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Projection (Green's function and diffusion) Monte Carlo techniques sample a wave 
function by a stochastic iterative procedure. We show that these methods converge to a 
stationary distribution which is unexpectedly biased, Le., differs from the exact ground 
state wave function, and that this bias occurs because of the introduction of a replication 
procedure. We demonstrate that these biased Monte Carlo algorithms lead to a modified 
effective mass which is equal to the desired mass only in the limit of an infinite population 
of walkers. In general, the bias scales as 1/N for a population of walkers of size N. Finally, 
we consider various strategies to reduce this bias. 
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1 Introduction 

In the last two decades, Monte Carlo (MC) methods have been widely employed for studying 
quantum mechanical problems (see [1] for a recent review). In particular, they have proven to 
be valuable in determining ground state properties of particle [2, 3, 4], nuclear [5, 6, 7], atomic 
[8], and molecular systems [9], as well as of quantum fluids and solids [10, 11, 12, 13]. 

Projection MC methods, which are our concern here, attempt to project out the ground state 
of a quantum system. The various alternative implementations correspond to different choices 
of the projection operator. Among the many MC methods which have been developed, it is 
convenient to distinguish two ITlain classes: Green's Function ~lonte Carlo (GFMC) methods, 
which essentially use the Green's function H- 1 as a projector, and diffusion Monte Carlo 
(DMC) methods which use the imaginary time evolution operator exp( -Ht) as a projector. 
These methods are best understood as stochastic implementations of the power method. In 
that method, the dominant eigenvalue and eigenvector of a matrix or projection operator A is 
computed by iteratively applying A on an arbitrary initial vector 14» [14]. As the number of 
iterations n becomes large, one has 

(1)
 

where AO is the leading eigenvalue, 1{Jo is the corresponding eigenvector, and Al is the largest 
sub-leading eigenvalue. Then one has [14, 15] 

(2)
 

for any integer k. 
To implement this method stochastically, one first defines a matrix At1ij such that each 

column sums to one (to ensure probability normalization), Ei M ij = 1. The matrix A is then 
expressed as a product of the matrix M and a diagonal matrix w, 

with Wj = I:Aij • (3) 

The matrix k! defines a Markov process which is used to generate the sequence of states (called 
configurations hereafter): given the configuration j, configuration i is chosen with probability 
M ij • The matrix w makes it necessary to weight the configurations so that during evolution, the 
weight associated with configuration i is multiplied by Wj' It is easy to show that on average 
the evolution is identical to the standard power method (i.e., without stochasticity), so that 
equation (1) is reproduced for mean values. Thus the configurations after a large number n of 
steps will form a sample of the dominant eigenvector. If the population consists of N random 
walkers (0: = 1, ... ,N) in configurations i a , carrying the weight W a , then 

N 

F(i) = L Di,ia W a (4) 
a=1 
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or at best the bias is believed to be negligible. The aim of the present paper is to demonstrate 
the existence of this finite population-size bias in a general case, to estimate its magnitude as 
well as its scaling, and to consider ways to correct it. 

Our discussion of the bias applies to GFMC, to DMC, and also to all stochastic implementa
tions of the power method. In particular, it applies to MC calculations for transfer matrices in 
statistical mechanics. However, we will present most of the derivations for DMC. The advantage 
is that it can be interpreted in terms of Feynman path integrals which renders the discussion 
easier for our purposes. After briefly reviewing GFMC and DMC in Section 2, we calculate in 
Section 3 the errors introduced by a particular choice of the replication. Section 4 illustrates 
the bias on a pa.iring Hamiltonian, showing that it can be rather important. Finally, we review 
different strategies that can be used or have been proposed to reduce this bias (Section 5). 

2 Projection Monte Carlo methods 

2.1 Green's function Monte Carlo 

The GFMC method was first developed by Kalos and coworkers [23, 18, 10], providing a tech
nique for calculating the ground state energy of a quantum system using random walks. In 
order to be explicit, we will present the case of a point r in configuration space placed in the 
potential V(r). The time-independent Schrodinger equation (with 1;, =1) is 

[-2~ V 2 + V(r) - Es] 1/J(r) = (Eo - Es)1/J(r) (5) 

where Eo is the ground state energy, and Es is arbitrary for the moment. This equation can 
be transformed into an integral equation by use of the Green's function G(r, r') of the operator 
on the left side of equation (5), solution of 

[-2~ V 2 + V(r) - Es] G(r,r') = e5(r - r') (6) 

The additional energy shift Es is to be chosen so that G(r, r') is positive (see below). Substi
tution in (5) gives the Fredholm integral equation 

.,p(r) = (Eo - Es )f G(r, r')1/J(r') dr' (7) 

which can be solved by iteratively applying the relation 

1/J(n+l)(r) = (Eo - Es) I G(r,r')1/J(n)(r') dr'. (8) 

Thus 1/J(n) tends asymptotically to a multiple of the ground state wave function 1/Jo. In practice, 
these iterations are followed stochastically by use of a MC method, Le. by sampling the suc
cessive 1/J(n),s by a population of random walkers. Starting from a set of configurations {r(n)} 
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selected at random from the density distribution ..p(n)(r), a new set {r(n+l)} is obtained by mov
ing each configuration r(n) to r(n+l) according to the probability function (Eo - Es )G(r(n+l), r(n)) 
conditional on r(n). The main technical difficulty consists in treating the propagator, which is 
unknown in general. The GFMC method necessitates thus a second step, which is the sampling 
of the Green's function by an additional Neumann-Ulam random walk [10, 19J. Note that the 
energy shift must be chosen so that Es < Eo, in order to have a positive propagator (to allow 
for the MC implementation). Of course, the exact energy Eo of the ground state which enters 
into the propagator is unknown in advance (we are seeking for it). However, it is clear that, 
if Eo is replaced by a trial energy ET in equation (8), the successive iterations will still tend 
to a multiple of ..po. If ET is larger than Eo, the ..p(n),s will grow in nornlalization (resulting 
in a growth in the population of walkers), whereas the contrary occurs for ET smaller than 
Eo. In fact, ET is adjusted during the MC run in order to maintain an approximately constant 
population size. 

