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The probability Pxy(t) (propagator) to find a walker (excitation) at site x at 
moment t, if it was initially localized at y, for random walk in disordered media 
(RWDM) is described by the law 

!PXy = -(AP)xy = - E(WzxPxy WxzPzy ), 
z 

.. PXy(t= 0) dxy. (1) 

The symbols x, y, z are assumed here to be sites of some regular d-dimensional 
lattice (simple cubic for example) with prime cell parameter a. A transition 
to continuous media corresponds to limit, when lattice parameter a -t 0, but 
distance Ix - yl and time t are finite. 

The disorder of media is reflected in the transition rates Wzx and in the set 
of positions, allowed for the walker. 

One of the most important problems consists in calculation of the propagator) 
averaged over distribution of transition rates, assumed as translational invariant: 

PX,lI(t) (PX'!I(t)) = Px-y,o(t). 

The problem belongs to most important in modern statistical physics due to 
wide applications in physics, chemistry and engineering, and due to important 
connections with the quantum field theory. Prof. Robert Minlos is one of out
standing researchers, who gave their remarkable pioneering contributions here 
(see for example [1,2]). Nevertheless the problem of long-time asymptotics is 
unsolved up to now for many important systems with large fluctuations, and, 
particularly, for such simplest realistic models as random sites problem and 
random bounds problem. 

The disorder in random sites problem is created by random positions of 
sites allowed to carry the excitation, when transition rate has simple dependence 
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on distance. It is useful to rewrite the problem in the representation of occupation 
numbers as 

!.PZ1l = - 2: nznZv(x-z)(.PXll-PZ1l) = - 2:V(X-Z) (nzPz1l-nZPZY) , (2) 
z z 

- ~ 2Pzy(t 0) = -6:xy, (n:x) = c, (n:xnZ) c8zz + c-(l - 6zz ),c 
Here 1I(x) is a regular function, and random sites are produced by occupation 
numbers nz: n:x = 1 if site x is allowed for excitation and nz 0 in opposite 
case. One of representative properties is given by the decay law 

(e- Lz n .. v(z-z)t) = e-(bt)d/S, 

where v(x) ex: l/Ixl", and continuum media approximation is assumed. 
The random bonds problem: 

z 
d 

PZY - L wa(x){Pzy Px+e(%,y) , (3)
dt 

a=l 

where ea is a-th basic lattice vectors, wa(x) is a random variable, and Z is the 
coordination number. 

Only Id random bonds problem is soluble new (see for example [1] - first 
correct definition of the diffusion coefficient; [2] '" discovery of anomalous diffusion, 
[3] - a review of more recent progress). 

Simple (asymptotically) exactly solvable model. 


Random jumps model (RJM): 


d-" - dt Pzy = - L...,.. w(x - z)(e:xpcy - ezpzy), P:xy(t = 0) (4) 
z 

Here w(z) is a regular function and ez is random variable. 
The Id RJM is isomorphic to the Id random bonds problem [6). Basic works: 

1) Transport to nearest neighbors, w(z) wod(lzl =a): 
a) Haus, Kehr, Lyklema [7}: 

1 1
D = Do ·x, .- = (-). 

x ez 

The diffusion coeffici~nt D here is connected with Do, corresponding to the 
transport on regular lattice with transition rate w{x - z). 
b) Refs. 6,8 - a way to formal long time expansion. 
2) general (long range) interactions and correct construction of asymptotic long 
time expansion - Ref.9. 



The method 

Next transformations are basic for our construction: 


PtA) = f'dtP(t) = (A + A)-I, A= Ao€, 

y 

(5) 

It is an important representation, because 
1) due to general properties of random walks and Laplace transformation the 
long time asymptotics is connected with small A expansion of P(A), and 
2) random eand small Aare collected together in A/e. 

Our next step is expansion in terms of fluctuations 

1 1 
(6)1Jx = - - - , 

x ex 
Starting with identity 

M 

=G[I:(A11G)m + {A11G)MA11QL G = {A/X+ AO)-l, (7) 
m=O 

the (small A) asymptotic expansion can be obtained if 

1) ((l/em) < 00, 1:::; m :::; M; 

2) correlation radius for random 11x is finite; 

and taking into account that 

3) IIPII :::; 2D/A2 ++ lrnorm, jj = sUPx Ez Wxz , A --t +0, 

4) I(F.P)xyI2 :::; (FFt)xx(.Pt .p)1IY' - Schwarz inequality; 

5) representation 


Iddk. exp{ikx) A Ik) = A (k)lk) (8)
~ + Ao{k) , 0 0 

gives direct way to obtain small A expansion of G, here VB as a volume of 
Brillouin zone. 
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How small parameter is produced? 
In first terms 

Q= G + G)..fjG + G().."IG)2 + .... (9) 

There is no small parameter here, because )"G ex: )..0 = 1; but 

and )"Goo is small in any dimension d. 

