr=Ax, x= (E)"l- (16)

Other details see in Ref.12. The model has 3 random parameters per 2 lattice
sites instead 1 per 1 for standard RJIM.

Primary RIM was asymmetrical, therefore construction of symmetrical mul-
tidimensional model is of special interest. It is realized in similar way for lattice,
defined in preceding example using

A=¢B¢ (17)

with regular B and random (¥, = 4.,(+". Necessary limitation on parameters
are described in Ref.12.

FA=¢ By, and again 9l = §,,n%%, then up to 8 parameters per 2 sites are
admitted.




Example of ergodic theorem

In the final part of our report we would like to attract the attention to
a Hamiltonian system [13], which gives a model of the system of impurity
spins, placed in the crystal, having other spins with strong interaction. The
Hamiltonian is of the form :

1 - 2
H= -2— Zbijfflj + ij(t)jj' (18)
SN J

Here coefficient b;;( |r; — r;|~ for dipole-dipole interaction) defines a strength
of interaction between spins, placed at r; and rj; I (o = 2,y, 2) is standard
spin operator, I = IF +il¥, I; = (I})!, and c-number functions w;(t) gives
realizations of a normal delta-correlated process:

(wnlt)as(tn)) = 6160t = tr). (19)

In the natural limit of small interaction (for € = max;; b},T? < 1, and wt =
et/T ~ €°) the evolution of the system with I; = 1/2 is described by a set of
master equation, and simplest of them coincides with random site problem for
one walker. Other equations describe many walkers evolution.

The model (18),(19) produce a mathematical basis for description of some
real transport processes in modern physics (see for example [14]).

The system has simple but rich in context ergodic properties, some of them
are studied for arbitrary € in Ref.13. It was shown particularly that in leading
order in ¢ the set of master equations has Gibbsian distribution pg as a final
state ps

ps=pg =exp(—B Y _If)
i
if initial state has finite correlations radius, and if correlations are long ranged
then py is not a Gibbsian. The same property is valid for arbitrary .

The work was supjaorted by RFBR, grants 00-01-00271-a, 99-01-00284, 00-
01-00271.
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