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Abstract 

Many models of immune networks have been proposed since the original work of Jerne. 
Recently, a limited class of models (Weisbuch et al., 1990) has been shown to maintain 
immunological memory by idiotypic network interactions. We examine generalizations 
of these models when the networks are both large and highly connected to study their 
memory capacity, Le., their ability to account for immunization to a large number of 
random antigens. We find that the introduction of continuous affinities destroys the 
memorization capability. However, if the models are reinterpreted so that the response of 
immunized clones is different from that of virgin clones, the memorization capacity can 
be improved. 
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1. Immune Networks. The immune system is a complex interacting dynamical system 
with many facets. Its function, defense of the organism, is carried out in ways which vary 
from species to species and even within a given host because of its history. In spite of this 
complexity and variability, there are some principles behind the /unction which appear in all 
species. In particular, immune systems of vertebrates solve the self-non-self problem and the 
memorization problem. Briefly, for defense to occur, it is necessary to distinguish dangerous 
foreign bodies (antigens) from cells of the host. Furthermore, this defense is more effective 
if previously encountered antigens can be recognized, Le., remembered: this is what we call 
memorization or immunization. One class of "theories" supposes that the various cells in the 
immune system interact and regulate each other in such a way that the two above problems 
are solved. These approaches have been called "network" theories because the interacting cells 
form a network (Atlan and Cohen, 1989; Bruni et al., 1979; Perelson, 1989b). They are to 
be contrasted with clonal selection theories (Burnet, 1959) where cell-cell interactions are not 
central to the defense mechanism, rather dynamics are antigen driven. 

Network theories, originated by Jerne (1974), have seen a resurgence of interest (De Boer and 
Hogeweg, 1989a, 1989b; Perelson, 1989a; Weisbuch, 1990) in the last five years; our purpose 
here is to investigate the ability these new models to maintain immunization via idiotypic 
network interactions. One of the hopes of the network approach is that it can provide a 
dynamical memorization mechanism, Le., memory without the use of long-lived "memory" 
cells; the memory is to be stored in the form of populations of cells which self-renew while 
neither increasing nor decreasing in size. Consider a clone (the family of cells which share 
the same antibody structure) AbI responsible for immunization against an antigen Agl • After 
the antigen is eliminated, AbI might be maintained in the body for a long time by a network 
generated "internal image" of the antigen, provided in the form of a complementary clone Ab2• 

But then it is necessary to consider how this internal image Ab2 is maintained. One might have 
to introduce an infinite sequence Abn , Abn+I , ••• , or the process might bootstrap itself at some 
finite length. It was necessary to introduce quantitative models (Hoffmann, 1975; Richter, 1975) 
to see how this last possibility could occur. Depending on the model, the internal images are 
either due to collective effects (Parisi, 1990), or are due to a small number of clones which can 
coexist with the primary clone AbI (Weisbuch, 1990; Weisbuch et al., 1990; Neumann, 1992). 
Although the model of Parisi is very elegant and provides a partial realisation of what Jerne was 
driving for, it has the inconvience of being very schematic and difficult to interpret biologically: 
the clones are either present or absent (no concentrations are considered), the dynamics occurs 
in discrete time steps like a cellular automaton, and the model uses negative affinities. The 
more recent models do not have these drawbacks, the clonal dynamics they incorporate is more 
realistic and easily interpretable. They have thus become regarded as "standard" minimal 
models, and provide a framework for numerous workers in the field. The question is whether 
these standard models can solve the self-non-self problem and memorization satisfactorily. 

In what follows, we consider the memorization aspects of these standard models in order to 
determine whether immunization against many antigens is possible. We will define the memory 
capacity to be the typical maximum number of antigens the network can memorize. Generally, 
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it is difficult to calculate this memory capacity, both because the networks of interest are too 
large to be simulated, and because an analytical calculation is beyond hope, except in special 
cases. This explains why this question has not yet been addressed except when imposing the 
affinities to be 0 or 1 (Weisbuch, 1990; Weisbuch et al., 1990; Neumann, 1992; Weisbuch 
and Oprea, 1993). In what follows, we show that continuously variable affinities diminish the 
memory capacity of these models to the point of non-existence. However, the memory capacity 
of the models can be improved by a particular reinterpretation: if clones undergoing somatic 
mutations and affinity maturation (with T-cell help) see their field-response curve suitably 
modified, the memory capacity of the network is potentially large. 

