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Introduction 

Investigation of the limit distributions of random walks on some noncommutative groups 

is represented rather widely in the probability theory. Namely, the set of rigorous results 

concerning the limit behavior of Markov chains on the free group and on the Riemannian 

surfaces of constant negative curvature have been received in works [1, 2. 3, 4]; the 

problem of construction of the probability measure for random walks on the modular 

group PS L(2,Z) has been studied in [5]. To this theme we could attribute also number of 

spectral problems considered in the theory of dynamic systems on hyperbolic manifolds 

[6, 7] as well as the subject of the random matrix theory [8]. 

However in the context of "topologically-probabilistic" consideration, the problems 

dealing with the limit distributions of noncommutative random walks are practically out 

of discussion except very few specific cases [9, 10, 11]. In particular, in these works it has 

been shown that statistics of random walks with fixed topological state with respect to 

the regular array of obstacles on the plane can be obtained from the limit distributions 

of the so-called "brownian bridges" (see the definition below) on the universal covering

the graph with topology of the Cayley tree. The analytic construction of the nonabelian 

topological invariants for the trajectories on the double punctured plane and statistics 

of simplest nontrivial random braid B3 was shortly discussed in [12]. 

Our main goal of the present work is as follows: we consider analytically and nu

merically the limit behavior of the Markov chains where the states are randomly taken 

from some noncommutative finite discrete group. In particular, we restrict ourselves 

with the so-called braid (Bn) and locally free l (l,rn) groups-see the definitions in the 

next section. The first brief combinatorial analysis of locally free groups was undertaken 

in recent works [4]. 

The reason of our investigations is forced by real physical problems which we are going 

to touch separately in the part II of the work. Here let us just mention that the scope of 

tasks dealing with the nematic-type ordering in bunches of entangled polymers as well 

as consideration of thermodynamic properties of uncrossible vortex lines immediately 

turn us to studying of statistics of chain-like objects with nonabelian topology. 

IThe notation "locally free group" is proposed by A.M. Vershik. 

-
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1 Basic Definitions and Model 

1.1 Random Walks Over Group Elements 

We begin with the investigation of the probabilistic properties of Markov chains on sim

plest noncommutative groups. In the most general way the problem can be formulated 

as follows. 

Take a discrete group Yn with fixed finite number of generators {9I, ... ~9n-l}. Any 

arbitrary ordered sequence of generators we call the word. The length of the word, N, is 

the total number of used generators ("letters"), whereas the minimal irreducible length, 

JL, called below the "primitive word" is the shortest noncontractible length of a particular 

word which remains after applying of all possible group relations. 

Let II be the uniform distribution on the set {91' ... , 9n-1 ,911, ... , g;2 1}. For conve

nience we take hj = gi for j = i and hj == 9i-1 for j =i + n - 1; lI(hj ) = 2n~2 for any j. 

We construct the (right-hand) random walk (the random word) on Yn with a transition 

measure, II, i.e. {en}: eo = e E gn and Prob(ej = U!ej-l = v) = II(V-1U) = 2n~2. 

It means that with the probability 2n~2 we add the element hO: N to the given word 

hN-l = ho:1 ho:2 ••• hO: N _ 1 from the right-hand side 2. 

The random word W formed by N letters taken independently with the uniform 

probability distribution II = 2n~2 from the set {9t, ... , gn-l, 911
, ••• , g;~1} is called the 

Markov chain of length N on the group gn. 

The most attention is paid in this paper to the following question: \Vhat is the 

number of possibilities, Z(p., N), to reduce all N-Ietter words to the primitive word of 

length p. The quantity Z(p., N) plays a role of the partition function for the random 

walk on the group gn with the uniform probability distribution II over group generators. 

1.2 Braid and "Locally Free" Groups 

We are aimed to study the asymptotics of the limit distributions of Markov chains on 

the braid group Bn • For the case n = 3 the problem has been solved in :4], where the 

limit probability distribution as well as the conditional limit probability distribution of 

"brownian bridges" on the group B3 has been derived. For n > 3 this problem is unsolved 

yet. However we can extract some estimations for the limit behaviOr of 1\larkov chains 

on B n considering the random walks on so-called "locally free grOllps" ([2! 4]). 

2 Analogously we can construct the left-hand side random wal..k on the group g. 

2 



BRAID GROUP. The braid group En of n strings has n - 1 generators {(7'h (7'2, ••• ,(7'n-l} 

with the following relations: 

(1 ~ i < n - 1) 

Ci - il ~ 2) (1) 

Let us mention that: 

- The word written in terms of "letters" - generators from the set {(7'1"." 

