
I •

~,
•
.

\~
~~

<, Partitioning of Unstructured Meshes for Load
j

Balancing~

Olivier C. Martin
"\ Division de Physique Theorique*, Institut de Physique NucIeaire,

II Orsay CEDEX 91406 France OtV: J
 • 1',,:.) ,:

and -"-'-'J) -" (!

Steve W. Otto
Department of Computer Science and Engineering

Oregon Graduate Institute of Science & Technol~y ,.r

20000 NW Walker Rd, PO Box 91000 « ~
>­Portland, Oregon, USA 97291-1000J a:

----<" ,I ­ <t. ! I OrejD n 6)rodo Ct fe., Lr)<;.f. Sc;. [;(~ (C

-COw
Abstract u.. ..J

Many large-scale engineering and scientific calculations involve repeated updating of
variables on an unstructured mesh. To do these types of computations on distributed
memory parallel computers, it is necessary to partition the mesh among the processors
so that load balance is maximized and inter-processor communication time is minimized.
This can be approximated by the problem of partitioning a graph so as to obtain a
minimum cut, a well-studied combinatorial optimization problem. Graph partitioning is
NP complete, so for real world applications, one resorts to heuristics, i.e., algorithms that
give good but not necessarily optimum solutions. These algorithms include local search
methods such as Kernighan-Lin, recursive spectral bisection, and more general purpose
methods such as simulated annealing. We show that a general procedure enables us to
combine simulated annealing with Kernighan-Lin. The resulting algorithm is both very
fast and extremely effective.

""'" Submitted to Concurrency: Practice and Experience

'" IPNOjTH 94-7 .:s c.onl:. u (' r<' ,,OJ riMi.((: t..;<P€(, ~ January 1994
=

·Unite de Recherche des Universites Paris XI et Paris VI associee au C.N.R.S.

1

1

Partitioning of Unstructured Meshes for Load Balancing *

Olivier C. Martin

Division de Physique Theorique t , Institut de Physique Nucleaire,

Orsay CEDEX 91406 France

martin-n@ipncls.in2p3.fr

and

Steve W. Otto

Department of Computer Science and Engineering

Oregon Graduate Institute of Science & Technology

20000 NW Walker Rd, PO Box 91000

Portland, Oregon, USA 97291-1000

otto@cse.ogi.edu

January 19, 1994

Abstract

Many large-scale engineering and scientific calculations involve repeated updating of vari­
ables on an unstructured mesh. To do these types of computations on distributed memory
parallel computers, it is necessary to partition the mesh among the processors so that the
load balance is maximized and inter-processor communication time is minimized. This can be
approximated by the problem of partitioning a graph so as to obtain a minimum cut, a well­
studied combinatorial optimization problem. Graph partitioning is NP complete, so for real
world applications, one resorts to heuristics, i.e., algorithms that give good but not necessar­
ily optimum solutions. These algorithms include local search methods such as Kernighan-Lin,
recursive spectral bisection, and more general purpose methods such as simulated anneal­
ing. We show that a general procedure enables us to combine simulating annealing with
Kernighan-Lin. The resulting algorithm is both very fast and extremely effective.

Introduction

Consider an unoriented graph G=(V,E), Le., a collection of vertices Vi, i = 1, ...N, and edges
Ei,j (Ei,i joins vertices Vi and Vj). The graph partitioning problem (GPP) consists of finding a
partition of V into k subsets of specified sizes so that the number of "cut" edges is minimized. An
edge Ei,j is cut if i and j belong to different subsets. The GPP has many practical applications.
It was used to segment program text [1], and is a major ingredient in the problem of cell
placement for VLSI [2, 3]. The application of interest for this paper is the partitioning of
unstructured meshes used in scientific and engineering -problems. -The computations p-erforined

·Submitted to Concurrency: Practice and Experience

tUnite de Recherche des Universites Paris XI et Paris VI associee au C.N.R.S.

1

mailto:martin-n@ipncls.in2p3.fr

2

on these meshes demand vast amounts of computer power, so that an efficient implementation
using parallel computation is thus a great advantage. Parallel implementations on distributed­
memory computers require the partitioning of the mesh amongst the processors, thereby leading
to a graph partitioning problem where G=(V,E) is given directly by the mesh [4, 5, 6, 7, 8].

