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Many large-scale engineering and scientific calculations involve repeated updating of 
variables on an unstructured mesh. To do these types of computations on distributed 
memory parallel computers, it is necessary to partition the mesh among the processors 
so that load balance is maximized and inter-processor communication time is minimized. 
This can be approximated by the problem of partitioning a graph so as to obtain a 
minimum cut, a well-studied combinatorial optimization problem. Graph partitioning is 
NP complete, so for real world applications, one resorts to heuristics, i.e., algorithms that 
give good but not necessarily optimum solutions. These algorithms include local search 
methods such as Kernighan-Lin, recursive spectral bisection, and more general purpose 
methods such as simulated annealing. We show that a general procedure enables us to 
combine simulated annealing with Kernighan-Lin. The resulting algorithm is both very 
fast and extremely effective. 
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Abstract 

Many large-scale engineering and scientific calculations involve repeated updating of vari
ables on an unstructured mesh. To do these types of computations on distributed memory 
parallel computers, it is necessary to partition the mesh among the processors so that the 
load balance is maximized and inter-processor communication time is minimized. This can be 
approximated by the problem of partitioning a graph so as to obtain a minimum cut, a well
studied combinatorial optimization problem. Graph partitioning is NP complete, so for real 
world applications, one resorts to heuristics, i.e., algorithms that give good but not necessar
ily optimum solutions. These algorithms include local search methods such as Kernighan-Lin, 
recursive spectral bisection, and more general purpose methods such as simulated anneal
ing. We show that a general procedure enables us to combine simulating annealing with 
Kernighan-Lin. The resulting algorithm is both very fast and extremely effective. 

Introduction 

Consider an unoriented graph G=(V,E), Le., a collection of vertices Vi, i = 1, ...N, and edges 
Ei,j (Ei,i joins vertices Vi and Vj). The graph partitioning problem (GPP) consists of finding a 
partition of V into k subsets of specified sizes so that the number of "cut" edges is minimized. An 
edge Ei,j is cut if i and j belong to different subsets. The GPP has many practical applications. 
It was used to segment program text [1], and is a major ingredient in the problem of cell 
placement for VLSI [2, 3]. The application of interest for this paper is the partitioning of 
unstructured meshes used in scientific and engineering -problems. -The computations p-erforined 
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on these meshes demand vast amounts of computer power, so that an efficient implementation 
using parallel computation is thus a great advantage. Parallel implementations on distributed
memory computers require the partitioning of the mesh amongst the processors, thereby leading 
to a graph partitioning problem where G=(V,E) is given directly by the mesh [4, 5, 6, 7, 8]. 

Model the parallel computation as consisting of updates to variables located at the vertices 
of G, with data dependences between the variables given by the edges, E, of G. We have in 
mind an iterative solver of a PDE, such as simple relaxation or conjugate gradient, for which the 
dominant computational cost has the structure as described. Mapping the computation onto 
a distributed-memory parallel computer leads to a k-way graph partitioning problem, where k 
is the number of processors. Load balancing is achieved by appropriately specifying the sizes 0 

each of the k subsets. If the processors are of equal speed, we simply choose equal size subsets. 
Communication overhead is made small by minimizing the number of cut edges. This is a 
simplified version of the mapping problem. Strictly speaking, one should minimize the maximum 
(over the k processors) of the combined communication and computation times. However, in 
practice, one uses the GPP to represent the mapping problem because it is conceptually and 
computationally more tractable, and because it is thought to give adequate solutions in most 
cases of interest. 

In what follows, we quickly summarize a number of solution methods for the GPP, and 
stress particularly the heuristic champion, the Kernighan-Lin local search algorithm [9]. After 
this, we explain our method of combining local search methods, such as Kernighan-Lin, with 
simulated annealing. This methodology, which we call chained local optimization (C-L-O), is a 
very general one. It can be applied to many optimization problems and is quite effective. The 
paper goes on to compare C-L-O against other effective heuristics [10, 4], for both synthetically 
generated graphs and for graphs from real-world unstructured meshes. Finally, we describe the 
implementation of the C-L-O algorithm on a parallel network of workstations running PVM 
[11, 12]. 