In summary, with GFMC methods, the resolvent operator (ET - Es)/(H  Es ) is used to 
filter out the ground state l..po) from an initial trial wave function I1/JT} : 

l..po) ex lim (ET - ES)n \..pT) 
n-oo H - Es 

(9) 

The change in population size can be used to estimate the energy Eo of the ground state. 
Indeed, the normalization - or growth - estimator is written as 

(10)
 

with N(n) being the number of walkers at the n-th iteration. As noted first in ref. [18J, this 
estimator is biased even after relaxation (when the limit distribution is attained) as a conse
quence of the statistical fluctuations of the N(n),s. Another estimator of E u can be constructed 
by use of the expression 

Eo = (1/JoIHI1/JT) (11)
(1/Jo I1/JT ) 

It is possible to guide the random walk in order to improve the sampling. Consider the density 
function p(r) == 1/J(r).,pT(r) with .,pT(r) being time independent. It obeys the iterative equation 
obtained from eq. (8): 

(12) 

With the standard (non-stochastic) iterative method (called the power method in the case of 
matrices), this function p(r) converges to ..pO(r)1/lT(r), and thus one can write a trial estimator 
(also called mixed, or variational estimator) of Eo as 

(13) 
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where N .= N(n) is the population size at time n, and the rk =rln) are the configurations of 
the N pOInts. Note that, in practice, this estimator is averaged along the MC run. Thus, one 
~an say froln eq. (12) that the random walk is guided by the trial wave function 1/;T in order to 
Importance sample the solution 1/;0. The configuration space is explored by the random walk 
~ith a density distribution given by the guiding wave function 1/;T. If this (arbitrary) function 
IS chosen close to the exact 1/;0 using a priori knowledge of the solution, the variance on this 
estimator will be significantly smaller. This allows one to gain higher accuracy through variance 
reduction. (In fact, it is evident that the variance vanishes in the limit 1/;T ----+ 1/;0). In the case 
where we put 1/;,[' == 1, the iteration equation (12) comes back to eq. (8), so that the random 
walk is unguided. Then, the trial energy estimator becomes simply 

1 N 

ET = N L V(rk) (14) 
k=l 

Note that the unguided random walk asymptotically samples 1/;0, whereas the guided one sam
ples the physical probability distribution 11/;01 2 (to the extent to which 1/;T is a good approxi
mation of 1/;0). 

2.2 Diffusion Monte Carlo 

We now briefly present the DMC method [17]. The first step is to note the similarity be
tween the time-dependent Schrodinger equation and a reaction-diffusion equation. Indeed, the 
Schrodinger equation in imaginary time (with 1;, == 1) reads 

: = -H.,p = 2~ V'.,p(r,t) - V(r).,p(r,t) (15) 

so that the right-hand side can be interpreted as a diffusion term (with a diffusion constant 
D = 112m) and a reaction term (with a source-sink term of the form -V1/;). As it is well 
known, the diffusion can be treated via a random walk, whereas the reaction equation, in the 
absence of diffusion, describes a simple growth or decay process. This coexistence of a diffusion 
and a growthIdecay process will be important in the following. 

The imaginary time evolution given by equation (15) acts as a projector which, at large time, 
selects out the lowest energy state. In order for the ground state to survive the exponential 
decay, it is appropriate to shift the potential by Eo, thus giving 

81/; = (Eo - H)1/; = _1 \l21/;(r, t) - (V(r) - Eo)1/;(r, t) (16)at 2m 

The projector in this method is thus the (imaginary) time evolution operator Ut = e-(H -Eo)t. 

In order to evaluate Ut in practice, it is necessary to resort to the short time approximation. 
First divide the time interval t into M infinitesimal intervals ~t, and use the relation 

M 
Ut = II e-(H--Eo)6t. (17) 

n=I 
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The infinitesimal propagators are then approximated by use of a breakup such as 

e-(H-Eo)L},t = e-TL},te-(V-Eo)L},t +O(~e) (18) 

where T and V stand for the kinetic and potential energy, respectively. (It is of course possible 
to use breakups which are more accurate.) Applying the evolution operator on an initial trial 
wave function "pT yields for large t 

"pO(r) ~ Idr(M) ..• dr(O) (r\e-atTlr(AJ))e-at(V(r<M))-Eo) 

... (r(L) Ie-atT Ir(O»)e -at(v(r(O»-Eo)-rPT( r(O»). (19) 

We have assulued that the potential V( r) is local in configuration space, so that applying 
e-at(V -Eo} sim.ply amounts to multiplying by a weight. The operator e-6tT corresponds to a 
diffusion operator whose matrix elements are 

, ( m)d/2 (m ,.) P(r' r) = (r'le-atTlr) = -- exp --(r - r y (20) , - 27r~t 2~t 

where d stands for the dimension of the problem. The application of the operator P can be 
simulated by MC, through a random step drawn from a (d-dimensional) gaussian distribution 
of variance ~t/m. Finally, the repeated iteration of e-(H-Eo)at can be simulated using an 
ensemble of (weighted) random walkers, similarly to what is done in GFMC. At each iteration, 
a random walker at r is weighted by a factor w( r) = e-at(V(r)-Eo), and then diffused according 
to a gaussian step. This is analogous to the Feynman separation of the time-evolution operator 
into two separate propagators (corresponding to the potential and the kinetic energy) [24]. Here, 
the kinetic energy T tends to spread out the wave function in configuration space (diffusion), 
whereas the potential energy V concentrates the wave function in its components with low 
V(r) (reaction term). As in GFMC, the exact energy Eo is not known in advance so it must be 
replaced by a trial energy ET in the above formulae. The projection operator is thus e-(H-ET )6t, 

and one has 
(21)
 

This trial energy ET is constantly adjusted along the random walk in order to avoid either an 
exponential increase or decrease in the total weight of the population. We can also define a 
normalization (or growth) estimator for the ground state energy: 

1 (N(n+l})
EN = - t1t log N(n) (22) 

Following the same reasoning as in the GFMC, a trial estimator of Eo can be obtained by 
modifying the diffusion procedure in order to sample p(r) ="p(r)-rPl'(r), that is using the 
propagator -rPT(r)e-(H-ET )

at-rP:yl(r). It can be shown that this propagator can be simulated by 
a diffusion in an external drift velocity field (function of V-rPr(r)), with a modified weight factor 
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w(r). = e-~t("'Tl(r)H"'T(r)~ET). Then, the trial energy estimator takes the same form as eq. (13), 
and IS. thus le~s fluctuat~ng tha~ when t~king ."pT(r) == 1 (i.e., unguided random walk). In the 
folloWIng sectI?ns, we will restrIct the diSCUSSIon to the unguided case for simplicity, but our 
results can easIly be extended to the guided case. 

Systematic error due to replication 

Now, we come to the critical point of the projection Me algorithms. If we follow the N random 
walkers, accumulating the weights through succeSSIve iterations, the variance on these weights 
increases exponentially. Since it is necessary to follow a large number of steps to project out the 
ground state, this approach is impracticable. Thus, to be efficient, the algorithm must discard 
walkers with sma.ll weights and duplicate those with large weights. This is the "replication" 
step, and we will demonstrate that it is the root of the bias in these algorithms. 