In section 2, we review the standard models, and discuss known results concerning immu­
nization. Then in section 3, we introduce the notion of memory capacity and its relation ~o 

the number of fixed points in these networks. Section 4 gives the mathematical formulation of 
the problem and describes the approximations we use. Section 5, the heart of the paper, gives 
analytical and numerical results for the memory capacity in the standard models for a number 
of affinity matrix ensembles. Section 6 gives a qualitative discussion of dynamical aspects of 
memorization. Finally, section 7 summarizes our results and the light which they shed on the 
potential of these standard immune network models. 

2. Clonal Dynamics and Idiotypic Interactions. The "standard" models deal either 
with B cells ("B models") (De Boer and Hogeweg, 1989a, 1989b; Weisbuch, 1990; Weisbuch 
et al., 1990; Weisbuch and Neumann, 1991; Neumann, 1992), or with B cells and free anti­
body concentrations ("AB models") (De Boer and Hogeweg, 1989b; Varela and Stewart, 1990; 
Stewart and Varela, 1990). The effects of T cells, MHC molecules, antigen-presenting cells 
or regulatory molecules such as cytokines are supposed to be absorbed into effective B cell 
dynamics. Thus in no way should the models be considered as microscopic; they are effective 
models which hopefully adequately describe the main features of the B cell dynamics. More 
recently, AB models have been proposed which include the effects of complexing of anti-bodies 
with antigen and their elimination, or which introduce delays before B cells become effectors 
(De Boer and Hogeweg, 1989b; De Boer and Perelson, 1991; De Boe'r et al., 1993a, 1993b; 
Segel and Perelson, 1991). It turns out that for the question of immunization, most of these 
models lead to the same fixed point equations and thus have the same memory capacity, so our 
results apply to them too. In this section, we briefly review the simplest of these models (the 
B models), and discuss known results. 

The dynamics of real B cells is not well understood; nevertheless, it is clear that certain 
experimental conditions will activate B cells, leading to a cascade of events which culminates 
in the production of antibodies. The activation depends on the way the antigen is presented 
(in solution, on antigen presenting cells, etc...) and on the antigen concentration. It is widely 
believed that the signal which activates B cells is the cross-linking of membrane antibody 
receptors (Perelson and DeLisi, 1980). Cross-linking requires that the antigen be multi-valent, 
i.e., that the epitope (the part of the antigen which binds to the antibody) be present on 
the antigen multiple times, or that multiple copies of the antigen be presented by antigen­
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presenting cells. (It is not surprizing then that IgM, the antibody molecule which is considered 
to be responsible for interactions in network models, has a high valency.) If an antigen is 
present only in very low concentration, there is little binding, little cross-linking, and thus no 
activation. Similarly, at very high concentrations, if the antigen is soluble, each membrane 
receptor will likely bind to a different antigen so that there will be no cross-linking either. 
Cross-linking and activation are expected to occur only in a window of concentration, leading 
to a bell-shaped dose response curve. This type of response curve for interactions between the 
B cells through their antibodies, called idiotypic interactions, is the starting point of network 
models. In order to incorporate monovalent antigens and their effects on B cells, it is necessary 
to have antigen-presenting cells. These cells are implicitly taken into account in the standard 
models, and common practice is to assume that the concentration of the antigen, be it mono 
or multi-valent, acts in a similar way to IgM concentration. 