1
(7'n-}, (7'1 , ••• ,(7';~I} gives a particular braid. 

- The closed braid appears after gluing the "upper" and the "lower" free ends of the 

braid on the cylinder. 

- Any braid corresponds to some knot or link. So, there is a principal possibility to use 

the braid group representation for the construction of topological invariants of knots and 

links, but the correspondence of braids and knots is not mutually single valued and each 

knot or link can be represented by infinite series of different braids. This fact should be 

taken into account in course of the knot invariants construction. 

LOCALLY FREE GROUP. The group [,Fn (d) is called the locally free if generators, 

{II, ... ,In-I} obey the following commutation relations: 

(a) Each pair (/j,lk) generates the free subgroup of the group [,Fn if Ii - kl < d; 

We pay the most attention to the case d == 2 for which we define ['Fn (2) == c'Fn • 

It can be seen that the only one difference between the braid and locally free groups 

consists in the replacement of the Yang-Baxter relations (in case of Bn ) by relations of 

the free group (in case of [,Fn ). In Fig.1 the graph corresponding to the group [,Fn is 

shown schematically where the vertices corresponding to the equivalent primitive words 

should be identified. (Two words are equivalent if they can be transformed into one 

another by permutations allowed in by the definition of the group). 

w;., 
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2	 Statistics of Random Walks on Braid and Locally 

Free Groups 

It has been shown in papers [9] that for the free group (Le. for the group without 

any commutation relations among generators) the problem about the limit distribution 

of Markov chains can be mapped to the investigation of random walks on a simply 

connected tree. In case of braids the more complicated group structure does not allow 

us to use the simple geometrical image directly. Nevertheless the problem of the limit 

distribution of random walks on Bn can be reduced to the consideration of the random 

walk on some graph. In the case of the group BJ we are able to construct this graph 

evidently, while for the group Bn (n ~ 4) we c~ give an estimation for the limit 

distribution of random walks considering the statistics of Markov chains on so-called 

local groups (see [4] and below). 

2.1 Numerical Results 

The goal of our numerical computations consists in comparison of the expectation values 

for the random walk on braid group En and on locally free group £:Fn (see the definitions 

above). 

We believe that our results will give some insight to the problem of random walk 

in the noncommutative groups related to topology (like braid group) and will stimulate 

the forthcomming investigations. The reason of the replacement of the braid group by 

the locally free one is due to the fact that the problem of limit distribution of Markov 

chains on locally free group admits the exact consideration (see also Section 3). 

The model used for numerical simulations has been explained in Section 1.2. Let us 

point out the main steps of our computations: 

(a) 'Ve generate randomly (with uniform probability distribution) the words of lengths 

N E [1000; 20000], while the number of generators, n, varies in the interval [3; 200]. 

The number of randomly generated words is of order of 1000. 

(b)	 We reduce the given word till the minimal irreducible (primitive) word. This 

can be done by using the braid (or locally free) group relati~ns. The numerical 

procedure is as follows. First, we try to pnsh each braid generator in the word as 

far as possible to the left. Some reductions can occur after 
~ 

that. Then, we play 

the same game but in the opposite direction, pushing each braid generator to the 
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right performing possible reductions of the word, then-to the left again and so 

on... If no reductions occur during two consecutive steps, we stop the process. 

We compute the following quantities for braid and locally free groups: 

The mean length of the shortest (primitive) word (p.) 

00

E p,Z(p" .V) 
(p,) = _IJ=_~ _ (2)

E Z(p" ~V) 
p=o 

and the variance Var(p,) 

(3) 

The results of numerical simulations for the word statistics on braid (Bn ) and locally 

free (£Fn(d)) groups are presented in the Table 1. 

Table 13 • 

I Groups ~ £Fn (2) ~ £Fn ( 3) ~ £Fn ( 4) 

~ 
N 

Var(p) 
N 

~ 
N 

Var(lJ) 
N 

~ y 
Var(lJ) 

N 5J;f 

n=3 0.29 0.85 0.50 0.16 0.50 0.16 0.50 

n=5 0.49 0.11 0.60 0.63 0.11 0.48 0.15 

n=10 0.56 0.63 0.65 0.56 0.11 0.40 0.82 

n=20 0.59 0.63 0.66 0.54 0.19 0.39 0.84 

n=50 0.61 0.61 0.61 0.56 0.80 0.38 0.85 

n=100 0.61 0.61 0.61 0.52 0.80 0.36 0.86 

n=200 0.61 0.60 0.61 0.53 0.80 0.35 0.86 

Var(pO, i,
N 

: 

0.15 

0.46 I 
I 

0.34 

0.29 I 
I 

I0.21 I 

0.26 ! 