Graph Partitioning Heuristics 

Since the GPP is NP-complete, it comes as no surprise that exact methods are slow. An integer 
linear programming formulation of the GPP has recently been given by Barahona [13]. Since 
real applications have very large meshes, in practice it is necessary to take a heuristic approach. 
Two important, general-purpose heuristics are simulated annealing [14], and a variable depth, 
local search originally due to Kernighan and Lin [9, 15], which we will call Kernighan-Lin (K-L). 
Methods specific to the mapping of unstructured meshes include recursive coordinate bisection 
[16], compaction methods [17], and recursive spectral bisection [7, 4]. Williams [18] compares 
some of these methods, and Mansour, Savage, and Wloka give parallel implementations [19, 20]. 

For the partitioning of generic (random) graphs, the "best" heuristics are simulated anneal
ing and K-L. However, for unstructured meshes, K-L is substantially better than simulating 
annealing, and is also much faster [10]. Nevertheless, it is necessary to enhance K-L for it to 
be competitive with special purpose methods such as recursive spectral bisection. K-L is used 
within our algorithm, C-L-O, so we give a description and some enhancements for unstructured
meshes. 
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The Kernighan-Lin Local Search 

It is easiest to describe K- L for k = 2 and equal sized partitions, so we restrict the explanation 
to that case. To deal with k-way partitions, one successively applies the algorithm described 
below to each pair of subsets chosen among the k subsets, until no improvement is found. It is 
also be readily seen how to extend to the case of unequal sized partitions. 

Let A and B be two disjoint subsets of G, of size N /2 where N is the number of vertices 
of the graph. Define a I-exchange to be an exchange of one element of A with an element of 
B. Suppose one repeatedly applies I-exchanges that decrease the cut size until no more such 
I-exchanges can be found. The configuration is then termed to be I-optimal, or I-opt for short. 
An iterative procedure that strictly reduces the cut size at each step is an example of a local 
search method. 

It turns out that I-opt is a mediocre algorithm, and that going to higher n-opt (i.e., looking at 
all possible n-exchanges) is very costly and does not lead to much improvement. The Kernighan
Lin (K-L) algorithm [9] is a variable, n-exchange algorithm that is much more effective than 
either I-opt or 2-opt while being quite fast. "Variable" n means that some n-exchanges for n 
large are done, but not necessarily all of them. K-L is essentially a greedy, tabu, I-exchange 
sweep through all the members of sets A and B: at each step, one exchanges the most favorable 
(or least unfavorable) pair of elements. During the sweep, if one element has already been 
exchanged, it can no longer be considered (it is "tabu") for further exchange during that sweep. 
Throughout the sweep, one monitors how the cut size changes. If the cut size does not decrease 
anywhere in the sweep, the partition is defined to be K-L-optimal. IT it does decrease, one takes 
the partition with the lowest cut found during the sweep and uses that as the starting point 
for another sweep. The cut size is a decreasing function of sweep number, and one in general 
reaches a locally optimal partition in just a few sweeps. 

For sparse graphs, K-L is fast, requiring O(Nln(N)) operations per sweep. As shown by 
Johnson et al., it is much faster than simulated annealing, and also gives smaller cut sizes [10]. 
However, K-L gives erratic results from run to run. In particular, for unstructured meshes, it 
is beaten by the recursive spectral bisection and coordinate bisection methods. Thus, for such 
graphs, it is necessary to run K-L many times from different random starts or to find ways to 
enhance K-L. 