Applications 

1) Checking of numerical studies. For example physically important 3d random 
site problem with dipole transport (w(x-z) ex: Ix-zJ-6) was studied numerically, 
and the program was shown as correct in computing for corresponding RJM with 
similar scale of fluctuations [10}. 

2) Construction of new solvable models, having more realistic properties 
[11,12]. Simple estimation: random bonds model on cubic lattice has d (or Zj2) 
random parameters per lattice site, when RJM has one parameter per site only. 

Generalizations 

If the generator - A is of the form 

(11) 

where Band C are translational invariant operators, then using the identity 

p = ().. + ...1)-1 = ().. + neC)-l = 

1 1 1 1 
= :\(1 - Be ).. + CBeC) = ~(1 - B ~ +CB C), (12) 

e 
we again came to expansion in terms of 

Examples 

a) Id. 
If Id lattice is separated into elementary cells with length N, then a coordinate 

x can be presented as 

x = nN + v, 1:S; v :s; N. 
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Next model gives a generalization of simplest Id random bonds problem, 
introducing a correlation between hopping rates in different points: 

B V f+ (BI)x = IX+l - lx, C = Bt; 

~~ = omn~~II, ~~v -= ~8/l11 +Xn, (13) 

Combining the Eq.12 with 
V 

( C-1)/l1l _ 8/l _ ~( " ~)
~ n - ~ ¢~¢I:. 1 + Xn L.,., ¢~ , 

(1 

we obtain, that 

P(t -+ 00) (14) 

The example has evident generalization to any effectively invertible ~. 
b) Arbitrary dimension d. 
Let us consider a lattice with prime cell consisting of two sites, 1 and 2, and 

a generator of the form 

(15) 


A/l1I _ ( Liaqx + bqx )8xq - axz -bxz ) 

xz - . -bzx Lq(bqx + cqx )8xq - Cxz ' 

The methods works here directly and 

(16)P(t -+ (0) = exp(-Aefft), Aell = Ax, 

Other details see in Ref.12. The model has 3 random parameters per 2 lattice 
sites instead 1 per 1 for standard RJM. 

'I Primary RJM was asymmetrical, therefore construction of symmetrical mul
tidimensional model is of special interest. It is realized in similar way for lattice, 
defined in preceding example using 

(17) 

with regular B and random (I:: = 8XZ(:II. Necessary limitation on parameters 
are described in Ref.12. 

If A. = (B"1, and again 1]~: = 8xz1]~II, then up to 8 parameters per 2 sites are 
admitted. 
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Example of ergodic theorem 

In the final part of our report we would like to attract the attention to 
a Hamiltonian system [13], which gives a model of the system of impurity 
spins, placed in the crystal, having other spins with strong interaction. The ~ ~ 

Hamiltonian is of the form 

H = ~ "Lbijltlj + LWj(t)Ij. (18) 
i,j j 

Here coefficient bij(ex ITi - Tjl-3 for dipole-dipole interaction) defines a strength 
of interaction between spins, placed at Ti and rji If (0: = x, y, z) is st~ndard 
spin operator, It = Ij + ilf, Ij = (It)t, and c-number functions Wj(t) gives 
realizations of a normal delta-:-correlated process: 

(19) 

In the natural limit of small interaction (for € = IDaJeij b;jT2 « 1, and wt = 
a/T rv (0) the evolution of the system with Ij = 1/2 is described by a set of 
master equation, and simplest of them coincides with random site problem for 
one walker. Other equations describe many walkers evolution. 

The model (18),(19) produce a mathematical basis for description of some 
real transport processes in modem physics (see for example [14J). 

The system has simple but rich in context ergodic properties, some of them 
are studied for arbitrary € in Ref.13. It was shown particularly that in leading 
order in f the set of master equations has Gibbsian distribution PG as a final 
state PI 

PI = PG = exp(-f'E Ij) 
j 

if initial state has finite correlations radius, and if correlations are long ranged .. 
thep Pt is n?t a Gibbsian. The same property is valid for arbitrary (. 

The work was supported by RFBR, grants 00-01-00271-a, 99-01-00284, 00
01-00271. 
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