Model the parallel computation as consisting of updates to variables located at the vertices
of G, with data dependences between the variables given by the edges, E, of G. We have in
mind an iterative solver of a PDE, such as simple relaxation or conjugate gradient, for which the
dominant computational cost has the structure as described. Mapping the computation onto
a distributed-memory parallel computer leads to a k-way graph partitioning problem, where k
is the number of processors. Load balancing is achieved by appropriately specifying the sizes 0

each of the k subsets. If the processors are of equal speed, we simply choose equal size subsets.
Communication overhead is made small by minimizing the number of cut edges. This is a
simplified version of the mapping problem. Strictly speaking, one should minimize the maximum
(over the k processors) of the combined communication and computation times. However, in
practice, one uses the GPP to represent the mapping problem because it is conceptually and
computationally more tractable, and because it is thought to give adequate solutions in most
cases of interest.

In what follows, we quickly summarize a number of solution methods for the GPP, and
stress particularly the heuristic champion, the Kernighan-Lin local search algorithm [9]. After
this, we explain our method of combining local search methods, such as Kernighan-Lin, with
simulated annealing. This methodology, which we call chained local optimization (C-L-O), is a
very general one. It can be applied to many optimization problems and is quite effective. The
paper goes on to compare C-L-O against other effective heuristics [10, 4], for both synthetically
generated graphs and for graphs from real-world unstructured meshes. Finally, we describe the
implementation of the C-L-O algorithm on a parallel network of workstations running PVM
[11, 12].

Graph Partitioning Heuristics

Since the GPP is NP-complete, it comes as no surprise that exact methods are slow. An integer
linear programming formulation of the GPP has recently been given by Barahona [13]. Since
real applications have very large meshes, in practice it is necessary to take a heuristic approach.
Two important, general-purpose heuristics are simulated annealing [14], and a variable depth,
local search originally due to Kernighan and Lin [9, 15], which we will call Kernighan-Lin (K-L).
Methods specific to the mapping of unstructured meshes include recursive coordinate bisection
[16], compaction methods [17], and recursive spectral bisection [7, 4]. Williams [18] compares
some of these methods, and Mansour, Savage, and Wloka give parallel implementations [19, 20].

For the partitioning of generic (random) graphs, the "best" heuristics are simulated anneal­
ing and K-L. However, for unstructured meshes, K-L is substantially better than simulating
annealing, and is also much faster [10]. Nevertheless, it is necessary to enhance K-L for it to
be competitive with special purpose methods such as recursive spectral bisection. K-L is used
within our algorithm, C-L-O, so we give a description and some enhancements for unstructured­
meshes.

2

The Kernighan-Lin Local Search

It is easiest to describe K- L for k = 2 and equal sized partitions, so we restrict the explanation
to that case. To deal with k-way partitions, one successively applies the algorithm described
below to each pair of subsets chosen among the k subsets, until no improvement is found. It is
also be readily seen how to extend to the case of unequal sized partitions.

Let A and B be two disjoint subsets of G, of size N /2 where N is the number of vertices
of the graph. Define a I-exchange to be an exchange of one element of A with an element of
B. Suppose one repeatedly applies I-exchanges that decrease the cut size until no more such
I-exchanges can be found. The configuration is then termed to be I-optimal, or I-opt for short.
An iterative procedure that strictly reduces the cut size at each step is an example of a local
search method.

It turns out that I-opt is a mediocre algorithm, and that going to higher n-opt (i.e., looking at
all possible n-exchanges) is very costly and does not lead to much improvement. The Kernighan­
Lin (K-L) algorithm [9] is a variable, n-exchange algorithm that is much more effective than
either I-opt or 2-opt while being quite fast. "Variable" n means that some n-exchanges for n
large are done, but not necessarily all of them. K-L is essentially a greedy, tabu, I-exchange
sweep through all the members of sets A and B: at each step, one exchanges the most favorable
(or least unfavorable) pair of elements. During the sweep, if one element has already been
exchanged, it can no longer be considered (it is "tabu") for further exchange during that sweep.
Throughout the sweep, one monitors how the cut size changes. If the cut size does not decrease
anywhere in the sweep, the partition is defined to be K-L-optimal. IT it does decrease, one takes
the partition with the lowest cut found during the sweep and uses that as the starting point
for another sweep. The cut size is a decreasing function of sweep number, and one in general
reaches a locally optimal partition in just a few sweeps.