0.26 i 

The maximal standard deviations in the Table 1 (and everywhere below) are: 

±O.Ol for the mean value (p,) IN 
"'0 

{ ±O.05 for the variance Var(p,)IN 

3The groups £:Fn(d) are completely free when d ~ n - 1. 
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2.2 Analytic Results for Random Walks on Locally Free Group 

Let us estimate now the quantities (p.) IN and Var(p.)IN analytically. 

DYNAMICAL CONSIDERATION. Under the conditions 

(4)
 

we can easily develop the dynamical arguments which are in rather good agreement with 

the results of numerical simulations presented above. The last inequality in (4) ensures 

the conditions, sufficient for finding the limit probability distribution of Markov chains 

on the groups of n generators. Actually, the number of letters in the word, N should 

be much larger that the number of all possible pairs in the set of 2n letters". Only in 

this case the corresponding Markov process has the reliable distribution function. The 

number of pairs is of order 4n2 
, so we arrived at the inequality stated in (4). 

Take a randomly generated N-Ietter word W. This word is characterized by the 

length of the primitive word Wp (recall that Wp is the length of the word lV obtained 

after all possible contractions allowed by the structure of the group £:Fn (d)5). 

Let us compute the probability 7('(d) of the fact that the primitive word Wp will be 

shortened in one letter after adding of the letter II (i E [1, n]) to the word lV from the 

right-hand side. It is easy to understand that the primitive word Wp can be reduced if: 

a) The last letter in the word Wp is just Ii-I. The probability of such event is 2~; 

b) The letter before the last in the word Wp is 11-1 and the last letter commutes with 

the letter fie The probability of such event is 2~ (1 _ 4~~2); 

c) The third letter from the right end of the word Wp is fi- 1 and two last letters 

commute with the letter fie The probability of such event is 2~ (1 _ ~~~2) 2; 

d) ... and so on. 

Finally we arrive at the following expression for the probability 1r(d): 

11 co ( 2)' (5)4d 
7('( d) = 2n ~ 1 - 2n '0.4d - 2 

4The total number of generators is 2n because em of n generators has the inverse one. 

50ur consideration is valid for any values of d. 
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The procedure described above assumes that the letters remaining in the word Wp are 

uniformly distributed-as in the initial (nonreduced word W). The absence of "boundary 

effects" is ensured by the condition (4). 

Once having the probability 11"{ d), we can write down the master equation {or the 

probability P{p" N) of the fact that in randomly generated N -letter word the primitive 

path has the length p, 

P(p" N + 1) == (1 - 1I"(d)) P(p, - 1, N) +1I"(d) P(p, + 1, N) (1£ ~ 2) (6) 

where the relation between P(p, N) ~d the partition function Z(p" N) introduced above 

is as follows 

The recursion relation (6) coincides with the equation describing the random walk 

on the halfline with the drift from the origin or, what is the same, with the equation 

describing the random walk on the simply Cayley tree with the coordinational number 

1 
Zeff == 11" (d) == 4d - 2 (7) 

Taking into account the last analogy we can complete the Eq.(6) by :he boundary 

conditions 
P{I£ == 1, N + 1) == P{p, == 0, N) + 11" { d) P{p, == 2, N) 

P(I£ == 0, N + 1) == 11" P(p, == 1, N) (8) 

P{p" N == 0) = DIJ,o 

It is noteworthy that these equations are written just for the Cayley tree with Zeff 

branches. The actual structure of the graph corresponding to the group £,7=n (d) is 

much more complex, thus Eqs.(8) should be regarded as an aproximation. However the 

exact form of boundary conditions does not influence the asymptotic solution of Eq.(6) 

in vicinity of the maximum of the distribution function: 

1 Z eff2 Zeff - 2 ~ r ' 2}
P ( p" N ) ~ exp - p, - .1, (9){2J21r(Zelf - l)N 8(Zeff - l)N ( Zeff) 

Thus, we find
 
(p,{ d)) Zeff - 2 2d - 2
 
....;.;........~I"V - __
 

N Zeff - 2d - 1 
(10)