Enhancements to Kernighan-Lin for Unstructured Meshes 

There are two commonly used approaches for improving K-L. The first, called compaction [17], 
consists of contracting the graph by merging nearby vertices, partitioning the smaller graph via 
K-L, undoing the merging procedure, and reapplying K-L. This approach, if used on multiple 
levels in a hierarchical manner, is well suited to unstructured meshes. The second approach 
consists of using something besides a random starting partition for the K-L. A simple, yet 
effective, starting partition can be obtained by coordinate bisection [16]. Since the coordinate
bisection of two-dimensional meshes uses a dividing line with a random orientation, the algorithm 
is named L-K-L for "Line K-L" [10]. L-K-L gives as good results as a hierarchical compaction 
approach but is simpler and is more effective than shnulat~d annealing or K-L from random 
starts. In view of this, we restrict ourselves to presenting comparisons of our algorithm, C-L-O, 
to L-K-L only. 
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3 Chained Local Optimization 

Martin, Otto and Felten [21] introduced a new meta-heuristic for optimization by combining local 
search methods with simulated annealing. The important realization is that simulated annealing 
needlessly explores all configurations. For most optimization problems, there are local search 
methods that quickly give good approximate solutions. By a simple generalization, we force 
simulated annealing to sample only locally optimal configurations. The resulting algorithm is 
termed "Chained Local Optimization" (C-L-O). It is a general purpose algorithm that improves 
upon both simulated annealing and local search methods (it necessarily beats local search, since 
it incorporates local search in the inner-most loop of the algorithm). We did [21, 22] an in 
depth study of C- L-O for the traveling salesperson problem, and found that it surpassed by 
a wide margin Lin- Kernighan, the best heuristic for that combinatorial optimization problem 
since 1973. More generally, as discussed by Martin and Otto [23], C-L-O should perform well 
on a wide class of problems which includes the GPP. For the purpose of this paper, important 
features of C-L-O include the following. 

•	 It is general purpose, so it can be applied to general graphs. On the contrary, the com
paction and L-K-L methods only work well on graphs with spatial structure. 

•	 It out-performs L-K-L. 

•	 It out-performs mesh-mapping-specific methods. 

•	 The method incorporates the good aspects of both simulated annealing and K- L. 

C-L-O for the GPP proceeds as follows. Suppose the partition is currently locally optimal 
(e.g., K-L-opt). This is labeled Start in Fig 1. Now apply a "kick" (an n-exchange with n not 
too small) to this partition so as to significantly change the character of Start. After the kick, 
we reach the configuration labeled Intermediate in the figure. Standard simulated annealing 
would impose the accept / reject procedure to Intermediate. Instead, we notice that it is much 
better to first improve Intermediate by a local search and apply the accept / reject test only 
afterwards. The local search takes us from Intermediate to the partition labeled Trial in Fig 1. 
Now apply the accept / reject test. If Trial is accepted, we have managed to find an interesting 
large change to Start. If Trial is rejected, we return to Start. The iteration, or chaining, of this 
process is the C-L-O method. Since the partition often changes dramatically in going from Start 
to Trial, the method behaves as a simulated annealing algorithm with very large steps from one 
configuration to the next. 

C-L-O is much more effective than simulated annealing - as we've emphasized, the accept 
/ reject step is only applied after the partition is returned to a local minimum. Many of the 
barriers (the "ridges") of the cost landscape are jumped over in one step by the C-L-O algorithm. 
Effectively, these barriers are smoothed or eliminated from the landscape. Simulated annealing, 
by contrast, must climb over each of these ridges in a series of steps, passing the accept / reject 
test many times, so that trapping is much more likely. Though C-L-O has the character of 
simulated annealing, for example one has a parametel' that plays a siIIlilar role tothe "temper
ature" of simulated annealing, C-L-O is outside the class of simulated annealing algorithms: A
symmetry property known as detailed balance is violated by C-L-O and this means that it does 
not correspond to the true "annealing" of some "physical" system [21]. 

4 



4 

Trial 

Intermediate 

----------- .... ..... ..... ..... ..... ...... 
......... ...... 

........., .. 
, ...., 

\,,,,,,,,,
I 
I, 

Start 
Cut Size 

Space ofPartitions 

Figure 1: Schematic representation of the objective function and of the partition modification 
procedure used in chained local optimization. 