One simple wa.y to replicate is to sample a new population of walkers at each iteration 
according to the weights considered as a probability distribution, as proposed by Hetherington. 
However, this method is unnecessarily noisy, and leads to unefficient strong correlations among 
the walkers. This will be discussed later on. Among workers in the field, two major replications 
are used. The first one (see e.g. [9, 18,23,17,25.1) consists in considering the fractional part 
of the weights as a probability in order to deal with walkers of unit weight only. For each 
walker of weight w, one creates int(w +e) walkers of unit weight, where eis a random number 
uniformly distributed in [0,1]. This replication procedure still introduces correlation among the 
walkers. An alternative approach has been proposed in ref. [20] in order to improve upon this. 
Each walker with a big weight (e.g. larger than 2) is replaced by two identical new walkers, 
each with weight equal to half of the old weight. Alternatively, two walkers with low weights 
W a , Wb (e.g. smaller than 1/2) are combined to give one walker of weight W == W a +Wb which 
replaces the first or the second one with probabilities proportional to the weights W a and Wb. 

The remaining walkers are unchanged by the replication (i.e., they keep their weights). That 
algorithm reduces the unnecessary random fluctuation of the total weight of the walkers during 
replication. 

As noted in ref. [18, 19, 20, 26], both energy estimators are inherently biased. In fact, all 
simple-minded estimators (c.f. Section 5.4) will be biased because there is a biati on the wave 
function itself "p(r) which survives asymptotically, even when the trivial bias due to the initial 
condition (1/;T i= "po) has dissapeared (i.e., after relaxation). This failure to sample the exact 
probability distribution (Le., the ground state wave function or its square) originates from the 
necessity to normalize the weights at some point in the algorithm. Thus, the replication process 
is the fundamental reason for the existence of a bias. One can understand this systematic error 
from different points of vue. One can say that the Me estimator for any observable always 
expresses as a ratio, whose numerator and denominator fluctuates. The correlation between the 
numerator and the denominator is then suggestive that there is a bias. Alternatively, one can 
regard the feedback of the number of walkers (or the total weight) into ET (which is adjusted 
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along the random walk) as the origin of the bias, called therefore the population control bias in 
ref. [26). In Section 3.1, we propose a simple model to understand how the replication produces 

a bias, and to estimate this bias. 
In DMC, there is usually a residual time-step error (due to the breakup of the propagator). 

Thus, the entire walk is traditionally repeated with different ~t's, in order to extrapolate to the 
~t == 0 limit. In GFMC on the contrary, the random process is supposed to tend to the exact 
ground state, at the cost of a more complex algorithm. However, since the effective time steps 
of the GFMC are very small, it has been argued that DMC is more efficient computationally 
[26]. In view of this, we will consider only DMC in the following. We will show that the finite 
size of the population of random walkers introduces a bias in the method. However, all the 
conclusions we draw are valid for GFfvIC, since the same population control (replication) is 
needed in order to keep the variance bounded. 

3.1 Calculation of the bias in a simple model 

For the sake of simplicity, we treat the case of a particle in a one-dimensional potential governed 
by the Hamiltonian H = p2/2m + V(x). This example illustrates simply the origin of the 
bias, but our results are easily extended to the general case (e.g. multi-dimensional potential, 
problems in other representations or basis sets). We follow the time evolution with replication 
of an ensemble of N points {xd chosen from an arbitrary initial distribution "p( x). Our aim is 
to show that the evolved distribution will asymptotically tend to a wave function which is not 
the ground state solution "po(x) of the time-independent Schrodinger equation 

- ~.,p~ + (V( z) - Eo).,po(z) = 0 (23)
2m 

where Eo is the ground state energy. vVe take the wave function (not its square) to be a 
probability distribution, so that J.,p( x) dx == 1. We evolve the N points using the infinitesimal 
imaginary time evolution operator. Its matrix elements (with Ii == 1, and ET =0) are given by 

(24) 

where w( x) = e-~t Vex) is the weight associated to the point z, and P( x', z) is a gaussian 
distribution in z' with mean z and variance 6.t/m. Note that the normalization condition for 
the probahility distribution P(x', x) imposes that w(x) = JU~t( x', x) dx' , implying that both 
w(x) and P(x' , x) have always an implicit dependence on ~t, for any choice of breakup of H. 
After evolution by t1t, we replicate in the following way. For each realization (Le. N walkers at 
given positions), we normalize the weights after evolution in order to Yield a discrete probability 
distribution for the position after evolution. Then we average over all the possible realizations 
(according to the initial wave function), thus giving a continuous probability distribution which 
gives the wave function after evolution. This leads to an evolution equation for the wave function 
as a function of imaginary time. 
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In the following~ we will apply esti~ators,acting on both the initial ensemble of points {Xi} 

and the correspondIng ensemble of pOInts {xJ after the evolution for a time ~t. Consider the 
random variables 

(25) 

(26) 

ltV is an C1-l 1;i ((lator for the average weight of" the population of points after t,irue evolution, from 
which the standard normalization (or gnnvth) estimate for the energy Eo can be deduced: 

1 
EN = - ~t log(E[W]) (27) 

where E[] denotes the expectation value. ~lso, the random variable FN(X) = F(x)jW is an 
estimator of the normalized wave function 'ljJ( x) after time evolution, that is 

;j;(x) = E[FN(x)] (28) 

with obviously J;j;(x) di = 1. 
We are thus interested in determining the expectation value of both estimators Wand FN • 

As we are only concerned with the ~t ~ 0 limit, the calculation is carried out by expanding 
E[W] and E[FN ] in powers of ~t, keeping only the leading terms. This is done in Appendix A. 
There we show that this calculation requires the determination of the covariance Cov[F, W]. 
Note that the points Xi are independent in this simple model, leading to a feasable calculation 
of this covariance. For other replication procedures than the one used here, the Xi will not stay 
independent, and it is not possible to calculate exactly the steady state. The drawback of our 
choice of replication however is it is not readily implemented in practice. The end result is that 
in Inore general cases, the correlations induced by the replication process modify the steady 
state from the calculated one, but the scaling in N remains the same. Note that the degree of 
correlation is dependent on the details of the replication algorithm. 