Var(p" d) 4(Zeff - 1) 4d - 3 
_~---:;""I"V  _ 

N z;ff - (2d - 1)2 
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Substituting in Eq.( 10) d = 2,3,4 we get the following numerical values: 

(p,( d)) 2 Var(p" d) 5 = _e - - for d = 2
N 3' N 9 

(p,( d)) 4 Var(p" d) 9= _. - for d = 3
N 5' N 25 

(p,( d)) 6 Var(p" d) 13 == _e - - for d = 4
N 7' N 49 

what is in the excellent agreement with the asymptotic values (n ~ 1) from the Table 

1 for the same groups. 

STATISTICAL CONSIDERATION. For the group IFn+l (d) we can extract the limit be

havior of the distribution function P(J.L, N) exactly evaluating the number v~(p" d) of all 

nonequivalent primitive words of length p, in the group lFn +1(d). We derile the explicit 

expression for the function Vn (p" d) and show that it has the following asymptotics for 

d = 2 and II- ~ 1 

( 
8 ")IJVn(p" d = 2) = const 7 - ~- (n ~ 1) (11) 

To compute Vn(p" d) we represent each primitive word Wp of length Jl in the group 

IFn+l (d) in the normal order similar to so-called "symbolic dynamics~ used in con

sideration of chaotic systems (see, for instance, [13~) 

(12)
 

where E:=1 Imil = p, (mi -=f 0 V i; 1 ~ s ~ 1£) and the sequence of generators IOi in 

Eq.(12) for all distinct IOi satisfies the following local rules [4]: 

(i) If IOi = II, then IOi+l E {/2' 13, ... In}; 

(ii) If IOi = Ik (1 < k ~ n - 1), then IOi+l E {/k-d+l" . . ,lk-1' Ik+1' ... In}; 

(iii) If IOi = In' then IOi+l E {f.~-d+1' ... ,In-I}' 

These local rules give the prescription how to encode and enumerate all distinct primitive 

words in the group IFn+1 (d). H the sequence of generators in the primitive word Wp 

does not satisfy the rules (i)-(iii), we commute the generators in the word Wp up the 

normal order is restored. Hence, the normal order representation e!lables one to give the 

unique coding of all nonequivalent primitive words in the group IFn+1 (d). 
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Example 1. Take an arbitrary primitive word of length p, = 10 in the group £.1"8+1(2): 

(13) 

To represent the word Wp in the "normal order~ we have to push all generators with 

smaller indices to the left when it is allowed by the commutation relations of the locally 

free group £.1"9(2). We get: 

(14) 

(the "normal order" for this word is the sequence of used generators: {I, 3, 2, 5, 4, 8, 7}). 

To compute the number of different primitive words of length p, = 10 with the same 

normal order as in Eq.(14), we have to sum up all the words like 

(15) 

under the condition E;=l 1m.;I = 10; mi f; 0 V Jnj E ), 7]. 

The calculation of the number of distinct primitive words, Vn(p,), of the given length 

p, is now rather straightforward: 

(16) 

where Rn(s, d) is the number of all distinct sequences of s generators taken from the set 

{II, ... , In} and satisfying the local rules (i)-(iii) while the second sum gives the number 

of all possible representations of the primitive path of length p, for the fixed sequence 

of generators- (see the example above); "prime~ means that the sum runs over all 

mi :/= 0 for 1 ~ i ~ .!; .6. is the Kronecker function. 

To get the partition function Rn(s, d) let us mention that the local rules (i)-(iii) 

define the generalized Markov chain with the states given by the n x n "coincidence" 

matrix Tn(d) where the rows and columns corespond to the generators 11' ... ' In as it is 

shown below: 
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, 

(17) 

The matrix Tn ( d) has rather simple structure: above the diagonal we put everywhere 

"1" and below diagonal we have d -1 subdiagonals completely filled by "1"; in all other 

places we have "0" (in Eq.(I7) it is shown the case with d = 3). 