Rather than keep track of how many cells belong to a given clone (the set of cells giving 
rise to the same antibody molecule), the standard models use population dynamics where one 
considers instead clonal concentrations. The evolution equation for Bi , the concentration of 
clone i associated with antibody Abi , is taken to be: 

(1) 

P(h) is the proliferation function or response curve describing cross-linking and thus activation. 
Often, it is taken to be a product of two threshold type functions (De Boer and Hogeweg, 1989a). 
The all or none activation of a cell is modeled in this population dynamics picture by a positive 
or negative growth rate of the clonal size so that P(h) can be considered to be the probability 
of activation. Si(t) is a source term describing the fresh supply of B cells coming out of the 
bone-marrow. The precursers of B cells undergo DNA "surgery" in the bone marrow; at the 
end of this process, a given B cell and all of its descendants (neglecting somatic mutations) can 
produce only one antibody molecule type. The set of antibodies which can be produced in this 
way is called the potential or naive repertoire and is estimated to be about 100 times greater 
than the number of clones present in the system at any time (Freitas et al., 1986). For mice, 
the size N of the potential repertoire is expected to be greater than 109 

• hi (t) is defined as 

N 

hi(t) = L, JijBj(t). (2) 
j=l 

hi is called the "field" felt by clone i, and Jij is the affinity between the anti-bodies produced 
by clone i and clone j. In this minimal B model, the concentration of anti-bodies is taken to 
be proportional to the concentration of the corresponding cells themselves. This concludes the 
questions of idiotypic interactions, Le., the interactions between the network of antibodies and 
B cells. If one introduces an antigen into the system, the field felt by clone i should be increased 
by JiACA where CA is the concentration of the antigen introduced. Equation (1) defines the 
dynamics of the B cells within the standard models. In the "AB" models, for each index i, 
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a further equation is introduced for the corresponding (free) antibody concentration. In more 
complicated and realistic models (Segel and Perelson, 1991; De Boer et al., 1993a, 1993b), there 
is an additional equation for complex elimination or for gearing up. Weisbuch, De Boer, and 
Perelson (1990), hereafter referred to as WBP, showed that the minimal B model can maintain 
internal images, and thus gives rise to network memorization without the need for long lived 
"memory"cells: clonal populations are self-maintaining through their idiotypic interactions.. 

It is simplest to first describe network memorization at the two-clone level. Assuming that 
Si(t) is constant, it can be shown that the dynamics takes the system to a time independ~nt 

solution of the dynamics (a fixed point). For small source terms, each clone will be either nearly 
absent (Bi sdd), or be subject to a field h L or h H, where these two values are givenI'V I'V I'V 

by the two solutions of P(h) - d = O. (P being a bell shaped curve, there are two solutio.ns 
as long as d is less than the maximum of P. This is necessarily the case biologically, otherwise 
one could never get clonal expansion.) This leads to a total of five fixed points if there is no 
self-affinity, only three of which are stable. If a clone concentration goes to zero in the absence 
of the source, it is said to be in a virgin state (V), and it is not activated. If a clone is subject 
to a field h I'V L, it is said to be in a vaccinated or immunized state (1). (Note that this state 
depends on the field, i.e., on the other clones, it is not a cellular property). To justify the 
nomenclature "immunized state", consider introducing an antigen complementary to the clone 
in question; the field seen by the cell will increase so that L < h < H, leading to proliferation 
of the clone. Finally, if a clone is subject to a field h I'V H, it is said to be in a tolerant state 
(T). Indeed, if an antigen complementary to the clone in question is introduced, its field will 
increase so that H < h, leading to suppression of the clone. Thus, this clone will not mount an 
immune response to complementary antigens, it is in a tolerant state. The stable fixed points 
for the two clone system correspond to (V, V), (1, T), and (T,1). 

The three B cell states (V, I, and T) are not restricted to the two clone case, rather they 
occur in larger networks, and allow one to classify the fixed points of the dynamics. In the 
two clone case, the immunized clone is maintained in the network by an internal image of the 
antigen, in this case, a complementary clone. In the case of a general network, the immunized 
clone may be maintained by many complementary clones as in the Parisi model, or by just a 
few complementary clones as in the work of Weisbuch, De Boer, and Perelson (Weisbuch et al., 
1990). 