Finally, as shown in Appendix A, the distribution of x after time evolution for ~t can be 
written as 

- ~t 
1/J(x) = E[FN(x)] = 1/J(x) + 2m1/J"(X) 

- f). t (V (i) -- Eo}ljJ (x) + ~.t "p (i) Jdx "p (x )(V (x) - Eo) 

~t - - ~t - f :'I+iV(V(x) - Eo)'ljJ(x) - N-1/J(x) dx 1/J(x)(V(x) - Eo) +CJ(ilt2 
) (29) 

Letting ilt tend to zero, one obtains 

81/J(x, t) lim ;j;(x) - 1/J(x) 
8t 6.t-+o ~t 
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_11/J"(z) - (1 - ~ )(V(z) - Eo)1/J(z)
2m N 

(30)+(1- ~)",,(z) Jdx (V(x) - Eo)""(x) 

which yields a modified version of the Schrodinger equation in imaginary time, with an unusual 
third term on the right-hand side. Note also that the energies are scaled by a factor (1 - l/N) 
which tends to one for an infinite size sample. The correction in 1/N is due to the second term 
in the right-hand side of equation (58), and thus originates from the correlation between the 
numerator and the denominator in the expression of the normalized wave function. 

Nate that, by integrating over x the standard time-independent Schrodinger equation (23) 
for the g~'C'llIld state, one gets the expresfiion 

Eo = Jdx V(x)1/Jo(x) , (31) 

where Eo is the true (Le., with N ~ 00) ground state energy and 1/Jo( x) is the exact ground 
state wave function. Note that this expression corresponds to our trial function estimate for 
the ground state energy Eo. As a consequence of (31), 1/Jo(x) is also the solution of the equation 

- 2~""~ + (V(x) - Eo)""o(x) - ""o(x) Jdx (V(x) - Eo)""o(x) = 0 (32) 

It is easy to show that the third term in (32) can be obtained by considering the evolution of 

<p(x) 
(33)1/Jo(x) = J<p( x) dx 

where 4>( x) is an unnormalized wave function which evolves according to the imaginary time 
Schrodingcr equation 

~t = _1 4>" - (V(x) - Eo)4>(x) (34)at 2m 
One finds, using (34), 

81/J %1- 1/J(x) J ~t dx_
 
at J4>(x) dx
 

= 2~ "''' - (V( x) - Eo)'"(x) + "'(x) f (V( x) - Eo)'"("') d:l: , (35) 

which ha~ as an asymptotic solution 1/Jo(x) given by equ. (32). Thus, our evolution equation 
(30) keeps the norm of 1/J(x) constant, and the third term in the right-hand side of (30) is simply 
equivalent to that in eq. (32) except for the factor (1 - 1/N). 

Now we are searching for the steady-state distribution 1/J*(x) of our stochastic procedure, 
that is the stationary solution of eq. (30): 

- 2~* ""*" + (V(x) - Eo)tP*(x) - ",,*(x) Jd:l: (V(x) - Eo)tP*(x) = 0 (36) 
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Thus, because of the sampling procedure, we have to deal with an effective mass m* defined as 

(37) 

If 1jJ*(x) is taken as the solution of the standard Schrodinger equation for a particle of mass m * , 

1 
- 2m* 1jJ*" + (V( x) -- E*)1jJ*(x) = 0 (38) 

where E* stands for the perturbed ground state energy, integration over x as previously yields 

E* = / dx V(x)1jJ*(x) (39) 

and thus expression (36) transforms into an identity. Therefore, 1jJ* (x) is also the solution of 
our modified Schrodinger equation (eq. (36)) with an energy E*. 

Thus, we have shown that the sampling procedure tends to a steady-state that is equal 
(within the statistical errors) to the solution of a modified problem with an effective mass m*. 
Since the effective mass is always lower than the real mass m, the resulting wave function pen
etrates deeper in the classically forbidden regions, and alternatively decreases in the classically 
allowed regions. As a consequence, the trial function energy estimate E* (i.e. equ. (39)) is 
clearly overvalued compared to the exact value Eo. This tendency is in qualitative agreement 
with what was noticed by several authors (see e.g. [22,26]). It was shown e.g. in ref. [26] that if 
a fluctuation increases the fraction of walkers in a region where V(x) < Eo, the population size 
tends to increase, so that the term ET will moderate this trend and decrease the equilibrium 
distribution relative to "po (x). The consequence is that the equilibrium distribution 1jJ*(x) is 
too small for low V(x), and too high for high V(x). However, this somewhat qualitative result 
has never been related to an effective mass of the particle. Here, we have devised a method to 
understand and quantitatively estimate the bias in the wave function and observables. Note 
that, for N = 1, the effective mass is zero, or alternatively there is no potential, so that the 
particle undergoes free diffusion. 

Note that one may calculate the normalization energy estimate (see eq. (27)) by use of the 
expression of E[W] derived in Appendix A (see eq. (59)), to find 

Eo - ~t log [1 ~ Llt / dz 'l/I*(z)(V(z) - Eo) + O(Llt2 
)] 

Eo +I dx 1jJ*(x)(V(x) - Eo) +O(~t ) (40) 

similar to equation (39). Thus, the normalization energy estimate will also be biased (with 
the same bias). Now, in order to estimate this energy bias (due to a finite N), we make use 
of a simple perturbation calculation (expansion in 1/N). The derivation of the biased wave 
function 1jJ*(x) is reported in Appendix B. At view of equ. (37) and (38), the Hamiltonian of 
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the modified problem can be written as H == Ho + !:i.H, where Ho == T + V is the Hamiltonian 
of the original problem, and !:i.H = T / N. Thus, the energy bias can be written as 

!:i.E == E* - Eo == (,pol!:i.HI,po) == (T)o/N , (41) 

where (T)o stands for the expectation value of the kinetic energy in ~he. unperturbed.g.round 
state. Note that this expression proves quite naturally that the energy bIas IS always posItIve, as 
already mentioned. It has been already noticed in ref. [22, 26) that the Me estimator tends to 
overestimate the ground state energy, and that the bias scales like O(N-1

), but its exact form 
was not known. Equation (41) is checked in Appendix B for the simple case of an harmonic 
oscillator. It is shown that the perturbed ground state wave function can be written as 

(42)
 

where ,p2(X) stands for the second excited state wave function (normalized with our convention). 
The resulting estimate for the ground state energy is thus given by 

(43)
 

Our result is general, and applies also for many-dimensional problems as well as prob
lems in discrete space (see Section 4). The only condition is that the time-evolution operator 
exp(-H~t) can be divided into a diffusion part exp(-T~t) and a weight exp(-V~t). The 
diffusion operator must be such that (11 exp(-T~t)lz) == 1 for all z, which amounts to say 
that the associated matrix must be stochastic. One can also extend our result to the case of 
a stochatic iteration of a matrix (cfr. [22)) for determining the lowest eigenvalue. In this case, 
following the notation of Section 1, we can see that the random walk tends to a steady state 
which is the dominant eigenvector of the modified matrix 

A* - M·· .I-liN (44)ij - 1JWJ 

differing from exact one by a factor 1/N. 
The major assumptions that we have made to obtain (36), (37), and (41) are (i) a very 

small time-step ~t; and (ii) statistical independence between the random walkers. As already 
explained, the second one is the most drastic (it forgets about the replication process), so 
that we can not hope the method to yield more than the order of magnitude of the bias. For 
instance, we can calculate the scaling of this bias with different parameters of the problem (see 
e.g. Section 4). On the other hand, assumption (i) has shown to be not very important for 
reasonably snlall choice for t1.t. Moreover, it is possible to greatly improve the convergence in 
i1t by using a symmetric form for the breakup (see [27)): 

exp(-H~t) == exp(-VLlt/2)exp(-T~t)exp(-VLlt/2) + O(~t3) . (45) 

With this breakup, extrapolation to small ~t's can be unnecessary, and assumption (i) has no 
consequence. Note also that there is no time-step error at all in the GFMC method since the 
propagator is exactly simulated. 