The number of all distinct normally ordered sequences of words of length s with 

allowed commutation relations is given by the following partition function 

11 12 13 14 ... In-l j. In I 

11 0 1 1 1 ... 1 1 

1 

I 

12 1 0 1 1 ... 1 

13 1 1 0 1 ... 1 1 

14 0 1 1 0 ... 1 1 

1 

I 

In-l 0 0 0 0 ... 0 

In 0 0 0 0 ... 1 0 

where 

(18)
 

Yin = 

n 

( "1 1 1 ..... .. f) and 

1 
1 
1 n (19) 

1 

The remaining sum in Eq.(I6) is independent on Rn(s, d), so its calculation is trivial: 

(20)
 

Substituting Eq.(20) and Eq.(I8) into Eq.(I6) we get 

IJ If (,." - I)! 
(21)Vn (,.", d) = 2n + E2 (s _ I)!(,." _ s)! Rn(s,d) 

The value Vn (,.", d) is growing exponentially fast with,." and the "speed" of this grows 

is clearly represented by the fraction T 

q(d) = Vn(p + 1, d) I (22)
Vn(p, d) llJ>1 
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We can find the closed asymptotic expression for the value q(d) supposing that the 

main contribution in Eq.(21) appears from ~ » 1. In this case we have for &.(~, d): 

Rn(s, d)la>1 = [.x~U:(d)j.	 (23) 

where .x~ax is the highest eigenvalue of the matrix T,,( d) (n ~ 1). 

In the two limiting cases d = 2 (n ~ 1) and d = n - 1 (n is arbitrary) the computa

tions are rather straightforward: 

(a) For	 d = 2 (see Appendix A for more details) we find the value of the highest 

eigenvalue .x~a%(2) (n ~ 1) in "the form 

.xmax (2)j = 3 _ 4A"....: + 0 (~)	 (24)
n n>1 n- n 2 

(b) For d = n - 1 we get 

(25) 

Example 2. For n = 3 and d = 2 we have the free group without any commutation 

relations, i.e. the Cayley tree with 2(n - 1) = 4: branches. 

Substituting Eqs.(24)-(25) into Eq.(21) and evaluating the remaining sums over s we 

obtain 
81r2 

q(2) '" 7 - -2 
n (26) 

q(n) = 2n - 1 

Let us pay attention to the geometric sense of Eq.(26). First of all recall that the 

complete free group r n =£:Fn+l (d = n-l) (without any commutation relations between 

the generators) has the structure of z-branching Cayley, where z = q(n) + 1 = 2n what 

coincides with the well known result that the nunoer of distinct primitive words of 

length p, in the group r n grows like 

Vn(p,d = n) = [q(n) + l][q(n)]IJ-l = 
2n 

(2n - 1)1J (27)
2n -1 

Comparing Eqs.(11) and (27) we can conclude that the graph corresponding to the 

locally free group, £.1"n+l (2), can be effectively regarded as z-branching Cayley tree, 

where 
81('2

zl ~ q(2) + 1 = 8 - -	 (28)
n 2 "'.In>1 

Despite the local structure of the group £:Fn +1(d) is very complex, Eq.(28) enables 

us to find the asymptotics of the distribution function Pd(p, N) for the random walk on 
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the group in the same way as it was described in course of derivation of Eq.(9). Thus, 

to find the expectation values (J-L( d)) j Nand Var(J-L, d)jN we have to replace Zeff by the 

value z = q(d) + 1. Hence, we get 

(J-L( d)) Z - 2
--"" - 

N z (29)
Var(J-L, d) 4(z - 1) 
-~-"" ~--N Z2 

In the Tables 2a,b we compare the values of ZeR' with the values z = q( d) + 1 and 

ZCOlT = q(d) + 1 (see Appendix B) as well as corr,esponding expectation values (p(d)) and 

Var(J-L, d) for the groups .cFn+1 (2) and .cFn+1 (3) extracted from our analytical results 

for n 2> 1. 

Table 2a. 

[n> 1] 

ZVar(p) IN (p) IN \ Var(p)/N I' zeor (Appendix B) !(p) INZeR' 

I I !1.8 0.14 0.45 66 0.61 0.56n=20 I i ! 
I 

1.9 0.15 I 0.44 
i

i,
I 6 I0.560.616n=50 

I 

I i ;i 
I 0.56 0.15 0.44 ; 686 I
I 0.61I n=100 i i 

Table 2b. 

Group £.1'"n(3) [n> 1] 

r or
ZVar(p) IN(p) IN (p) IN I Var(p)IN II (Appendix B) 1ZeffI 

11 Ii 0.84 0.29 II 10.112.50.3610 0.8I n=20 i III 

i! I 

0.84 I 0.29 , 10.1 I12.50.8 0.3610I n=50 I 
0.84 I 0.29 10.112.510 0.8 0.36In=100 I 

We pay attention to the fact that the expectation values computed on the basis of 

dynamical consideration do not coincide with the values computed from the enumeration 

of all nonequivalent primitive words in the corresponding group. Some arguments con

cerning the ways of possible resolution of this contradiction we present in the Appendix 

B. 
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3 Statistical Approach for Words Enumeration in 

Braid Group Bn 

The problem of construction of an effective algorithm for enumeration of the words in 

the braid group Bn for n > 2 is one of very intriguing problems of the group theory. 