Implicit in all these models is an affinity matrix J. It is possible to measure affinities 
between particular antibodies (Vakil and Kearney, 1986), but in view of the number of potential 
antibodies even in a single individual, clearly the only attainable goal is to characterize J by 
its statistical properties. Thus for modeling purposes, one should consider expected or average 
(memorization) properties over an ensemble of affinity matrices. To be realistic, the Ji;'S should 
be continuously distributed, and the affinity matrix should have certain average connectivity 
properties. We will take a random or mean field limit where the Jij's are independent random 
variables. This amounts to modeling the imrnune system by clones which randomly sample 
a very large (shape) space. What is important is that this mean field choice allows analytic 
calculations and simpler numeric treatments (because of the symmetries). Another possible 
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limit is to consider highly structured affinity matrices. This was the choice of WBP which we 
now describe for completeness. 

For the topology of their network, WBP use a Cayley tree. A Cayley tree is a tree graph (no 
loops) with constant degree, except for the nodes forming the leaves. The nodes of the graph 
label clones, i.e., i, and the affinity matrix for idiotypic interactions has entries of 1 for nearest 
neighbor nodes, 0 otherwise. This double constraint (only one non-zero value of Jii and very 
low connectivity) enables the internal images of the two-clone case to be easily generalized to 
the network. For instance in the immunized state, (taking the limit 8 --+ 0), the corresponding 
clone has a field of h = L, its nearest neighbors h = H (tolerant state), and the next-nearest 
neighbors are in the virgin state. The Cayley tree network thus allows for localized fixed points 
of the dynamics in the form of clusters of clones which provide immunization against the antigen 
complementary to the immunized clone. Furthermore, these fixed points are attractors. (The 
stability of such fixed points may be modified when considering "AB" or more complicated 
models; the introduction of other dynamical variables or of delays in the proliferation of the B 
cells can stabilize or destabilize the motion (De Boer and Hogeweg, 1989b; De Boer et al., 1993a, 
1993b)). It is possible to immunize against a large number of antigens as long as the clusters 
are non-overlapping: if p is the average degree of the Cayley tree, the network can memorize 

approximately J2N/p antigens (Weisbuch and Oprea, 1993). This possibility depends on the 
low connectivity of the network and on the binary aspect of the affinity matrix. In reality, 
affinities take on a wide range of continuous values, and antibodies are multi-specific, that is 
they will bind to some extent to a large number of different antigens or epitopes. The question 
is then whether the standard models can give rise to immunization (memory) against a large 
number of epitopes when the connectivity and Jii values are more realistic than those chosen 
by WBP. Our answer will be no, the main culprit being the continuous values of the affinities, 
and this is apparent at the level of the fixed points, there is no need to consider dynamical 
aspects. 

3. Memory Capacity and Fixed Points. Whether or not the standard models lead to 
immunization against a large number of antigens depends on the ensemble of affinity matrices 
considered. It is a network question because a clone on its own in these models will collapse and 
disappear; one needs a collective effect to maintain internal images and memory. As mentioned 
above, the affinity matrix choice of WBP does lead to immunization against many antigens, but 
we want to consider more general (and potentially realistic) cases. In what follows, we assume 
as done in (Weisbuch et al., 1990) that each antigen is complementary to just one antibody 
(but see the two comments below). For immunization against a set of antigens, we require that 
the corresponding complementary clones be in the h = L state. Other clones should be in the 
tolerant or virgin state because one doesn't want to develop immunizations against antigens 
never encountered. (Note h.owever that the original Jerne picture of internal images of internal 
images and so on could lead to immunized clones which are not complementary to external 
antigens but rather to internal idiotypes.) 

Some comments are in order. 
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(1) The one to one map from antigen to its complementary antibody is unrealistic: first, an 
antigen generally has several epitopes, and second, it is known that antibodies are multispecific, 
i.e., bind to a number of different epitopes. However, one might argue that during the immune 
response to the invading antigen, the somatic mutations and affinity maturations occuring after 
T-cell help may lead to a dramatic reduction of the multispecificity for one or a small number 
of clones which recognize a few of the antigen epitopes (Berek and Milstein, 1987). Thus one 
could have (after the infection and thus for the purposes of the memorization) just one or a 
few clones which interact strongly with the antigen. Then antibody interactions with foreig~ 

epitopes would be highly specific, while idiotypic interactions would remain multispecific. For 
simplicity of presentation, we keep the one to one (rather than one to few) map from antigen 
to antibody, but the generalization to the more realistic case simply decreases the memory 
capacity by the average number of epitopes recognized on an antigen. 