To implement C-L-O for an arbitrary combinatorial optimization problem, one requires two 
things: a good local search heuristic, and a choice for the kick adapted to the optimization 
problem. In the case of the GPP, the first requirement is met by the Kernighan-Lin local search. 
To obtain an appropriate kick, notice that K-L generates partitions with many "islands", Le., 
the subsets A and B usually end up being highly fragmented. It is this bad behavior that 
renders K-L uncompetitive against mesh-mapping-specific methods for these types of graphs. 
The fragmentation suggests a kick which exchanges vertices between the islands and motivates 
the following procedure for generating a kick. First, in each subset A and B, randomly choose 
a vertex that belongs to a cut edge. These two vertices will be seeds. Let X and Y be the set 
of vertices in A and B that will be exchanged by the kick. X and Yare generated by growing 
a cluster around each seed: one adds to each cluster vertices that belong to the "other" subset 
but that are connected to the current cluster. The size of X and Y is chosen randomly ahead of 
time, but if one cluster can no longer grow (as happens when the seed is inside an island), then 
the cluster growth is stopped and one takes that as the kick. As shown in the next sections, 
the overall procedure gives rise to dramatically better partitions for unstructured meshes, but 
it also works extremely well for more general graphs. 

Performance on "Geometric" Graphs 

A good graph partitioning algorithm for one type of graph may not be good for another. In 
particular, the compaction and line algorithms discussed at the end of section 2 are good only for 
a special. class of graphs. This makes it clear that the choice of algorithm should be motivated 
by the application. The graphs obtained from mesh-mapping problems are- generally sparse 
and have a built-in spatial structure. In Section 5, we shall consider graphs associated with 
unstructured meshes, but we also wish to benchmark our algorithm on a more homogeneous 
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Figure 2: A geometric graph with N = 500 vertices and d = 10. 

ensemble of graphs that can be generated randomly. Choose the graphs of this ensemble to 
be sparse and have spatial structure. For these graphs, hereafter called geometric graphs, the 
vertices are laid at random inside the unit square; two vertices are connected if and only if they 
are at a distance less than R (see figure 2). As R increases, the connectivity as measured by d, 
the average degree of a vertex, increases. Neglecting edge effects, one has, on average, 

(1) 

Johnson et al. did a thorough comparison of several algorithms and concluded that for such 
geometric graphs, K-L from random starts was better than simulated annealing, but that the 
best heuristic was L-K-L [10]. 

We first compare the performance of C-L-O with K-L from random starts. Figure 3 contains 
the results of a run on a geometric graph of N = 1000 and average degree d =6. The histogram 
gives the distribution of cut sizes encountered for 1000 K-L's from random start and those for 
one run of C-L-O for 1020 steps, the first 20 being omitted from the histogram. The C-L-O 
algorithm was run with a temperature of 2.0. Clearly, the C-L-O algorithm is exploring far 
better solutions than K-L from random start. 

The reason for the poor results of K-L can be understood by looking at typical partitions: 
they are almost always fragmented as mentioned in section 3. Better results would be obtained by 
simply partitioning the vertices according to their coordinates, Le., by using coordinate bisection 
[16]. For geometric graphs, this bisection can be obtained by choosing a random -direction in 
space and partitioning the graph by a line parallel to this direction; this corresponds to the line 
algorithm discussed in section 2. Clearly that procedure gives rise to cut sizes that scale as .../N 
for geometric graphs. Its performance can be calculated analytically: for instance, for a vertical 
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Figure 3: Histogram of solution values for a geometric graph with d = 6, N = 1000. The x-axis 
corresponds to cut size and the y-axis corresponds to the number of times each cut size was 
found. The data is for 1000 K-Ls from random starts, and for 1000 steps of a single C-L-O run.i 
The highest bin of the C-L-O is off-scale by a factor of two. 

or horizontal line, the line algorithm gives 

(cut size) = ~..;N( t!..)3/2. (2)
3 1r 

On the contrary, because K-L from random starts leads to fragmented partitions, it gives cut 
sizes that scale as N. It might be argued that by running K-L many times one could get much 
better results. However, since geometric graphs are extended in space, the central limit theorem 
suggests that the distribution of K-L cut sizes will tend towards a Gaussian of width Vii centered 
on its mean (proportional to N). Thus as N - 00, it becomes hopeless to use K-L to get cut 
sizes on the order of Vii, More generally, the argument can be used to show that as N -+ 00, 

the performance of an algorithm is characterized by the average cut size it leads to; it is thus 
more efficient to improve an algorithm than to use it for multiple runs when N becomes large. 

