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 New approach to the rescatterings on the supercritical Pomeron is -
developed. Rescattering vertices 7, are determined in the form correspondmg )
to the contribution of two diffraction particles beams. :
Their general properties are dxscussed and dlﬁ'erent particles production . -,
cross sections are written in terms of 7,. o . B T
Some examples of the s1multa.neous description of hlgh energy ela.stlc scat-
tering, diffraction production and pionization processes are considered. ’
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Note tht: - ' -
‘ 1) Thmm 7,on£~lu(s/m§v)m~ml euenhatltaﬂ, R

. ) . . . . . . " ] " . ) d m ’
1. The general rescattering picture - e:l;(?A) ~(:;:3¢W by a small change ofthf pmm Am

e AT

At extremeiy .lugh ehetgles s/m% — oo thevsupercntxca‘.l Pomeron theory
(having A = ap(0) - 1 > 0,4 ~ 0.1 — 0.2) determines the elastic scattering
amplitude M(s,t) = f $F(b,s)- Jo(bp,)bdd in the form of the sum of alarge

’nu_mberr (<n>~ (s/mN)A) of rescatterings: .F(b, ~a) =1- 5(b,9),

v

st =emrisp= R0

where vn are some unknown rescattenng Gribov’s coeﬂiclents

_ wbe)=2 / Mp(pL,s)Jo(p.b)prdp,

7. -is the one Pomeron contribution, Mp =~ iAp(p? Jezp[EA — olp(0)61p2 ), &= ~ Fig.' The profile F(b) Fig.2 Eikonal model Mh‘ a}; b ),
T ming/my —in/2 and the decreasing dependence of the Pomeron residue of the scattering, dashed = ¢ )’ d )-twa chanal ptctm\!
Ap(p2) = ¢(p?2)gP(p%) on t = —p} is not determined by the theory. The A line shows the result of
function S(b, s) will be called below "5 - mattix”. We remind that the Gaus- m,,e,;,,,,.d epproach.
" sian form of the residue Ap = A%ezp(—R?p%), vahdonly for small p3 < M?, L :
- leads to a simple v(b, 5) = (Ap/r)ezp(€A — b2/472), 12 = R% + alpf, which - ii) The so ‘called eikonal approximation v, = 1,n_ > 1 correspondmg {o ths
s at £ 3% 1 very large for small b < b, (where v ~ ezp(f; Y2 (s/m¥)d 1) . - graphs shown in Fig.2a, leads to zero values of diffraction- dissociation
and is small: v < 1, at large b. ! : _ (DD) cross section aPP = 201» + a2p and gives S = exp{~v(b, c)i F=1=
Considering v, as an analytic function of n : v, = y(n) at n = 1,2,... : -ezp(—v). However, even in this approximation, the Harward-Marseilli: group
and demanding that S = S(v) in Eq.(1) has to decrease for v — 00, as this (1] was able to obtain a perfect description of pp, pp elastw scattemlg up to
- corresponds to the black disk absorption F(b,s) — 1, at small b < b, and at - P} ~ 2(%2)? choosing the power type residue ‘ )
- 8/m¥% — oo (see Fig.1 where b, = b,(£) = a,£ is the interaction radius) it is ‘ : ' 2 -
easy to show that 7(n) can have singularities only at the left ha.lf-plan' of the ' ' ‘ Ap(p?) = ,\" . 1 + pi/ml)(l + pi/m.‘,)]"2 p_:,_/ * R (3’) ‘
" complex n-pla.ne and, the conditions must hold : ' R i/=? o
» ¥0)=1, y1)=1. - (2') where the first p} depending factor corresponds Lo a matter dxstnbuhon in thr ‘

proton a.nalogous to a charge distribution, with m; 2 0.58GeV, my ~ 1.7GeV"
| ‘ a.mt the zeroza.t large p; = = in Ap(p?) was mtroduoed in {1} by hand (X’ ~
- : : _ : 2.1(GeV/e)™?, = =~20GeV/c
- Atbfarl = €A te. atb=b,, b =4(Rp +d,€)fA the value of (b. s) is of iii) The "quasi-eikonal”” a{:pjrommatwn 3] wh.u:h con'esponds to

order of unity. Thus, the interaction radius b, = 2\/apAf rise like In(s/m%), 01 C = 14+0%P/0% n # 0 and to —; =1-C" ie. to ‘;; ‘
- what leads to the Froissart limit: 0** ~ 2xb] ~ (8xa],A)¢? in this model. :41-(1 - ezp(—Cv)), was successfully used {2} te desen'be sxm;ltamusly, the,

2Authors thank M.Braus for this remark. General features of ¥(n) will be
" considered in a separate publication.
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pp, p scattering at small p2 < p? < 0.2 ~ 0.3(Gev/c)? and, also, all available

information about the particle production at high energies. However it does
not describe the do®!/dp behaviour at p? > p? and instead of the black disk

- at s/m} — oo,v — oo (at b < ), leads to the constant grey disk (see dashed

line in Fig.1) due to violation of the condition 4(0) =1 .