13 



4 Example in a discrete space: pairing Hamiltonian 

The purpose of this Section is to show that the previously described bias can be important and 
indeed scales as 1/N. We choose to illustrate this point on the so-called pairing Hamiltonian 
which describes the residual interaction between nucleons in nuclei. Let us consider a many
body system with the Hamiltonian 

o 0 

H == L €k( alak +akaf) -- G L al,a~afak . (46)
k:.::l k,k'=l 

where k and k are tirne-reversed conjugate states (with energies €k), 0 is the total number of 
conjugate state pairs, and G('? 0) stands for the strength of the pairing force. One is interested 
in calculating the exact ground state energy Eo for a system of n pairs of particles by a diffusion 
Monte Carlo procedure (i.e., the nucleon pair diffusion is simulated stochastically). We define 
the breakup H == V +T, with 

V 
o
L €k(alak + atak) - Esen 
k=l 

T 
{1 

Esen - G L al,ai,a~k , (47) 
k,k'=l 

where Esen = n(O - n + I)G corresponds to the (absolute value of) the ground-state energy Eo 
in the case where all the single particle levels are degenerate (Le., €k == 0 for all k). The operator 
exp( -TLlt) is then a diffusion operator, as can be seen by checking that Ec,(C'IT'IC) == 0 for 
all integer 1> 0 and for any configuration C. The diffusion follows a Poisson law (see [28, 29]), 
and exp( -- V 6.t) is used as a weight since it is diagonal in C space. In analogy with equation 
(31), the ground state energy is given by 

Eo = ~ V(C).,po(C) (48) 
c 

where .,po(C) is the COlllpollent of C in the exact ground state, and V(C) = (CIVIC). Thus, a 
MC trial estirnator for Eo is given by 

(49) 

where the {Cd are the configurations generated by the MC run. In fact, there are two ways 
to interpret the sum on the right hand side as will be explained in Section 5.1. As shown 
previously, this estimator is biased because the {Cd ensemble does not distribute as .,po(C). 
Of course, a growth estimator for Eo can also been used in this case, and it is biased as well. 
Here, we are essentially interested in the behaviour for different limiting cases (weak or strong 
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pairing), and in the scaling with n. We have trivially T = 0 for the limiting case G = 0 (i.e., 
no pairing), so that the bias disappears. For degenerate states (Le. fk = 0 for all k), we have 
V = Eo = -E ' so that clearly (T) = 0 and the bias is again zero. Thus, the bias vanishes sen 

for both limiting cases, and tends to a maximum somewhere in between as noticed numerically 
in [29]. Furthermore, when the model space dimension {l increases, with G varying such that 
the ground state energy is approximately independent of {l, it is easy to show that (T) is 
approximately proportional to Esen • Thus the energy bias scales as 0 2

/ N, which explains that 
it becomes important for large model spaces (see [29]). 

In Figure 1, we give the dependence of the computed ground state energy for a typical model 
system with n = 12 pairs of particles in n = 24 equispaced doubly-degenerate levels, with a 
pairing strength G = 0.5 (expressed in units of the level spacing). The data points of interest 
to us here (i.e., with k = 0, as explained in Section 5.4) have been fitted to a linear law ill 1/N; 
one sees that the fit is very good. To get one percent accuracy without extrapolation, it is 
necessary to take N ~ 3000. The data shown are for the naive growth estimator, but the other 
estimators (such as ET with different ways to calculate the sum) give almost identical results; 
their agreenlent does not provide a test of the reliability of the method. We have also considered 
other observables than the energy. In general, their estimators have still larger biases, so that 
it is necessary to go to larger values of N before being able to extrapolate in 1/N. 

5 Solutions to suppress the bias 

Section 3 showed how to estimate the magnitude of the bias both for the wave function and for 
observables such as the energy. If the bias is comparable to or larger than the statistical error, it 
is necessary to remove it or at least reduce it. The simplest procedure consists in extrapolating 
to the N ~ 0;) limit. Other possibilities include changing the evolution or replication procedure 
so that the bias on the wave function is of order 1/N 2 or smaller. We discuss these three 
choices successively, and illustrate them on simple model Hamiltonians. Finally, we consider 
modifications of the estimator itself which relnove most of the bias whether or not "p* is close 
to "po. 

5.1 Extrapolation in N 

We saw in Section 4 that an energy estimator extrapolates well with a 1/N scaling for large 
N. For a different observable or a different problem, the onset of the 1/N scaling will occur 
at smaller or larger values of N. In this Section, we quantify the convergence of 1/;* to "po as 
N ~ 00. To do this, we measure how various moments of the distribution 1/;* converge to their 
N = 00 limit. We have considered the observables 

(50)
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for a one-dimensional anharmonic oscillator to check the convergence. The potential was taken 
to ~e V(x) := ~4-x~+x/2,with Ii == m = 1. As already mentioned, there are two possible ways 
to Interpret thIs rat~o. In. the Kalos prescription [23], the ratio is taken at each time step, and 
then averaged over IteratIons. In the Ceperley-Kalos prescription [18, 19], the numerator and 
denominator are averaged separately before taking ratios, with the expectation that this will 
reduce the bias. However, we find that the bias is nearly identical for the two prescriptions. It is 
present in the wave function .,p*, and not just in observables, with a convergence which is linear 
in 1/N, as predicted by ,the theory. Figure 2 shows the convergence of the first four moments 
for the Ceperley-Kalos prescription using the standard replication [17]. Nearly identical results 
are obtained with the Kalos prescription. Because this model is so simple, it is possible to use 
the l/N extrapola.tion from very small values of lV. However, for non-toy problems such as the 
one described in Section 4, much larger values of N are necessary. 