We now report on the performance of two algorithms, L-K-L, the Kernighan-Lin algorithm 
with a line start, and C-L-O. For C-L-O, it is necessary to specify what to do with the temper
ature. For simplicity, we consider runs where T has been set to 0 (zero temperature quenches); 
we have also done runs where the temperature was fixed or followed an exponential annealing 
schedule, but the results were not significantly different from the T = 0 runs. We have chosen 
T = 0 because it has the advantage of corresponding to a parameter-free schedule. 

What is the dependence of the min cut size on both Nand d? For "small" values of d, the 
min cut is generally very small and nearly N independent, because the connectivity is very low. 
Indeed if d is sufficiently small, the graph becomes disconnected, and it is often possible to :find 
a zero cut partition. As d increases up to about 5, min cut sizes are on the order of 1,2, or 3 as 
would be the case if one had a tree graph. Finally, asd increases further, the min cut crosses··· 
over to a Vii scaling law. The graphs obtained from unstructured mesh problems belong to 
this latter regime. We present results for d =6 and for d = 10: we chose d =6 because it is the 
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average degree of two-dimensional unstructured meshes (c.f. the instances investigated in the 
next section), and d =10 because Johnson et al. gave previous results for this case. 

We begin with the case d = 6. Before using the IN scaling law to compare performance, 
we give explicit results as a function of N for illustrative purposes. Five instances of random, 
geometric graphs were generated for several choices of the number of vertices: N =100,250,500, 
and 1000. For each instance, we ran L-K-L 2000 times, and we ran C-L-O 20 times, each run 
consisting of 100 kick/K-L steps. From the 2000 L-K-L data points, we followed the method 
described in [10] to derive the distribution of the best cut found in 100 independent trials. 
The mean was then compared with the corresponding mean of the best found in each of the 
20 C-L-O runs. Both algorithms (one run of 100 steps of C-L-O and 100 L-K-Ls) use about 
the same amount of CPU time. The results are presented in Table 1, along with the average 
L-K-L performances for completeness. One does not know for sure the exact minimum, but for 
reference, we have also given the best cut ever found by any of the algorithms. For N = 100, 
the best cut ever found was always obtained by each algorithm and thus most likely corresponds 
to the true optimum. N = 100 corresponds to "easy" problems, so we have omitted those data 
from the table. For N = 250, 2000 L-K-Ls was not enough to find the best ever for 3 of the 5 
graphs, and for the larger values of N, L-K-L was never able to find the best ever. C-L-O, on the 
other hand, finds (for 100 steps) the best ever multiple times among the 20 runs N = 250,500 
and 1000. 

For large N, the performance of the algorithms can be characterized by the factor C in the 
formula (cut size) =c,;N. Using additional data for d =6, we find the C corresponding to 100 
L-K-Ls to be ClOO-L-K-L = 0.381 and CC-L-O = 0.356 for the T = 0 quenches. In practice, 
our quenches were run for 100 kicks, so the quoted result is higher than the value for infinitely 
long runs. As it stands, 100-L-K-L leads to cut sizes about 7% larger than C-L-O. 

The same methodology was used to study graphs with d = 10. Again, C-L-O beats L-K-L 
for a given amount of computer time. We find C1OO-L-K-L = 1.54, and CC-L-O = 1.50. We 
observe that as the graphs become more dense, the advantage of C-L-O sets in at progressively 
larger values of N. This makes sense, because as d increases for geometric graphs, the optimum 
cut becomes straight and the L-K-L algorithm has an easier time finding it. 