Below, all particle production cross-section will be expressed in terms of the
‘coeflicients y,(b) and some simple models will be considered, where v, # -1
arises due to the production, in the rescattering process, of two diffraction
beams of particles with small masses M, ~ AM; ~ my (see Fig.3a). The
particular model of such a beam in the NN — N interaction cases can be
the production of an excited state N* of the nucleon in rescatterings (as is
shown in Fig.2b). Fig.2c and 24 show graphs describing one 3et and two jets
DD processes. ,

2. Particles production cross-sections

Our norma.hzatlon correspouds to o*® = 8xImM (s,0), do® [dp?
= 4 | M(s,p%) [“' Writing any type of cross section in the form

o'(s) = [ 5(b,a)d% = 2w / 5 (b, s)bdb

one finds:  #(8) = 2[1 ~ ReS(z)], () = 1- | S@) P and also
-+ &°(b) =| F(b) * =] 1~ S(v) |. Now, using AGK rules one obtains, (with

v = vy + ivg ), the cross section &j(b) for the production of some number
k=1,2,... of Pomeron showers of ha.drons in the form:

b‘k(b) (20[) E ( 21!1) - "&"""-'(b) - E &f(b) =1- S(zul} (4)

n=]

where S(2v;) is just the sum Eq (1) with 20y substltnted for v(d,§) . ’I.‘hé
difference

#0P(b) = '“‘(b) — &% (b) = S(2u1)- | S (8)
is the DD cross-section 422 = 25,p + &2p - the sum of the cross-sections of

one and two sides diffraction beams or jets production. In § - unitary theory
P2 (b) and all other 5'(b) naturally must be positive for all values of &.

Considering the square of the modulus of the amplitude corresponding to -
‘the graphs shown in Fig.3b and 3c one obtains DD cross-sections &,p(b) and

Q =

A4

 82p(b) for NN scattering in the form of the following sums:

o\p = Z "’nn.m(\/‘hﬁm‘hﬂn: ‘Ym‘Ynalt

ny, =]

UZD = 2 aﬂl.M[J‘y_"I:'_ V'Yn;"m] _ (6)

ny =1

ny'ny!

the sunﬂ%and Eq.(5) is thus reopened.

* where oy, q, = TSI | Note that the term 2, /1,,_,+,.,7_..,1,.," cancels out in

m"sw.

3. Partncles beams at rescattermgs and 7, factors,
some attempts of data fit

~ There exist many l‘unmons Ta(b) = 7(n,d) of variable n which- satisfy .

Eqs.(2) and have singulasities only in the left half n-plane. To have some ‘

orientation in the form of ¥, = 7(n) let us consider the physical picture of |
pmductwn of two diffraction beams of particles with small effective mars My ~

My ~ my in the rescattering process shown in Fig.3: for elastic scattering

(Fig.3a), for one DD jet production (an 31)) and for two DD jets producuon
(Fig-3¢). ‘ IR

EIF

) 1))

w |-

P&/<

Fig.3 Two difraction beams p;ctum
: a) for elastic scattering, b) for oip, c) for o2p.

The upper and lower beams are separated by a large rapidity mterva.l we

can consider their effect separately putting 7a = Bi1af2n, OF T = B2 for NN

" interaction case. The longer is the length of these beams (i.e. the more links .

k < n~ 1 they pass in apper or in lower parts in Fig.3) the smaller must be ?
sAs the smaller is the probability for the beam to reach the finite targer

. with area #R3(Ro ~ 1/myx) in the diffusion in the impact parameter space.
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'thexrcontnbutlon~—tothee1konalvalueﬁ,.=1 whereka<la.resome . o P . ‘

fo=f(n) = 11<1+ )*-*,m O =81 =1, (7

as, for k =1 the enha.nced factor 01 =1+ m, whxch coresponds to each link
in Fig.3, enters n — 1 times. Comparing this factor with old ”quasieikonal”
model [2] where y; &~ C? ~ 1+ 1/2 one concludes that A/(1 + a) ~ 1/4. The
‘factor C2 =1+ A/(2+ a) enters n — 2 times in 3, and corresponds tc beams
avoiding one Pomeron vertex, factor Cy = 1+ A/(3 +a) corresponds tc beams
avoiding two vertices in Fig.3 and enters n — 3 times e.t.c. This re-mlts in
Eq.(7). i . 1k
The function §(n).in Eq.(7) can be shown to have the simple pole atn=
=—ng,np=1+a a_nd has at n >» 1 the asymptotic form \
| B(n) = [L(n + no)/T(mo)ng] , v/mo ~1/4 ) o) W
(or, simply, 8 = (I'(n +1))*,v ~ 1/4 at @ = 0,ny = 1). For 7, = £%(n) in ' '
Eq.(1) it leads to S(v) ~ (inv)/v™ at v(b,£ ) *» 1 what séems quite reasonable w0l
. physically. However, the b-dependence of v, factors is lost at all in Igs.(7); « . B
(8) (note, by the way, that equalities 5(0) = 8(1) = 1 still holds in the form- ' o' L
®). | el e