For sparse graphs, K-L is fast, requiring O(Nln(N)) operations per sweep. As shown by
Johnson et al., it is much faster than simulated annealing, and also gives smaller cut sizes [10].
However, K-L gives erratic results from run to run. In particular, for unstructured meshes, it
is beaten by the recursive spectral bisection and coordinate bisection methods. Thus, for such
graphs, it is necessary to run K-L many times from different random starts or to find ways to
enhance K-L.

Enhancements to Kernighan-Lin for Unstructured Meshes

There are two commonly used approaches for improving K-L. The first, called compaction [17],
consists of contracting the graph by merging nearby vertices, partitioning the smaller graph via
K-L, undoing the merging procedure, and reapplying K-L. This approach, if used on multiple
levels in a hierarchical manner, is well suited to unstructured meshes. The second approach
consists of using something besides a random starting partition for the K-L. A simple, yet
effective, starting partition can be obtained by coordinate bisection [16]. Since the coordinate­
bisection of two-dimensional meshes uses a dividing line with a random orientation, the algorithm
is named L-K-L for "Line K-L" [10]. L-K-L gives as good results as a hierarchical compaction
approach but is simpler and is more effective than shnulat~d annealing or K-L from random
starts. In view of this, we restrict ourselves to presenting comparisons of our algorithm, C-L-O,
to L-K-L only.

3

3 Chained Local Optimization

Martin, Otto and Felten [21] introduced a new meta-heuristic for optimization by combining local
search methods with simulated annealing. The important realization is that simulated annealing
needlessly explores all configurations. For most optimization problems, there are local search
methods that quickly give good approximate solutions. By a simple generalization, we force
simulated annealing to sample only locally optimal configurations. The resulting algorithm is
termed "Chained Local Optimization" (C-L-O). It is a general purpose algorithm that improves
upon both simulated annealing and local search methods (it necessarily beats local search, since
it incorporates local search in the inner-most loop of the algorithm). We did [21, 22] an in
depth study of C- L-O for the traveling salesperson problem, and found that it surpassed by
a wide margin Lin- Kernighan, the best heuristic for that combinatorial optimization problem
since 1973. More generally, as discussed by Martin and Otto [23], C-L-O should perform well
on a wide class of problems which includes the GPP. For the purpose of this paper, important
features of C-L-O include the following.

•	 It is general purpose, so it can be applied to general graphs. On the contrary, the com­
paction and L-K-L methods only work well on graphs with spatial structure.

•	 It out-performs L-K-L.

•	 It out-performs mesh-mapping-specific methods.

•	 The method incorporates the good aspects of both simulated annealing and K- L.

C-L-O for the GPP proceeds as follows. Suppose the partition is currently locally optimal
(e.g., K-L-opt). This is labeled Start in Fig 1. Now apply a "kick" (an n-exchange with n not
too small) to this partition so as to significantly change the character of Start. After the kick,
we reach the configuration labeled Intermediate in the figure. Standard simulated annealing
would impose the accept / reject procedure to Intermediate. Instead, we notice that it is much
better to first improve Intermediate by a local search and apply the accept / reject test only
afterwards. The local search takes us from Intermediate to the partition labeled Trial in Fig 1.
Now apply the accept / reject test. If Trial is accepted, we have managed to find an interesting
large change to Start. If Trial is rejected, we return to Start. The iteration, or chaining, of this
process is the C-L-O method. Since the partition often changes dramatically in going from Start
to Trial, the method behaves as a simulated annealing algorithm with very large steps from one
configuration to the next.

C-L-O is much more effective than simulated annealing - as we've emphasized, the accept
/ reject step is only applied after the partition is returned to a local minimum. Many of the
barriers (the "ridges") of the cost landscape are jumped over in one step by the C-L-O algorithm.
Effectively, these barriers are smoothed or eliminated from the landscape. Simulated annealing,
by contrast, must climb over each of these ridges in a series of steps, passing the accept / reject
test many times, so that trapping is much more likely. Though C-L-O has the character of
simulated annealing, for example one has a parametel' that plays a siIIlilar role tothe "temper­
ature" of simulated annealing, C-L-O is outside the class of simulated annealing algorithms: A­
symmetry property known as detailed balance is violated by C-L-O and this means that it does
not correspond to the true "annealing" of some "physical" system [21].

