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bstract

The Bardcen-Stephen model of viscous flux mo-
tion in isotropic lype-II supercondnctors is extended to
the anisottopic case characterized by a phenomenologi-
cal effective mass Lensor m;;. When the magnetic ficld is
low and the vortex lines are aligned along onc of the three
principal axes, simple expressions for the viscosily tensor
7;; of the viscous flux motion are obtained as funclions
of m;; and the nonnal state conductivity tensor ay; for
temperature T clase Lo the criticnl temperature T,,. For
the high-temnperalure oxide superconductors the theory
predicts that nf,") : nf,c) : 1;5,") ~ 1:47:3v?%, where 1;5” is
the viscosity for the motlion along the i-axis of a vortex
parallel Lo the j-axis and ¥ = \/m./m, is the anisotropy
parameter {m;, t = a, b, c, are the principal values of the
inass tensor salisfying m, =~ m;, € m.).

Introduction

The new high-temperatnre oxide superconductors
show many strongly anisotropic properties. We consider
in this paper how the anisotrapy affects the viscons mo-
tion of a flux-line lattice. For the isotropic case the physi-
cally most transparent model for viscous flux niotion was
developed first by Bardeen and Stephen (BS)'. The BS
model makes the approximation that the snperconduec-
tor is local and assumes that there is a normal core of
tadins €, the Ginzburg-Landan (GL) coherence length,
and that the dissipation occurs inside and in the imne-
dinte vicinity of the vortex core. Although it is clearly
only a simplifying approximation, the BS model yirlds
cxpressions for the viscosity and the finx-flow resistiv-
ity which are nearly identical with the emnpirical results?,
and gives a simple and clear picture of the mechanism of
viscous flux motion. Qur purpose is to generalize the BS
model to include the effect of anisotropy.

The anisotropy of superconductivity can be most
casily described in the framework of the GL thcory
by introducing a phenomenological effective mass ten-
sor Mi;""', which has the principal values of AM; (v =
1,2,3). It is convcnient lo define a normalized mass ten-
sor mij = M;;/M with priucipal values m; = M, /M,
where the mean mass M = (M,IM;A/I_-,)'/:’, such that
mymymy = 1. The penctration depths Ay = A /m;
describe the decay of components of supercurrent along
the principal direclions, and the corresponding cohercnce
lengths € = €/,/m; characterize the spatial variation of
the order parameter nlong these directions®. The scalars
A= (A 2x0)" 3 and € = (€,£264)"? can be considered
as the mean penciratlion depth and the mean colierence
length, and are given by the same expressious as for the
isotropic casc’, except that the isotropic mass M is re-
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placed by M. The GL parameter is x = A/¢.

We confine ourselves to the case that the mng -

field H is sinall compared with the upper critical ficla 5,
(H < H,»), so that a vortex in mixed state can be con-
sidered as isolated. We assume that the temperatoa- 7
is close to the crilical temperature T, (T. - 1" < 1., 50
that the BS model can be further simplificd as thal in
which there is a sharp discontinnity at the core bound-
ary between a fully normal core and fully superondnct
ing material’. Accordingly the London equations® are
applied outside the core, Ohm’s law is applied inside the
core, and the electrical conductivity of the normal elce-
trons in the supercondncting state is approximated by
the normal state conductivity.

Viscous Flux Motion

The magnetic flux density b of an isolated vortex
in rn anisotropic type-11 superconductor is given in Ref.
5 in the GL regime for the case when the vortex axis is
parallel to one of the principal axes. In the London limit
(the reduced order parameter is 1 outside the vorter rore
and 0 inside the core, and x » 1) b = by, is given by
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for a vortex centered on the £4-axis, where K, is a Pensel
function of u-th order. We choose axes coinciding with
the principal axes with nnit vectors £; and position coor-
dinates z; (i = 1,2,3). Outside the core, the superfluid
velocity v, obeys the Maxwell’s equation
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for |zy| < A, |zz] < Ay, where n, is the »ap. toot
density, and we have used K,(z) ~ 1/z for small =
and A = Mc?/4we’n,. We assume for the vortex core
boundary the ellipse
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Equeations (3) and (4) and the adisbatic approximati.m

vo(x,t) = v,(x — V1), v
where V is the velocity of the flux motion, comprise the
starting point for our calculation. As will be shown he-
low, the dissipation that contributes to the viscons drag
concentrates in the vicinity of the core, and we thereforc



nse Bq. (3) for the whole space ontside the core.