In the present Section we propose the approximate statistical approach for enumer

ation of all distinct primitive words in the group Bn for n ~ 1 which expioits some 

properties of locally free groups £Fn considered above. 

The main idea is as follows. Take a look on the sequences of words in the braid 

group Bn from the point of view of the locally free group £:Fn "with errors". To be 

more specific let us start with the following example: 

Example 2. Write a random word W from the group B7 consisting of 8 letters. Let it 

be for example: 

We reduce this word to the primitive one in two steps. 

1. On the first step we act in the same way as in the case of locally free group £:F7 

and push all generators with smaller indices to the left supposing that nearest neighbors 

do not commute at all. We get: 

2. Now we can apply the Yang-Baxter relations for the tripple (1'6"1 (1'5 (1'6 and obtain 

after the cancellation of (1';1 and (1'5 the primitive word 

The first step of the contraction procedure completely coincides with what we have 

for the locally free group, while the second step we can regard (aproximately~ of course) 

as follows. If we have some pair, for instance, (1'6 
1 

(1'5, we can commute it if the nearest 

neighbor generator after (1'5 is (1'6- The probability to meet the generator (1'i in t~e Markov 

chain for the braid group Bn is of order of Perr = 2~' Later on we consider more general 

case taking Perr as the variational parameter. 0;. 

In the Table 3 we show the results of our numerical simulatiois of the expectation 

value (p,) /N for the random walk on the "locally free group with errors" ~ .c.,r:rr(2), 
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and compare them to the same value for the random walk on the braid group (see first 

columns of the Table 1). 

Table 3. 

Groups (,F':.rr with 20% of errors [Perr = 1/5] Bn 

(J-L) IN (J-L) /N 

n=5 0.55 0.49 

n=10 0.58 0.56 

n=20 0.59 0.59 

n=50 0.60 0.61 

n=100 0.60 0.61 

n=200 0.61 0.61 

We found asymptotically the perfect correspondence of the mean values (11) / N for 

the braid group and the "locally free group with the errors" for Perr = k. However 

the variance Var(p.) for the random walk on the group £r:.rr has the following scaling 

behavior 
Var(JL) "'oJ N 2v(n} (30) 

with ~ < v(n) < 1. The growth of the variance for the group £:p;'rr we explain by the 

additional randomness produced by the "errors" . 

Thus we put forward the following conjecture: 

Conjecture. The number of nonequivalent primitive words Vnbraid(JL) of length 11 in the 

braid group B n can be estimated as follows 

(31)
 

where Vn(JL, d = 2, Perr) is the number of all distinct primitive words of length 11 in 

the locally free group £Fn(2) "with errors" (we allow to commute the neighboring 

generators with the probability Perr ~ k) and the averaging is performed over the uniform 

probability distribution of "errors". 

The mean number of different primitive words of length p. in t~he group £;::r we 

compute analytically in the forthcomming paper while below we present the main outline 

of these calculations. ~ 

14 



--

It is easy to understand that the number of nonequivalent primitive words V,,(Il, d = 
2, PerT) in the "locally free group with errors" can be calculated by means of averaging 

of Eq.(21) if we change slightly the matrix Tn replacing it by the random matrix t:rT: 

erT (32)t = n 

14 i ... 12 13 In11 In-l 

11 1 10 1 Ii •••11 
1 1 { III ...10 I 1 I

! 1 

! I 

12 
1 ... 1~0 0 0 113 

1 10 0 10 ii ...14 
I 
I

0 I •••0 0 0 0 1In-l 
i0 0 0 0 ! ••• 1 0In 

where above the diagonal we put everywhere "1" and below diagonal we have 1 subdi

agonal filled by "1" or by "0" with probabilities 1 - PerT and Perr correspondingly; in all 

other places we have "0". 