4

4

Trial

Intermediate

-----------­
.........

........., ..
,,

\,,,,,,,,,
I
I,

Start
Cut Size

Space ofPartitions

Figure 1: Schematic representation of the objective function and of the partition modification
procedure used in chained local optimization.

To implement C-L-O for an arbitrary combinatorial optimization problem, one requires two
things: a good local search heuristic, and a choice for the kick adapted to the optimization
problem. In the case of the GPP, the first requirement is met by the Kernighan-Lin local search.
To obtain an appropriate kick, notice that K-L generates partitions with many "islands", Le.,
the subsets A and B usually end up being highly fragmented. It is this bad behavior that
renders K-L uncompetitive against mesh-mapping-specific methods for these types of graphs.
The fragmentation suggests a kick which exchanges vertices between the islands and motivates
the following procedure for generating a kick. First, in each subset A and B, randomly choose
a vertex that belongs to a cut edge. These two vertices will be seeds. Let X and Y be the set
of vertices in A and B that will be exchanged by the kick. X and Yare generated by growing
a cluster around each seed: one adds to each cluster vertices that belong to the "other" subset
but that are connected to the current cluster. The size of X and Y is chosen randomly ahead of
time, but if one cluster can no longer grow (as happens when the seed is inside an island), then
the cluster growth is stopped and one takes that as the kick. As shown in the next sections,
the overall procedure gives rise to dramatically better partitions for unstructured meshes, but
it also works extremely well for more general graphs.

Performance on "Geometric" Graphs

A good graph partitioning algorithm for one type of graph may not be good for another. In
particular, the compaction and line algorithms discussed at the end of section 2 are good only for
a special. class of graphs. This makes it clear that the choice of algorithm should be motivated
by the application. The graphs obtained from mesh-mapping problems are- generally sparse
and have a built-in spatial structure. In Section 5, we shall consider graphs associated with
unstructured meshes, but we also wish to benchmark our algorithm on a more homogeneous

5

Figure 2: A geometric graph with N = 500 vertices and d = 10.

ensemble of graphs that can be generated randomly. Choose the graphs of this ensemble to
be sparse and have spatial structure. For these graphs, hereafter called geometric graphs, the
vertices are laid at random inside the unit square; two vertices are connected if and only if they
are at a distance less than R (see figure 2). As R increases, the connectivity as measured by d,
the average degree of a vertex, increases. Neglecting edge effects, one has, on average,

(1)

Johnson et al. did a thorough comparison of several algorithms and concluded that for such
geometric graphs, K-L from random starts was better than simulated annealing, but that the
best heuristic was L-K-L [10].

We first compare the performance of C-L-O with K-L from random starts. Figure 3 contains
the results of a run on a geometric graph of N = 1000 and average degree d =6. The histogram
gives the distribution of cut sizes encountered for 1000 K-L's from random start and those for
one run of C-L-O for 1020 steps, the first 20 being omitted from the histogram. The C-L-O
algorithm was run with a temperature of 2.0. Clearly, the C-L-O algorithm is exploring far
better solutions than K-L from random start.

The reason for the poor results of K-L can be understood by looking at typical partitions:
they are almost always fragmented as mentioned in section 3. Better results would be obtained by
simply partitioning the vertices according to their coordinates, Le., by using coordinate bisection
[16]. For geometric graphs, this bisection can be obtained by choosing a random -direction in
space and partitioning the graph by a line parallel to this direction; this corresponds to the line
algorithm discussed in section 2. Clearly that procedure gives rise to cut sizes that scale as .../N
for geometric graphs. Its performance can be calculated analytically: for instance, for a vertical

6

60 80 100 120 140 160 180 200
K-L

200

180

160

140

120

100

80

60

40

20

0
0 20 40

C-L-Q

Figure 3: Histogram of solution values for a geometric graph with d = 6, N = 1000. The x-axis
corresponds to cut size and the y-axis corresponds to the number of times each cut size was
found. The data is for 1000 K-Ls from random starts, and for 1000 steps of a single C-L-O run.i
The highest bin of the C-L-O is off-scale by a factor of two.