When the vortex moves with velocity V', the elec-
iric field e, induced ontside the core can be obtained {rom
the second London equation®. For the anisotropic case
this gives

M .
= —e—v -V (Z x;m.-v,.') , (6)
wlere Eq. (5) has been used. A straightforward calcula-

tion gives
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whete V; {1 = 1, 2) ate the components of V. The electric
field e, induced inside the core is

e,
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e, = e(:‘ill X ‘A/l (8)

where the magnitude e. is obtained by the continuity of
the tangential component of the electric field at the core
boundary, Note that the tangential vector of the core

boundary is parallel to v,. Therefore e, - v, = ¢, - v,,
and we find

h
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Figures (1a), (1b) and (1¢) show the stream lines of the
electric field in the core vicinity for vortex moving in dif-
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ferent directions. ‘The stream lines nside the core are
strnight and uniform; outside the core they are given
by the solutions of the first order dillerential equation

dzg/dzl = 8‘2/8.].

The rate of dissipation per unit length induced
ontside the core by the motion of the vortex is
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where o is the normal state condnctivity tensor wilh
the principal values o; (i = 1,2,3), and

Hogn = P

)

2761 €2 (1)
is the upper critical field along the z4-axis'. Here we have
made the assumption that o,; has the same principal
axes as those of m;;, so that oy; = 06;j, and we have
approximated the conductivity of the normal electrons
in the supercondncting stalc by o, which is valid for
T close to T.. The usual summation convention over the
indices repcated twice is adopted hercafter. Note that the
integrand in Eq. (10) is significant only near the edge of
the core, because e, decays rapidly as the distance from
the edge of the core increases. The rate of dissipation per

unit length induced inside the core by the motion of the
vortex is
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The tolal rate of dissipation is

(Vi + o3 V). (12)
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Iigure 1. Stream !incs of the electric field induced by a vortex moving along the direction formiug an angle 8 with
respect Lo the horizontal, xy-axis: (a) 6 = 0, (b) 6 = x/4 and (c) § = x/2. The vertical axis corresponds Lo T9-axis,

and the z3-uxis points out of the paper.




D=D.+D,. (13)

The viscosity tensor n;; of the motion of the vortex is
defined by

D = n,; ViV, (14)
From Egs.(10)-(14) we find

nij = Mibij,
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Note that n; depends on both & and o2, becausc that
the dissipative current has both components along the
z(- and the z)-axes.
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In the isotropic superconductors the flux-flow re-
sistivity p; is related to the viscosity n by (see Ref. 9)
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where B is the avernged magnetic flux density. For the
anisotropic case Eq. (18) is generalized as

pr =

0B

= == 19

P =G (19)
doB

= == 20

Pr2 C'IT][, ( )

where pyg;i (i = 1,2) are the principal values of the finx-
flow resistivity tensor pyij (we have assurued that both
pri; and n;; have Lhe same principal axes as thoge of mij,
so that psi; = pyii;). Note that pyy (py2) is related
to 13 (1) because that the #;- (z2-) component of the
macroscopic electric field is induced by the motion of the
vortex in the z,- (z-) direction.

If the field 1s applied along the x(- or the z,-
axes, the corresponding results can be obtained Iy cyclic
permutation (1 —2 — 3 — 1).

For the high-temperature oxide supercondnctors,
we may neglect the anisotropy in the ab plane and con-
sider these malerinls as uniaxial, with mruch larger effec-
tive mass along the c-axis, i.e., m, & m), €K m, and o, =
o, > a,, and it is generally found that the anisotropy in
the clectrical conductivity is much larger than that in the
cllective mass, i.e., 0,/0. = oy/0. > m./m, = m./my,.
This is related to the fact that the high-temperature su-
perconductors arc in the clean limit as far as ab-plane
transport propertics are concerned. Using these facls
we obiain the following. For the case that the vortices
nre pnrallel to the c-axis, flux motion is nearly isotropic,

M )/n, 2 1, where n(") is the viscosity for the motion
along the i-axis of a vortex parallel to the j-axis. Tor
the case that the vortices are parallel to the ab-plane,
however, flux motion is highly amsotropic,

"L__ ~ ! (21)
MO
where
y= = (22)
m,
is an anisotropy parameter. We also find
(<)
n,(,n) ~ 47, (23)
M
and
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— 24)
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Equations (2]), (23) and (24) can be combined into
(" '7!: : 1]((.“) ~ 14y 3y?, (25)

which is independent of o;;, inplying that the anisotropy
in the viscous flux motion is determined by the anisctropy
only in the effective mass tensor.
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