Thus, we arrive at the following final expression for the value (Vn(fL, d = 2,Perr)) 

IJ tI (JL - I)!
(Vn(fL, d = 2,PerT)) = 2n +L 2 ( _ )'( _ )' (~(s, d)) (33) 

..=1 S 1. fL s. 

where (...) means the averaging over "the errors" with the distribution function of 

general form 

(0 ~ a < 1) For j E [1, n] 

Let us mention that our arguments dealing with the words enumeration in the braid 

groups are based mainly on physical speculations supported by numerical simulations. 

The situation concerning the rigorous estimation of quantity vn
braid(ll) is as follows: from 

above V:raid(JL) is bounded by the quantity Vn (fL, d = 2) while the lower boundary is 

supposed to be (Vn(fL,d = 2,Perr)). The proof of this last inequality will be published 

separately. 

Discussion 

1. The problem of the random walk on the braid group En is investigated numerically 

and the expectation values for the mean value and the variance of the primitive word 

are compared to the same values of the random walk on the locally free group £Fn • 

15 
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2. The problem of random walk on the group l:Fn is considered analytically in two 

different ways: (i) using the direct aproach dealing with "dynamics" of the words con

traction in course of developing of the Markov chain on the locally free group, and (ii) 
by means of enumeration of all nonequivalent words of given length in the locally free 

group. It has been found that the dynamical consideration gives the results which be

ing in perfect agreement with our numerical simulations, are in contradiction with the 

answers obtained by means of statistical approach. This conflict is partially resolved in 

Appendix B and is explained by the nonuniform structure of the graph corresponding 

to the locally free group. We believe that the discrepancy between statistical and "dy

namical" approaches found here has the same origin as in the conventional disordered 

systems: some very unprobable configurations give the non-negligible contribution to 

the partition function. 

3. We propose a statistical method for the enumeration of the primitive words in the 

braid group Bn based on the consideration of "locally free groups with errors". The 

results of numerical simulations for the mean length of the primitive path of the random 

walk on the braid group and on the corresponding "locally free group with errors" are 

in very good agreement. 

4. We are going to apply the computations of the entropy of entangled directed random 

walks performed in the present work for investigation of the ordering nematic-type phase 

transition in the bunch of entangled directed polymers under applying of external field. 

We suppose to pay the main attention to construction of the simple mean-field Flory-type 

theory of interacting braided random walks with nonabelian topology in 1+1 dimensions. 

5. We believe that the problem of discovering of the integrable models associated with 

the proposed locally free groups and developing of the corresponding eFT could help to 

establish the bridge between statistics of random walks on the noncommutative groups, 

spectral theory on multiconnected Riemann surfaces and topological field theory. 
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Appendix A 

To calculate the eigenvalues of the matrix Tn == Tn(d = 2) one has to solve the standard 

equation 

det [Tn - ,\En]= 0 (A.l) 

where En is the unit n x n matrix. 

Introduce minors An('\) and Bn('\) of the composite matrix Tn - '\En as follows 

-,\ 1 1 111 

1 -,\ 1 1 -,\ 1 
(A.2) 

o 1-,\ o 1-,\ 

Denote by an (,\) and bn(,\) the determinants of matrices An(,\) and Bn(,\): 

an (,\) = det [A('\)] ; (A.3) 

~ow we can easily write down the set of recursion relations for ak (,\) and bk('\) 

(Osksn) 

ak('\) = -'\ak-I (,\) - bk- I (,\) 

bk- I (,\) = ak-2('\) - bk- 2(,\) 
(AA) 

ak=I('\) = -,\ 
bk=I('\) = 1 

The solution of Eqs.(AA) is
 

( ') _ ,\ + P2 k + ,\ + PI k
 
ak A - - PI P2 (A.s)

Pl - P2 PI - P2 

where 

Pl,2 = ~ (-1- >. ± iJ(3 - >')(1 +>')) (A.6) 

Taking into account the relation det Tn(A) = an('\), we can rewrite the equation for 

eigenvalues (Eq.(A.l)) in simplified form 

(A.7)
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The solution of Eq.(A.7) is very straightforward 

-A} V/(3 - A)(1 + A)
tan n arctan --, = - , (A.8)

I+A A-I 

For n -. 00 we get A:ar = 3. To find the highest eigenvalue A::,ar of matrix Tn for 

large (n » 1) but finite n let us search the solution in the form 

{ Ifd 

(A.9)
 

Substituting (A.9) into (A.8) we find the expression for A:aar in terms of power series 

where we calculated two first terms of expansion: Cl = 0 and C2 = -47("2. 