(2) In the work of Weisbuch and Neumann (1991), memorization includes both immunization 
and tolerance, but we have chosen to consider only immunization. Tolerance in their model 
is possible because they assume each antigen is uniquely associated with one clone. We have 
just argued that this may be justifiable for immunization, but it is not possible to extend the 
argument for tolerance. Even assuming such a one to one map, tolerance in these types of 
models cannot be achieved unless there is an extremely low network connectivity (it is then 
enough to immunize against all clones which are reactive with the antigen). 

We now come back to the question of immunological memory. Suppose it is necessary to 
be immunized against M antigens (or in the more realistic framework mentioned in the first 
comment, against M epitopes). We will require that the corresponding M complementary 
clones be in the immunized state (h f'.j L). The question is then whether it is possible to recruit 
into the network other clones in the h f'.j H state so as to reach a (stable) fixed point of the 
dynamics. In the WBP model, it is sufficient to put the neighbors of these M clones in the 
h == H state, and then find the corresponding clonal concentrations by solving a system of two 
equations, assuming that the immunized clones do not interfere with one-another. If one were 
allowed to choose these M immunized clones (rather than having them imposed upon us from 
the outside), the standard model with the network of WBP could be immunized against on 
the order of N jp epitopes, where N is the size of the network, and p is the connectivity of the 
Cayley tree. If, on the other hand, the antigensjepitopes against which one is to be immunized 
are given at random as is more or less the case in reality, that model can only be immunized 
against on the order of J2Njp antigens (Weisbuch and Oprea, 1993). That is because as 
one tries to impose more clones to be in the immunized state, they interfere with previously 
immunized clones on the Cayley tree. We say that the memory capacity of the WBP idiotypic 

network is M* == V2Njp. If one tries to memorize M « M* random epitopes, one is almost 
surely able to do so; if M >> M*, one is almost surely unable to do so. Mathematically, the 
transition is smooth at finite N, but in our analysis and in Parisi's model, as Nand M ---+ 00, 

the transition is more and more abrupt so that one is sure to be able to memorize (1 - e)M* 
and unable to memorize (1 +e)M* epitopes in the large N limit for any fixed positive e. Thus 
we define the memorization or immunization capacity of a general network by its transition 
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point M*. A memory capacity on the order of N is very large, certainly adequate for biological 
purposes. (In the Parisi model, one has M* ~ N/3.) A memory capacity proportional to Vii 
is possibly still acceptable, but it would be more satisfactory to have a larger capacity. As we 
will see in section 5, the standard models, with the standard interpretation, lead to M- ~ In N 
which is clearly too small for biological purposes. 

We will calculate the memory capacity in the following manner. Assume one is given M 
random clones which are to be in the immunized state, and that one is to recruit further clones 
so that a fixed point is reached. We add N' - M clones and put them into the h == H state. 
If M << M*, there almost certainly is a way to recruit N' - M such clones such that the N' 
clones taken together form a realizable fixed point with all clonal concentrations positive. As 
M increases, there are fewer and fewer ways to do this recruitment, until when M becomes 
comparable to M*, it is no longer possible to recruit clones and find a realizable fixed point. We 
will calculate the number of ways of recruiting clones to find a fixed point, as a function of M in 
the limit of small source terms. For small M, there will be an exponential (in N) number of ways 
to do the "completion", whereas for large M, the number of ways will decrease and approach 
zero. M* is defined as that transition point where one goes from an exponentially large number 
to an exponentially small number of realizable completions. Naturally, an exponentially small 
number simply means that the average number of completions is small; this number should 
'thus be interpreted as a probabilistic average in the ensemble of affinity matrices considered. 