In summary, L-K-L is superior to K-L for geometric graphs and, in particular, gives the 
correct scaling in ,;N. However, it is surpassed by C-L-O for both sparse and dense geometric 
graphs, even though we have not fine-tuned the kick or the temperature in C-L-O. One should 
also keep in mind that the C-1-0 approach is not limited to graphs with spatial structure, and 
indeed leads to good results for random graphs. The line initialization is not possible for such 
graphs, nor is compaction of much use. 

Performance on unstructured meshes 

Barnard and Simon [4] studied recursive spectral bisection on several unstructured meshes that 
arise in mesh-mapping problems. Tills section benchmarks L-K-L and C-1-0 on these same 
problems provided by H. Simon. The main differences with the ensemble of geometric graphs 
used in the previous section are that these meshes form planar graphs and have an average degree 
that is very close to 6. The lack of variance in the degree of vertices makes these problems easier 
to solve both for L-K-L and C-L-O. 
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Cut Size for Five, N =250 Graphs 
Algorithm 

L-K-L 11.6 13.7 9.6 10.8 13.8 
100-L-K-L 4.4 6.0 3.2 4.0 9.5 
C-L-O 4.0 6.0 2.3 4.0 8.9 
Best Found 4 5 2 4 7 

Cut Size for Five, N =500 Graphs 
Algorithm 

L-K-L 21.0 16.4 15.4 22.2 18.4 
100-L-K-L 12.0 7.0 5.1 10.2 10.6 
C-L-O 11.8 4.8 5.0 10.0 7.1 
Best Found 9 3 4 8 5 

Cut Size for Five, N =1000 Graphs 
Algorithm 

L-K-L 26.8 25.1 29.5 23.8 26.6 
100-L-K-L 13.1 10.0 14.2 10.2 13.7 
C-L-O 12.4 7.6 14.6 7.4 13.2 
Best Found 8 5 11 5 10 

Table 1: Average performance on 15 random geometric graphs of d = 6. There are five graphs 
each for N = 250,500, and 1000. For algorithm L-K-L, the value in the table shows the a.verage 
over 2,000 runs of L-K-L from random starts. For algorithm 100-L-K-L, L-K-L was run 100 times 
from random starts and the best value was taken. The result shown in the table is the average 
value of that best, when this procedure is done many times. For algorithm C-L-O, the value in 
the table is the average over 20 runs of C-L-O, each of length 100 steps. The temperature of 
the C-L-O runs was set to zero. The values under Best Found are the min over all the previous 
procedures - this was always found among the 20 runs of C-L-O. 

The four meshes have the names: Spiral (1200), Parc (1240), Hammond (4720), and Barth5 
(15606), where the number of vertices of each mesh is indicated in parentheses. In comparing 
various algorithms, we need not consider simulated annealing since it has been shown that K-L 
performs better than S-A on such sparse graphs [10]. We consider the four gra.phs in turn. 

Spiral has the geometry of a spiral, so the use of the line algorithm (Le., coordinate bisection) 
leads to a fragmented partition. One thus might expect L-K-L to perform poorly, but the fact is 
that the number of vertices is sufficiently small for K-L (and thus L-K-L) to give good results. 
The average cut-size for L-K-L is given by (cut size}L-K-L = 15.4, and it finds the best ever 
(of cut size 9) 47% of the time. The repeated use of L- K-L improves this result of course, so 
that with 100 trials, one is virtually certain to hit the best ever: (cut sizehoo-L-K-L =9.0. For 
C-L-O, we did 20 runs of 100 steps as in section 4, and found also (cut size}c-L_o =9.0. (The 
best ever is found in all the C-L- 0 runs.) These results lead us to believe that the best ever is 
the optimum. 

The second mesh, Parc, is a triangulation of variable density. Again the two heuristics solve 
this instance rather easily. We find (cut size}L-K-L = 34.1, (cut sizehoo-L-K-L = 21.1, and 
(cut size}c-L-o = 21.0 with the same run parameters as before. L-K-L hits the best ever cut 
(21) with probability 0.036, and again C-L-O finds this best ever in all 20 runs. 
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The last two meshes correspond to airfoil problems. The smallest problem, Hammond, is still 
rather easy to solve. All C-L-O runs found the best cut ever, of size 90. L-K-L found this cut 
with probability 0.28, and give an average cut size of 116.4. With 100 L-K-L's, one is virtually 
certain to find the best cut. Spectral bisection got a cut size of 117. 