The eigenvalues of the matrix Tn ( d = 3) can be calculated in the same way as of 

matrix Tn ( d = 3), although the computations are more tedious. 

We complete this appendix drawing the distribution af all eigenvalues of the matrices 

Tn(d = 2) and Tn(d = 3) for n = 300 in the complex plain. The corresponding results 

are shown in Fig.2a,b for d = 2 and d = 3 correspondingly. 

The following question seems to be very ~nteresting: whether it is possible to find the 

statistical model whose partition function has zeros distributed as it is shown in Fig.2. 

We can slightly modify the definition of the locally free group supposing that the 

new group depends on two parameters, C and d (0 < C < d - 1), and the commutation 

relations are as follows: 

(a) Each pair (/j, Ik) generates the free subgroup of the group if c < Ii - kI < d; 

The methods developed for the locally free group can be easily extended to the 

problem of primitive words enumeration for this new group. The only modification 

18
 



concerns the structure of the matrix Tn ( c, d). For instance, for c = 1 and d = 3 we have 

II 12 13 ' 14 ... In-I In 

II 0 1 1 1 ... 1 1 

12 0 0 1 1 ... 1 1 

13 1 0 0 1 ... 1 1 

14 0 1 0 0 ... 1 1 

: 

In-l 0 0 0 ! 0 ... 0 1 

In 0 0 0 0 ... 0 0 

The distribution of eigenvalues of the matrix Tn(c = 1, d = 3) on the complex plane is 

shown in Fig.2c. 
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Appendix B 

The computations of the expectation values for the random walk on the graph of the 

group {'Fn based on the exact enumeration of all primitive words imply (unevidently) 

the supposition that this target graph is symmetric. In other words, we supposed, 

without saying that clearly, that the number of JL-Ietter primitive words finishing by the 

generator with the number i is independent (or, at last, weakly dependent) on i. Only 

under such supposition the expectation values for the random walk on the graph can be 

computed on the basis of effective coordinational number z == q(d) + 1 (see Eq.(22)). 

However, as it is shown below, only a small fraction of generators contribute to the 

main part of graph vertices. We can simply elucidate that computing the "correlation 

function" Gn ( ild) which represents the portion of the primitive words of length JL (1£ --+ 

00) starting with arbitrary letter and ending with the letter i (i E [1, n]). We have: 

(B.1) 

where 

(B.2) 

and 

o 
1 t- ~ 

o (B.3)Yin == ( 1 1 ... 1 ) 

o 

(compare to Eqs.( 18)-(21)). It is obvious that the following normalization condition is 

fulfilled: 

Vn(JL, d) == L
n 

Vn(JL, i, d) 
i=l 

The results of calculations of the function Gn(ild) for n == 4,10,20 are shown in the 

Fig.3a-c (d == 2) and for n == 7, 10,20-in the FigAa-c (d == 3). It can be easily seen 

that only about 4 generators (for d == 2) and 7 (for d == 3) give the main contribution to 

the ensemble of all primitive words of given length. Hence, our conjecture is as follows. 
~ 

Conjecture 2. The coordinational number zcor which "governs" the random walk on 

the graph of the group {,:Fn should be extracted from the group £:F4 (d == 2) and from 
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the group £:F7 (d = 3). For these cases the corresponding graphs are almost symmetric, 

i. e. the distribution of words ending by the Ie tter with the number i (i E [1, 4} for d = 2 
and i E [1, 7] for d = 3) is weakly dependent on i. 

The computation of the corresponding effective coordinational number zcor using 

Eq.(22) gives us 

zcor = 6 for d = 2 
(B.4) 

zcor = 10.1 for d = 3 

Of course, our consideration is rather crude and is still not supported by extended 

investigation of the structure of the graph of the locally free group. We believe that 

the mentioned deviations between dynamical and statistical approaches reflect some 

nonergodic properties of random walk on the locally free group. 
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Figure Captions 

Fig.l. Vertices corresponding to the words /2/5 and /5/2 should be glued because they 

represent one and the same word in the group IFn+l'
 

Fig.2. Distribution of eigenvalues of the martices TJ()l(d = 2) (a); T;}{H(d = 3) (b) and
 

T30l (C = I,d = 3) (c) on the complex plane.
 

Fig.3. Plot of the function Gn(ild) for d = 2 and n = 4 (a); n = 10 (b) and n = 20 (c). 

Fig.4. Plot of the function Gn(i/d) for d = 3 and n = 7 (a); n = 10 (b) and n = 20 (c). 
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