Doing an extrapolation in N is inconvenient for two reasons. First, it is necessary to check 
that the values of N considered are in the 1/N scaling regime. Thus at least three values of 
N have to be used. Second, the extrapolation magnifies the statistical errors. For instance, if 
the data points at Nand 2N are used in the linear extrapolation, and if each data point has a 
statistical error of u, the extrapolated value has a statistical error of VSu. If it were possible to 
eliminate the bias, the computer time could be used entirely for the data point at N, leading 
to a statistical error of u / V2. The ratio of the statistical errors in the two cases is then equal 
to v'fO, which corresponds to a factor of 10 of computer time. This provides strong motivation 
for searching for bias-free methods. 

5.2 Modifying the evolution operator 

It is well known that if the evolution is done using a guided random walk (also sometimes called 
importance sampling, or generalized Feynman-Kac), the convergence of 1/;* towards .,po can be 
improved. In fact, if the guiding (cf. Section 2) is done llsing ,,po, the weights have no variance, 
so that no replication is needed, and one obtains t/J* = t/Jo. Of course, in practice .,po is not 
known, so a natural question is whether this is the only choice of guiding which leads to t/Jo, 
particularly in the presence of replication. Since it is difficult to analyze the effects induced 
by almost aU replication procedures, we consider here the less ambitious goal of fInding an 
evolution/replication procedure for which t/J* converges towards .,po faster than 1/N. 

Our approach is empirical, numerical, but mot.ivated by the perturbative calculations of 
Section 3. There we saw that, for a particular choice of replication, .,p* was the solution of a 
Schrodinger equation with a perturbed mass. This suggests that by using a different value of the 
mass in the cvolutiOll operator, it may be possible to eliminate the 1/N bias. Unfortunately, as 
previously remarked, the replication used in the theoretical analysis is not readily implemented 
in practice. For other replications, the analysis is not feasible because the random walkers 
become correlated, so that the effective ensemble size lVeff is less than the number of walkers. 
(For instance, we will see in Section 5.3 that in the Ilt ~ 0 limit, the Hetherington replication 
procedure [22] leads to Neff == 1, Le., the configurations at a given time are different only by 

16
 



order Llt.) Nevertheless, the analytic calculations are suggestive, so we consider rescaling the 

time step appearing in the diffusion operator using 

(51) 

Here N ff is something like the number of independent configurations, but in practice it is a free 
para:ne:er which we set so that the first moment has no bias. Then we determine numerically 
the convergence of the other moments of"p* (cf. the study in Section 5.1) to their N ---+ 00 

limit. Though we did find that the correction improved the results, they were erratic in the 
sense that there was no unique value of Neff which gave the correct value for all the moments. 
In particular the scaling of the biases remained proportional to liN. We checked this within 
the two interpretations of observables (taking average of ratios or ratios of averages), and using 
the standard replication. No doubt the failure to find a 1/N2 convergence arises because the 
theoretical calcula.tions supposed a different replication, and because the correction must depend 
on the form of the replication. A different kind of replication was studied by Hetherington [22]; 
he estimated the form of the bias neglecting correlations within walkers. His analysis suggests 
that the 1/N term of the bias can be removed by the modification (cf. the matrix notation in 
Section 1) 

Wi ~ wi(1 - wi!Neff) . (52) 

We have numerically investigated this possibility, with the same negative result as above for 
the standard replication. In summary, we have not been able to find a simple prescription for 
removing the leading term of the bias, but think it is worth persuing. 

5.3 Modifying the replication procedure 

Above we considered possible modifications of the evolution operator to remove the 1/N bias in 
'¢;*. The bias is abo affected by the replication procedure. Since there is no analytic work here 
to guide us, we will simply determine the magnitude of the bias for three often used replication 
methods: that of Hetherington [22], the "standard" method [9, 17, 18, 23], and an "improved" 
method due to Nlghtinghale and Blote [20]. For completeness, we first describe these three 
methods, and then summarize in Figure 3 their influences on the bias. 

In the Hetherington approach, the N weights of the configurations after evolution by dt 
are rescaled to give a probability distribution; then N new configurations are chosen at random 
from this probability distribution and each is given weight 1. Although it is rarely used, this 
method has the advantage of keeping N fixed, and this enabled Hetherington to estimate the 
scaling of the bias (neglecting correlation effects). The main disadvantage is that as dt ---+ 0, the 
replication is no longer effective: in fact, it is no longer affected by the potential, the diffusion 
occurs as in the absence of potential, and all the configurations become identical to within ilt. 
The effective number of random walkers is then equal to 1 and there is no guiding at all. With 
this replication, N must scale as 1/ilt to keep the bias constant as dt ---+ O. 

The standard replication procedure is best presented in a continuous time formalism [17]. 
Starting with equation (15), we see that the potential term gives a probability per unit time to 
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either die or to be born. Thus for each time step t1t, (V( z)-Eo)~t gives the decrease/increase in 
the population at that point in z and for that time interval. If it is negative, a new configuration 
is to be created at that z with that probability; if it is positive, the configuration has a death 
probability. In practice, this birth and death process is implemented [23J by picking a random 
number ebetween 0 and 1 and duplicating (or killing) whenever e< I(V(x) - Eo)~tl. 

We can now motivate the improved replication of Nightinghale and Blote [20J. Imagine 
using the ahove standard method and calcula.ting the growth estimator from 

e-ti.tEo~ (L~\n) ~~) = (N(n + 1)) 
N{n) before N(n) after 

(53) 

where N(n) is the number of configurations at time step n, and the average is over time steps. 
The first estimator is evaluated after evolution but before replication. After replication, one 
obtains a second estimator because Lf':(;) Wi is replaced by N(n + 1) which is simply a random 
variable whose average is L~\n) Wi' We see therefore that measuring observables after the 
replication introduces unnecessary noise. Nightinghale and Blote realized that it was possible 
to introduce a replication which introduced no noise at all into the total population weight 
so that the growth estimator is the same before and after replication. The idea is to keep 
weighted configurations, and to do the birth/death processes only when the weights have varied 
significantly. Their replication is defined as follows. First, for a birth process, one duplicates 
a configuration and reduces its weight by a factor 2. (Note that this is deterministic rather 
than stochastic.) Second, for a death process, given two configurations of weight Wi and Wj, 

one selects one of them with a probability given by its weight relative to Wi + Wj' The other 
one is killed, while the first is maintained and given the new weight Wi + Wj' This procedure 
preserves exactly the total weight of the population during replication. 

How do these replications influence the bias in "p* ? Not surprisingly, the three methods 
lead to biases which scale with 1/N, but with different coefficients. The Hetherington method 
gives rise to a bias which scales as l/{N~t), as discussed above, whereas the two other methods 
have finite Llt ~ 0 limits. In Figure 3, we show the dependence on 1/N of the energy of an 
anharmonic oscillator problenl. The different replications all lead to a linear dependence at 
large N. Note also that there is no improvement in this case when going from the standard 
to the Nightinghale-Blote replication. Probably the main advantage of the Nightinghale-Blote 
replication is that it is a well defined process; on the contrary, the standard replication can 
with a low probability lead to an empty population, so its large time behavior leads to incorrect 
results. 