For Barth5, we find (cut size)L-K-L = 197.1, (cut sizehoo-L-K-L = 139.2, and 
(cut size)c-L-o = 139.25 for runs of 100 steps. The best cut ever was 139: L-K-L found it 
with probability 0.016, and C-L-O found it in 15 of the 20 runs. For this instance, spectral 
bisection gives a cut size of 164. 

It is fair to conclude that these types of meshes are solved rather easily, either by L-K-L 
using multiple tries, or by C-L-O. Not surprisingly, the larger meshes become more difficult. 
Note that both algorithms incorporate K-L, a general-purpose graph partitioning method. If we 
compare them to the mapping problem-specific methods (coordinate or spectral bisection), it is 
clear that those methods are inferior. The key is to use K-L as a post-processor. Then, almost 
any method will become competitive, as illustrated by coordinate bisection's performance when 
transformed into L-K-L. What about using K-L as a post-processor to spectral bisection? We 
expect the performance will be improved significantly, but the limitation is that the starting 
point for K-L is fixed - there is no randomization. 

Parallel C-L-O 

Most local search methods for the GPP do not paralle1ize well, mainly because the constraint 
of maintaining a feasible solution is not readily implemented in parallel. Thus, we only consider 
implementations where a given processor has a complete configuration in local memory. We 
work in the framework of a distributed-memory architecture and have implemented the codes 
on a network of workstations under PVM [11, 12]. 

The simplest way to parallelize chained local optimization is to have each processor run 
independent C-L-O chains. This is equivalent to running multiple random starts on a single 
processor. If we have P processors, at any given time we have a population of at least P 
configurations. However, independent runs are not best because one should be able to use the 
mutual information available in the current population. Thus, we have implemented branching 
and pruning among the configurations on the different processors. This is called Darwinian 
selection for genetic algorithms and diffusion Monte Carlo in physics. In a branching step, 
the best configurations are duplicated in the population while in pruning, the worst ones are 
eliminated. Branching and pruning events occur relatively rarely (as measured in cpu time) 
so very little time is spent on communication, leading to an efficient parallel algorithm. In 
our implementation, we run for a certain time interval, find the configuration with the best 
cut, and then apply a winner-take-all selection strategy. Note that two processors may contain 
copies of the same configuration, but they go through distinct random number sequences and 
so they perform independent searches. The GP code runs both on uniprocessor systems and on 
heterogeneous computing environments using PVM. All machines are used to near maximum 
capacity, and parallel speed-up (at least for tens of workstations) is near-linear. This is simply 
because communications are done rarely. 
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7 Discussion and conclusion 

Many algorithms have been proposed for partitioning unstructured meshes for the mapping 
problem. The standard, general-purpose algorithms, simulated annealing and local search (in
cluding K- L), do rather poorly. This has stimulated the development of special purpose methods 
such as coordinate or spectral bisection and graph compaction. In this paper, we showed how a 
general-purpose approach to combinatorial optimization could be successfully adapted to graph 
partitioning. As shown in sections 4 and 5, the C-L-O algorithm beats special-purpose meth
ods. It also beats the hybrid method, L-K-L, on geometric graphs, while being as good on 
unstructured meshes. This performance was achieved without any parameter fine-tuning (the 
temperature was set to zero, and no effort was made to improve the kick). C-L-O has several 
advantages over L-K-L: (i) it works for more general graphs; (ii) it is easily generalized to k-way 
partitions without resorting to recursive bisection (not limited to k a power of 2); (iii) it can 
handle unequal partition sizes (important for mapping onto heterogeneous processors). We plan 
to extend the C-L-O graph partitioning to full k-way partitioning in future work. 
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