Vs = 1.8 TeV

{mb/(Gev/e)]

0.2 04 0.8
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B To reproduce this dependence let us remind the old two cha.nnel {N and » . N i
N*) picture of Fig.2b,c,d resulting [3] in 9, = 7'(n) = (#'(n))? with R (ev/e) !
‘ —_en"+1(1+e)"_n n | Y
ﬁl(n)— 1+E 1+’7€ —t1A1+t2_A2 . (9) . . .
where £, ~ 1 are some DQ—pammeters determining (see {3] for details) the
formof 2x2- Pomg.ron vertex jp, and (9) is obtained by trivial diagonaliza-
~ tion of it: §p — (§B% ),,) _q,(m_)&,,,gI = t;90(p}),%,7 = 1,2, using diagonal
"beam” states ¢; = a)N + al N*. In Eq.(9) A, = eX; = /(1 + €),t, = ; " .
2ty t3 = (1+€)/(1 +¢7) and A; + A2 = 1, Ait; + Mgtz = 1. Considering each of ;‘zf?ﬁ’ (:;l)a _/dﬁ' +bevh;,:z§>:c: 1
beams in Fig.3 as consisting of an infinite number of similar diagonal states . a) for \/;; 546 Ge V? fo;' 10}
- i one obtains the more general form: . Vi =1.3TeV -€) {

B'(n) = E/\ & : : (10) _
where ); and ¢; are some parameters constramed by the conditions T A = - Fig.5 Fit of do*! Jdp} for S L 18
_ =Z; Ait; = 1. Putting in Eq.(1) 7, = (8'(n))? one obtaines : . 7a = (8'(n))?y1.
- S(b, s) ZA iA; ezp[—t itjvij(b, 8)] (1)

Vi - 646 Gev.

sl
{mb/(GeV/c)").

w

e =
.
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where it was taken into accounts that Pomeron vertices gi(p? ) for different
diagonal beam states can have different dependence on p} (1 e. can have
different parameters m,,m; in Eqi(3) ; Ap(p2) — A} ~ gig; in v;; ). This
will just reproduce -effectively the b-dependence of v,~ coeflicients.

Note, that Eq.(10) is the particular case of a more general representation: -

B(n) = / A)tndt for x(t)-zx 5(t—t) .

We note also, that the simplest form for v, = ﬁ’(n) is given by Eq.(8)
Caty =1/21y, =4 = '%Eﬁ}v in Eq.(1) it leads to the simple S-matrix

S(v) = (1 + v/nu)"'“ discussed by Braun and Pa]a.res {4] (with, —n at the -

- place of n.)

" Eqs.(7)-(11) can be used for describtion of da"/dp’ and of particle pro-

" - duction data at high energy. Two simplest examples are considered below:
" a) Using S(v) = (1 + v/ng) ™one obtains the following set of the best
.~ 'values of parameters: ng = 2.27, while in the Pomeron amplitude: A = 0.1,

" and a/p(0) = 0.03, AL = 2.9 in (GeV/c)? and also in Eq.(3) m; = 0.58, m; =
- "13.7,#=16.6in GeV/c The do® [dp? behaviour is very good and is shown in
. . Fig.4afor /s = 546GeV and in Fig.4b for /3 = 1.8TeV. The resulting values
S ofo'“ are: 63 and 74 mb corresrondmgly, wlnle values ofp (RcM/ImM),H,
at'e 0.106 and 0.100.

- However; too small ¢°P value was obtained here from Eq.(5): at NS ‘

™ 546 GeV, 0PP = 20,p + o3p ¢ 2.4mb was ﬁnd as compu-ed with (0°%) e =
:o 420° ~ 5.5mb.
'b) Using 7a = (8'(n))}9) with the same 7{) = I(n + ng)/T(no)nf as
‘“abm and Sy(n) in the form (9) one finds the parameters (in the same units
as above): ng = 3.92,A = 0.112,dp = 0.03,)% = 4.66;m; = 0.75,m; =
13.7, 2 = 16.6 - being taken the-same in both poles ¢, = 2.92,#; = 0.55 (what
- corresponds to ¢ = 4.31,7 = 0.19, or to \; = 0.19, Ay = 0.81 in Eq.(9)). The
fit of do*/dp? at /s = 546GeV, shown in Fig.5, is not so good as in F1g4
‘however oPP = 4.1mb is here much closer to the experiment (0PD(54€))uep
-5.6mb.
These first result are promising and show that calculations have to be exten-
"det to a more realistic version of 7,, e.g. defined in Eqgs.(9), (10) with different
" parameters m;, m; of Pomeron vertices for different v;;(b, s) in Eq.(11).

Authors thank K.Boreskov, M.Braun, A. Ka.ndalov, K. Pajares, J. Srﬂ'er for

d.lscuulons and meful remarks
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