5.4 Modifying the estimator 

Once it is realized that 1/1* is inevitably different from ,po, it is natural to modify the estimators 
so as to remove the bias. The idea is to use matrix elements between "p* and any given trial 
wave function "pT, while inserting projection operators so that only the ground state components 
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contribute. For instance, the ratio of matrix elements 

(1/J'fle-(k+l)~tHI1/J*) == e-AtEo (1 +O(e-kAt(E\-Eo)) (54) 
(1J1Tle-k~tH 11/1*) 

leads to a growth estimator of the ground state energy which is unbiased in the k -+ 00 limit. 
The numerator and denominator can be estimated simultaneously (up to the same multiplicative 
constant) within one MC run. For instance if we assume the weights to be 1 (as in two of the 
three replicat.ions discussed above), the denorninator can be estimated using 

N(ni- k ) 

(1/1Tle-kAtlf l1J1*) ~ L 2: 1/JT (xi(n + k») IIk(n) , (55) 
n i:::J 

where n is the tinle-step number. In this expression, IIk(n) == II:~~+k-l7r(l), and 7r(I) is the 
factor by whic11 the weights are rescaled before replication number l. This factor is used to 
maintain the population size around some average value. Whenever estimators are derived from 
ratios of matrix elements as we have done here, it is clear that the correct procedure is to average 
first and take ratios second, rather than take ratios first. This is a way of justifying the Ceperley
Kalos [19] improvement of the way Kalos [23] calculated the energy. Nightinghale and Blote 
[20] introduced the same estimators, which they motivated by "undoing" the normalization 
used in the replications. It seems to us that the best way to understand both why the method 
works and its limitations is to realize that one is estimating matrix elements. 

Given the above estimator as a function of k, the exact answer (up to statistical errors) 
is obtained by extracting the k -+ 00 limit, with an exponential convergence. However, it is 
important to note that in this limit, the estimators for both the numerator and the denominator 
grow exponentially, so one must in practice extract the limiting behavior from small values of 
k. In Figure 1: we show the results using these lIlodified estimators for the pairing Hamiltonian 
probleln (cf. Section 4). To compare the usefulness of the tnethod for a realistic problem, we 
have used the same statistics for the points with k = 0 (i.e., the estimator used in Section 4), 
and for the other values of k. We see that when the error in the naive method is large (too small 
N), the above estimator greatly improves things. However, when the bias is already small with 
the k = 0 estiJnator, increasing k rapildy reaches noise levels where there is no improvement. 

A consequence of this is that it is possible to introduce unbiased (up to exponentially small 
corrections) estilnators for local operators which do not commute with the Hamiltonian. Let 0 
be a general (local) observable; in the standard method, an estimator for its expectation value 
is obtained froID 

(1/101 0 11/10) ~ < 1/1Tle-
TH

°11Po > (56)
< 1/1Tle-TH I1J1o > ' 

where T should be taken large enough to eliminate contributions from excited states. Since we 
know that in fact 1J1* 1- 1/10' a computable observable is 

< 1/1Tle-THOe-kAtH 11P* > 
(57)< 1/1Tle-(T+kAt)HI1J1* > 
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Then the bias in the numerical estimator is due to extrapolating to the T, k -+ 00 limit, and 
to the fact that with finite statistics, the numerator and denominator are correlated; this last 
contribution can be made arbitrarily small by extending the length of the run. 

Conclusion 

We have shown that projection Me methods for calculating ground state properties a.re affected 
by a bias related to the finite size of the population of random walkers. The source of this bias 
is the replication which is introduced to avoid an exponential growth/decay of the population 
size. This difficulty oc.curs whenever the propagator differs from a diffusion operator (i.e., 
Ei Aij varies with j in matrix notation). The propagation of the population of walkers then 
converges to a stea(ly-state distribution which we call 1/;*, and which is not equal to the exact 
ground state 1/10, Our analytic calculation shows that, for a particular replication procedure, 
1/;* corresponds to the ground state of a modified Schrodinger equation in which the mass m 
is replaced by an effective mass m * = m( 1 - 1/N) for a population of walkers of size N. As a 
consequence, the bias on any observable scales as liN. Nevertheless, for the replications used 
in practice, we have not been able to obtain the detailed form of the correction, so this is still 
an open problem. Finally, we have considered different strategies to eliminate the bias, namely 
extrapolation in N, modifications of the evolution/replication procedure, or the introduction 
of new observables. This latter approach proves to be the most efficient as it can deal with any 

1/1* =11/10' 
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Appendices 

A Derivation of the moments of W, F, and FN 

Let us present the calculation of the various moments of W, F, and FN· (The calculation 
requires only keeping terms of first-order terms in t1t in the expansion of w(x) and P(x' , x).) 
In order to calculate the expectation value of FN , we expand in powers of 6.t the expression 

for FlY, leading to 

_ E[F] [ _ Cov[P, w] var[w]] 1 t2 (58)E[FN] - E[W] 1 E[F] E[W] + E[W]2 + C (6. ), 

where Cov[] and Var[] stand for the covariance and the variance of the arguments, respectively. 
We are interested first in calculating the expectation value of both estimators Wand F. We 
have for the expectation value of W 

tltE[W] = E[w(:I:)] = e- Eo [1 - Llt Jd:l: 1/1(:I: )(V(:I:) - Eo) + O( Lle)] (59) 

where we have made use of the normalization of P( x', x), and we have only kept the contribution 
of first-order terms in t1t in the expansion of w( x ). Note that the expectation value is calculated 
by use of 

E[X] =JJdx dx' P(x' ,x)1jJ(x)X(x,z') (60) 

For the expectation value of F(z), we have 

E[F(x)] E[w( x )8( i - :v')] 

1/1(x)w(x) + ~ [1/1(:1: )w( :I: ) e=i 
e-tl

' Eo [1/1(x) + ~1/1"(X) - Llt (V(x) - Eo)1/1(x) +O(6.e)] (61) 

where we have kept the second-order term in the gaussian random walk eXVi1,llsion, yielding a 
term in flt. Note that all the deriva.tives of w(x) are neglected because they give one supple
mentary order in 6.t. The ratio of the expectation values of both estimators then expresses 
as 

EJ;i:/1 = 1/1(x) + ~~ 1/1"(x) - Llt (V(x) - Eo)1/1(x) 