or horizontal line, the line algorithm gives

(cut size) = ~..;N(t!..)3/2. (2)
3 1r

On the contrary, because K-L from random starts leads to fragmented partitions, it gives cut
sizes that scale as N. It might be argued that by running K-L many times one could get much
better results. However, since geometric graphs are extended in space, the central limit theorem
suggests that the distribution of K-L cut sizes will tend towards a Gaussian of width Vii centered
on its mean (proportional to N). Thus as N - 00, it becomes hopeless to use K-L to get cut
sizes on the order of Vii, More generally, the argument can be used to show that as N -+ 00,

the performance of an algorithm is characterized by the average cut size it leads to; it is thus
more efficient to improve an algorithm than to use it for multiple runs when N becomes large.

We now report on the performance of two algorithms, L-K-L, the Kernighan-Lin algorithm
with a line start, and C-L-O. For C-L-O, it is necessary to specify what to do with the temper­
ature. For simplicity, we consider runs where T has been set to 0 (zero temperature quenches);
we have also done runs where the temperature was fixed or followed an exponential annealing
schedule, but the results were not significantly different from the T = 0 runs. We have chosen
T = 0 because it has the advantage of corresponding to a parameter-free schedule.

What is the dependence of the min cut size on both Nand d? For "small" values of d, the
min cut is generally very small and nearly N independent, because the connectivity is very low.
Indeed if d is sufficiently small, the graph becomes disconnected, and it is often possible to :find
a zero cut partition. As d increases up to about 5, min cut sizes are on the order of 1,2, or 3 as
would be the case if one had a tree graph. Finally, asd increases further, the min cut crosses···
over to a Vii scaling law. The graphs obtained from unstructured mesh problems belong to
this latter regime. We present results for d =6 and for d = 10: we chose d =6 because it is the

7

5

average degree of two-dimensional unstructured meshes (c.f. the instances investigated in the
next section), and d =10 because Johnson et al. gave previous results for this case.

We begin with the case d = 6. Before using the IN scaling law to compare performance,
we give explicit results as a function of N for illustrative purposes. Five instances of random,
geometric graphs were generated for several choices of the number of vertices: N =100,250,500,
and 1000. For each instance, we ran L-K-L 2000 times, and we ran C-L-O 20 times, each run
consisting of 100 kick/K-L steps. From the 2000 L-K-L data points, we followed the method
described in [10] to derive the distribution of the best cut found in 100 independent trials.
The mean was then compared with the corresponding mean of the best found in each of the
20 C-L-O runs. Both algorithms (one run of 100 steps of C-L-O and 100 L-K-Ls) use about
the same amount of CPU time. The results are presented in Table 1, along with the average
L-K-L performances for completeness. One does not know for sure the exact minimum, but for
reference, we have also given the best cut ever found by any of the algorithms. For N = 100,
the best cut ever found was always obtained by each algorithm and thus most likely corresponds
to the true optimum. N = 100 corresponds to "easy" problems, so we have omitted those data
from the table. For N = 250, 2000 L-K-Ls was not enough to find the best ever for 3 of the 5
graphs, and for the larger values of N, L-K-L was never able to find the best ever. C-L-O, on the
other hand, finds (for 100 steps) the best ever multiple times among the 20 runs N = 250,500
and 1000.

For large N, the performance of the algorithms can be characterized by the factor C in the
formula (cut size) =c,;N. Using additional data for d =6, we find the C corresponding to 100
L-K-Ls to be ClOO-L-K-L = 0.381 and CC-L-O = 0.356 for the T = 0 quenches. In practice,
our quenches were run for 100 kicks, so the quoted result is higher than the value for infinitely
long runs. As it stands, 100-L-K-L leads to cut sizes about 7% larger than C-L-O.

The same methodology was used to study graphs with d = 10. Again, C-L-O beats L-K-L
for a given amount of computer time. We find C1OO-L-K-L = 1.54, and CC-L-O = 1.50. We
observe that as the graphs become more dense, the advantage of C-L-O sets in at progressively
larger values of N. This makes sense, because as d increases for geometric graphs, the optimum
cut becomes straight and the L-K-L algorithm has an easier time finding it.