+L.\t -,p(x) Jdz 1jJ(x )(V(x) - Eo} +O(L.\t2) (62) 
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when neglecting second- (and higher-) order terms in 6.t. Assuming that the points Xi are 
independent, we get for the covariance of F and W 

Cov[F(x), W] = 
1 N N 

NZ L L Cov[w(xi)5(x  xD, w(Xj)J 
i=l j=l 

- ~ [E[w 2(x)5(x  x')]  E[F(x)] E[W]] (63) 

It is worth noticing that this independence assumption is a crucial point of the calculation, as 
explained in Section 3.1. Now, we have thus to calculate 

Finally, we can express the covariance of F and W as 

Cov[F(x), W] == 

- ~e-2LiI Eo [~t (V(x) - Eo)t/J(x) - ~t t/J(x) f dx (V(x) - Eo)t/J(x) + O( ~t2)] (65) 

Now, assuming the Xi to be independent as previously, we have for the variance of W 

TJsing 

(67) 

we get 

Var(W] == ~e-2~1 Ro O(6.tZ) (68)
N 

Thus the contribution of the third term in the right-hand side of equ. (58) is of the order 
~t2, and can be neglected. Finally, using (58), (59), (61), (62), and (65), we obtain for the 
expectation value of FN , 

E(FN(x)] == 1j;(x) + 6.t 1j;"(X) - dt (V(x) - Eo)1jJ(x) +6.t 1jJ(x) / dx 1jJ(z)(V(x) - Eo)
2m 

~t - - 6.t - f+N (V(x) - Eo)1jJ(x) - !i1jJ(x) dx 1jJ(x)(V(x) - Eo) +O(6.t2 )(69) 
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B Bias in the wave function 

We are now searching for an expression of the biased wave function .,p*(z). Using equ. (39), 

the energy bias is written as 

(70)~E = E* - Eo == f dz V(z) (.,p*(z) - .,po(z)) 

Let us write 1 
'I/1*(z) == .,po(x) + N1(z) (11) 

since it is clear that the sampling introduces a perturbation of the order l/N (via the effective 
mass) on the wave function 1/1*(z). Note that the normalization of 1/1*(z) imposes the condition 

0 (72)f I(z) dz == 

As a consequence of (70), it is evident that the energy bias will also be of the order 1/N, but 
we are interested here in an absolute value (not only the scaling with N). By inserting (71) 
into eq. (36), and keeping only the first-order term in the expansion in l/N, one obtains the 
equation for f( z ) 

- 2~ f" + (V(z) - Eo)f(z) - (V(z) - Eo)"'o(z) - "'o(z) f dz V(z) f(z) = 0 (73) 

where we have made use of eq. (23) and (31). It is apparent from eq. (70) that the forth 
term can be written 1/10(z) N ~E, and thus this equation can also be used in order to deduce 
~E. Let us expand the perturbation component j(z) in a series of the eigenfunctions of the 
unperturbed Schrodinger equation, 

Note that the eigenfunctions 1/1n(z) have an arbitrary normalization here, that is J1/1n(z) dz == 
In' so that equation (72) imposes that 

00 

1(x) = Lan 1/1n(Z) 
n=O 

(14) 

(15)
 

Insertion in eq. (73) yields 

L
00

an(En - Eo)1/Jn(z) == [V(z) - Eo + lV ~E] 1/10(z) (76) 
n=O 

which must be valid for all z. Thus, in order to determine the coefficients an, the right-hand 
side of eq. (76) has to be expanded in a series of the 1/Jn(z). First, we can calculate the energy 
bias !i.E by writing the equation corresponding to n == 0 : 

f 11/10(X )1 2 [V( z) - Eo + N !i.E] dz == 0 (17) 
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Thus we have 

~E =; 
1 
~ [Eo -
N 

(V)oJ = 
(T)o
-
N (78) 

where 

(V)o = f l1/Jo( x) t 2 V( x) dx 
fl1/Jo(X)/2 dx (79) 

stands for the expectation value of the potential energy in the unperturbed ground state, while 
(T)o is the liirnHar expression for the kinetic energy. Note that this expressi.on is of course 
equivalent to equation (41). The other terms (n =I- 0) of the expansion along with the obtained 
value for ~E can be used in order to evaluate the an's. Then ao is obtained using (75), and 
thus we can precisely determine f(x). 

Let us check our results in the simple case of an harmonic oscillator, with a potential 

1 
V(x) =~ -mw2x2 (80)

2 
The normalized (with our convention) ground state wave function is given by 

a2x~ 
21/Jo(x) = If;~ e --2- with a =n:w (81)

271" II, 

Our estimate for the ground state energy is then 

Eo '" JV( z)'rpo(z) dz '" Ii; (82) 

It can be checked that the perturbation component of the wave function can be simply written 
in this case as 

(83) 

(84) 

with an energy 

J 
5nw 

E2 = V(x)?/-'Ax) dx = -2- (85) 

Then, eqr:.atiolts (72) and (73) are verified on the condition that a2 = --Uo =---= 1/8, so that f( x) 
is exactly given by 

J(z) '" ~ f~2- (0\,,2 - l)e-¥ (86)
4 y21r 

Finally, the estimate for the energy bias can be calculated as 

w 
l:1E = N1 Jdx V(z)(aotPo(x) + a21/J2(x)) = N1 [E2 

-8 Eo] = N1 ["'4 ] (87) 

Now, using virial theorem for the harmonic oscillator (V) = (T) = Eo/2, and replacing into 
equation (78), one finds the same expression for the bias. 
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Figure captions 

Figure 1: Growth estimator for the ground state energy as a function of liN, with N being 
the size of the population of random walkers. The data fit to a line corresponds to the simple 
estimator (i.e., k = 0). The corrected estimators (following [20], as discussed in 5.4) for 
k = 20,50,100,150 are also shown. The model consists in n = 12 pairs of particles placed in 
n = 24 equispaced doubly-degenerate levels, and interacting through a pairing force of strength 
G = 0.5 (see [28, 29]). The exact value of the energy is 13.096 (expressed in units of the level 
spacing). 

Figure 2: Four first reduced moments (J.Lklp}f/act 
, with k = 1,.··4) as a function of liN, with N 

being the size of the population of random walkers. The system is an 1-D anharmonic potential 
V(;c) = ;c4 - ;c2 + z/2. (The used time-step is Llt = 0.05). 

Figure 3: Estimator of the energy as a function of 1/N, for the three different types of replication 
procenures (with the same time step Llt = 0.05). Std.: standard method; N-B: NightinghaJe
Blate; H-I: Hetherington. The Lll-dependence of the Hetherington replication is also illustrated 
by the dashed line at Llt = 0.025 (H-II). The system is an 1-D anharmonic potential V( x) =
x 4 

-- z2 + x/2. 
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