In summary, L-K-L is superior to K-L for geometric graphs and, in particular, gives the
correct scaling in ,;N. However, it is surpassed by C-L-O for both sparse and dense geometric
graphs, even though we have not fine-tuned the kick or the temperature in C-L-O. One should
also keep in mind that the C-1-0 approach is not limited to graphs with spatial structure, and
indeed leads to good results for random graphs. The line initialization is not possible for such
graphs, nor is compaction of much use.

Performance on unstructured meshes

Barnard and Simon [4] studied recursive spectral bisection on several unstructured meshes that
arise in mesh-mapping problems. Tills section benchmarks L-K-L and C-1-0 on these same
problems provided by H. Simon. The main differences with the ensemble of geometric graphs
used in the previous section are that these meshes form planar graphs and have an average degree
that is very close to 6. The lack of variance in the degree of vertices makes these problems easier
to solve both for L-K-L and C-L-O.

8

Cut Size for Five, N =250 Graphs
Algorithm

L-K-L 11.6 13.7 9.6 10.8 13.8
100-L-K-L 4.4 6.0 3.2 4.0 9.5
C-L-O 4.0 6.0 2.3 4.0 8.9
Best Found 4 5 2 4 7

Cut Size for Five, N =500 Graphs
Algorithm

L-K-L 21.0 16.4 15.4 22.2 18.4
100-L-K-L 12.0 7.0 5.1 10.2 10.6
C-L-O 11.8 4.8 5.0 10.0 7.1
Best Found 9 3 4 8 5

Cut Size for Five, N =1000 Graphs
Algorithm

L-K-L 26.8 25.1 29.5 23.8 26.6
100-L-K-L 13.1 10.0 14.2 10.2 13.7
C-L-O 12.4 7.6 14.6 7.4 13.2
Best Found 8 5 11 5 10

Table 1: Average performance on 15 random geometric graphs of d = 6. There are five graphs
each for N = 250,500, and 1000. For algorithm L-K-L, the value in the table shows the a.verage
over 2,000 runs of L-K-L from random starts. For algorithm 100-L-K-L, L-K-L was run 100 times
from random starts and the best value was taken. The result shown in the table is the average
value of that best, when this procedure is done many times. For algorithm C-L-O, the value in
the table is the average over 20 runs of C-L-O, each of length 100 steps. The temperature of
the C-L-O runs was set to zero. The values under Best Found are the min over all the previous
procedures - this was always found among the 20 runs of C-L-O.

The four meshes have the names: Spiral (1200), Parc (1240), Hammond (4720), and Barth5
(15606), where the number of vertices of each mesh is indicated in parentheses. In comparing
various algorithms, we need not consider simulated annealing since it has been shown that K-L
performs better than S-A on such sparse graphs [10]. We consider the four gra.phs in turn.

Spiral has the geometry of a spiral, so the use of the line algorithm (Le., coordinate bisection)
leads to a fragmented partition. One thus might expect L-K-L to perform poorly, but the fact is
that the number of vertices is sufficiently small for K-L (and thus L-K-L) to give good results.
The average cut-size for L-K-L is given by (cut size}L-K-L = 15.4, and it finds the best ever
(of cut size 9) 47% of the time. The repeated use of L- K-L improves this result of course, so
that with 100 trials, one is virtually certain to hit the best ever: (cut sizehoo-L-K-L =9.0. For
C-L-O, we did 20 runs of 100 steps as in section 4, and found also (cut size}c-L_o =9.0. (The
best ever is found in all the C-L- 0 runs.) These results lead us to believe that the best ever is
the optimum.

The second mesh, Parc, is a triangulation of variable density. Again the two heuristics solve
this instance rather easily. We find (cut size}L-K-L = 34.1, (cut sizehoo-L-K-L = 21.1, and
(cut size}c-L-o = 21.0 with the same run parameters as before. L-K-L hits the best ever cut
(21) with probability 0.036, and again C-L-O finds this best ever in all 20 runs.

9

6

The last two meshes correspond to airfoil problems. The smallest problem, Hammond, is still
rather easy to solve. All C-L-O runs found the best cut ever, of size 90. L-K-L found this cut
with probability 0.28, and give an average cut size of 116.4. With 100 L-K-L's, one is virtually
certain to find the best cut. Spectral bisection got a cut size of 117.

For Barth5, we find (cut size)L-K-L = 197.1, (cut sizehoo-L-K-L = 139.2, and
(cut size)c-L-o = 139.25 for runs of 100 steps. The best cut ever was 139: L-K-L found it
with probability 0.016, and C-L-O found it in 15 of the 20 runs. For this instance, spectral
bisection gives a cut size of 164.

It is fair to conclude that these types of meshes are solved rather easily, either by L-K-L
using multiple tries, or by C-L-O. Not surprisingly, the larger meshes become more difficult.
Note that both algorithms incorporate K-L, a general-purpose graph partitioning method. If we
compare them to the mapping problem-specific methods (coordinate or spectral bisection), it is
clear that those methods are inferior. The key is to use K-L as a post-processor. Then, almost
any method will become competitive, as illustrated by coordinate bisection's performance when
transformed into L-K-L. What about using K-L as a post-processor to spectral bisection? We
expect the performance will be improved significantly, but the limitation is that the starting
point for K-L is fixed - there is no randomization.

Parallel C-L-O

Most local search methods for the GPP do not paralle1ize well, mainly because the constraint
of maintaining a feasible solution is not readily implemented in parallel. Thus, we only consider
implementations where a given processor has a complete configuration in local memory. We
work in the framework of a distributed-memory architecture and have implemented the codes
on a network of workstations under PVM [11, 12].

The simplest way to parallelize chained local optimization is to have each processor run
independent C-L-O chains. This is equivalent to running multiple random starts on a single
processor. If we have P processors, at any given time we have a population of at least P
configurations. However, independent runs are not best because one should be able to use the
mutual information available in the current population. Thus, we have implemented branching
and pruning among the configurations on the different processors. This is called Darwinian
selection for genetic algorithms and diffusion Monte Carlo in physics. In a branching step,
the best configurations are duplicated in the population while in pruning, the worst ones are
eliminated. Branching and pruning events occur relatively rarely (as measured in cpu time)
so very little time is spent on communication, leading to an efficient parallel algorithm. In
our implementation, we run for a certain time interval, find the configuration with the best
cut, and then apply a winner-take-all selection strategy. Note that two processors may contain
copies of the same configuration, but they go through distinct random number sequences and
so they perform independent searches. The GP code runs both on uniprocessor systems and on
heterogeneous computing environments using PVM. All machines are used to near maximum
capacity, and parallel speed-up (at least for tens of workstations) is near-linear. This is simply
because communications are done rarely.

10

7 Discussion and conclusion

Many algorithms have been proposed for partitioning unstructured meshes for the mapping
problem. The standard, general-purpose algorithms, simulated annealing and local search (in­
cluding K- L), do rather poorly. This has stimulated the development of special purpose methods
such as coordinate or spectral bisection and graph compaction. In this paper, we showed how a
general-purpose approach to combinatorial optimization could be successfully adapted to graph
partitioning. As shown in sections 4 and 5, the C-L-O algorithm beats special-purpose meth­
ods. It also beats the hybrid method, L-K-L, on geometric graphs, while being as good on
unstructured meshes. This performance was achieved without any parameter fine-tuning (the
temperature was set to zero, and no effort was made to improve the kick). C-L-O has several
advantages over L-K-L: (i) it works for more general graphs; (ii) it is easily generalized to k-way
partitions without resorting to recursive bisection (not limited to k a power of 2); (iii) it can
handle unequal partition sizes (important for mapping onto heterogeneous processors). We plan
to extend the C-L-O graph partitioning to full k-way partitioning in future work.

8 Acknowledgements

We thank Horst Simon of NASA Ames for his interest in our work and for having provided the
instances used in section 5. We also thank Jeremy Casas, Ravi Konuru, Jon Inouye, Robert
Prouty, and Jonathan Walpole for help with the PVM implementation. Finally, we thank
Edward Felten, and Richard Friedberg for discussions. This work was supported in part by
NATO travel grant CRG 920831.

References

[1]	 B.W. Kernighan. Some graph partitioning problems related to program segmentation, 1969.
Ph.D. Thesis.

[2]	 K. Shahookar and P. Mazumder. VLSI cell placement techniques. ACM Computing Surveys,
23(2):143-220, June 1991.

[3]	 M. Hanan and J .M. Kertzberg. A review of the placement and quadratic assignment prob­
lems. SIAM Review, 14, No. 2:324, 1972.

[4]	 S. Barnard and H. Simon. A fast multilevel implementation of recursive spectral bisection for
partitioning unstructured problems. Concurrency: Practice and EXPerience, 6(1), February
1994. To appear.

[5]	 J. Flower, S. Otto, and M. Salama. A preprocessor for finite element problems. In Sym­
posium on Parallel Computations and Their ImPact on Mechanics. American Society of
Mechanical Engineers. ASME Winter Meeting, Dec. 14-16, 1987, Boston, Mass.

[6]	 C. Farhat. On the mapping of massively parallel processors onto finite element graphs.
Computers and Structures, 32(2):347-53, 1989.

11

[7]	 A. Pothen, H. Simon, and K.P. Liou. Partitioning sparse matrices with eigenvectors of
graphs. SIAM J. Mat. Anal. Appl., 11(3):430-52, 1990.

[8]	 V. Venkatakrishnan, H. Simon, and T. Barth. A MIMD implementation of a parallel Euler
solver for unstructured grids. The Journal of Supercomputing, 6(2):117-27, 1992.

[9]	 B. Kernighan and S. Lin. An effective heuristic procedure for partitioning graphs. Bell
Syst. Tech. J., 49:291, 1970.

[10]	 D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by simulated
annealing: An experimental evaluation, part I (graph partitioning). Oper. Res., 37:865,
1989.

[11]	 A. L. Beguelin, J. J. Dongarra, A. Geist, R. J. Manchek, and V. S. Sunderam. Heterogeneous
network computing. In Sixth SIAM Conference on Parallel Processing, 1993.

[12]	 Jack Dongarra, AI Geist, Robert Manchek, and Vaidy Sunderam. Integrated PVM frame­
work supports heterogeneous network computing. Computers in Physics, April 1993.

[13]	 F. Barahona and A. Casari. On the magnetisation of the ground states in two dimensional
Ising spin glasses. Compo Phys. Communications, 49:417, 1988.

[14]	 S. Kirkpatrick, C. Gelatt, and M. Vecchio Optimization by simulated annealing. Science,
220:671, 1983.

[15]	 C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improving network parti­
tions. In Proceedings 19 'th Design A utomation Workshop, page 175, 1982.

[16]	 M. Berger and S. Bokhari. A partitioning strategy for non-uniform problems on multipro­
cessors. IEEE Trans. Computers, C-36(5):570, 1987.

[17]	 T. Bui, C. Heigham, C. Jones, and T. Leighton. Improving the performance of the
Kernighan-Lin and simulated annealing graph bisection algorithms. In 26'th ACM/IEEE
Design Automation Conference, page 775, 1989.

[18]	 R. Williams. Performance of dynamic load balancing algorithms for unstructured mesh
calculations. Concurrency: Practice and Experience, 3(5):457-81, October 1991.

[19]	 N. Mansour. Physical Optimization Algorithms for Mapping Data to Distributed-Memory
Multiprocessors. PhD thesis, Syracuse University, 1992.

[20]	 J .E. Savage and M.G. Wloka. On parallelizing graph-partitioning heuristics. In Proceedings
of the ICALP'90, page 476, 1990.

[21]	 O. Martin, S.W. Otto, and E.W. Felten. Large-step Markov chains for the traveling salesman
problem. J. Complex Syst., 5:3:299, 1991.

[22]	 O. Martin, S.W. Otto, and E.W. Felten. Large-step Markov chains for the TSP incorpo­
rating local search heuristics. Oper. Res. Lett., 11:219-242 1992.

[23]	 O. Martin and S. Ottor~~b+:~ siJula ed bn+~Jg ~ith ~J search heuristics. In
G. Laporte and 1. Osm i~etto1' ~etaru °sti4s i1 cc¥tbirattal!Optimization.

l_ ,..,..__ _ ~; --'1'- ,-- 1--,._.; .._.->._-- : - "'."-----,

' _c! i i 121 I I ! ::-: 'I' ',I 1
~••	 ! I I ' I ! : : \
Cl	 I I ~ Ii·· I . ,
~~,..L_..~ _.J. _

I

L._.j ...~,L-: ~_.:·--~ ..i,-..-,: .._.. ;· .
1 I i l, ! ! I : i

! ,; 1 I

I i !

wi!
~	 I (I l
.:~	 I '. I

, .;...	 I I