4. The equations for the fixed points. Despites their differences, the Band AB models, 
and most generalizations thereof, lead to the same fixed points equations, to a large extent 
because they use in the same way the activation function to describe the proliferation of B cells. 
(This is not so for the Parisi model, where activation is described with a threshold function, 
making the Parisi model identical to a spin glass or neural network model.) We are interested in 
the fixed points of the dynamics which can be interpreted in terms of immunization. Consider 
equation (1): Si(t) is a stochastic source term representing new cells coming from the bone 
marrow. For our modeling, clearly a fixed point is possible only if Si is time independant. Thus 
we think of Si(t) as being some average value Si plus fluctuations. If one has a stable fixed point 
for the above equations with the Si constant, 'the fluctuations in time of the source terms should 
simply lead to fluctuations about the fixed point of interest. Thus, as a first approximation, we 
replace Si(t) by its average value Si in the equations. With this replacement, the fixed points 
equations are obtained from equation (1) by setting the left hand side to zero: 

1 ~ i ~ N. (3) 

We shall deal with the limit where Si is very small, Si -+ o. Clearly the solutions of the fixed 
points equations as Si -+ 0 converge to the Si == 0 solutions. This continuity and the fact that 
Si is small experimentally (see discussion below) justifies our setting 8i == O. In this limit, the 
solutions of equation (3) have a simple interpretation: at a fixed point of the dynamics, a given 
clone i is either absent, B i == 0 (it is not recruited into the network), or it experiences a field 
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hi that is such that P(hi) = d, that is hi = L or hi = H. Once given the fields hi = L or H 
for each clone i present in the system, one may solve the system of linear equations J . B = h 
in the subspace spanned by the clones with B i > o. This gives the concentrations Bi for this 
particular fixed point. This is what we do in practice. For small (but non-zero) values of 
Si the structure of the fixed points will be the same, namely each clone i may be in one of 
three possible states: 1) not recruited into the network, (virgin state; the clone is present at a 
very low concentration and a small modification of the field hi has little effect on it); 2) it is 
recruited and a low activating field h r-..I L acts on it; 3) it is recruited and a high suppressiye 
field h r-..I H acts on it. However, there is a difference between the fixed points for Si = 0 and 
for Si small: some of the solutions found for Si = 0 will disappear when Si is turned on because 
the field hi may be such that the clone cannot stay in the virgin state. This difference is a 
question of meta-dynamics, and will be discussed in section 6. Overall, our limit Si = 0 tends 
to over-estimate the number of fixed points, so that the memory capacities we will quote are 
in fact upper bounds. 

Size of the source term. To see that the source term is experimentally small, it is important 
to realize that the label i corresponds to a unique antibody shape, not a collection of similar 
antibodies; Si is then one over the characteristic time it takes for the precursor cells in the 
bone marrow to produce the rearrangement which will give the particular antibody Abi • It 
is estimated (Freitas et al., 1986) in mice that the potential repertoire is greater than 109 • 

Furthermore, the bone marrow in mice produces about 2 x 101 new cells every day, so that it 
takes several months to produce by chance a cell of given antibody. (Note that it is possible 
that the bone marrow produces far fewer clones than it produces cells; it might then take up to 
a year to produce a particular antibody type.) Compare this length of time to the lifetime of 
typical B cells, 2 to 5 days. This shows that the rate of proliferation or suppression of B cells 
maintained in the network due to their mutual influence is much greater than the contribution 
from the source term. Thus in practice, Si has a negligeable effect for the clones recruited into 
the network (i.e., which have h r-..I L or h r-..I H). For the clones which are in the virgin state, 
the difference between Si =I 0 and Si = 0 is in some sense dramatic, as the clones occur in 
small concentrations in the first case and not at all in the second. Nevertheless, the effect of 
Si =I 0 is negligeable for our purposes because the clonal concentrations tend to 0 with Si. The 
fact that there are many of these virgin clones suggests that an important background field is 
produced by them. However, such a field, being due to many random clones, is nearly uniform 
(the same for all clones in the network). It is then easy to see that this background field can 
be absorbed into the definitions of Land H. Furthermore, biological constraints suggest that 
this contribution from the virgin clones is much smaller than L. 

The mathematical problem. The method to obtain the 8 = 0 fixed points for a given network 
defined by an affinity matrix J is clear:. one first chooses which clones it, ... , iN' in the system 
are to be recruited. Each recruited clone is assigned a field h = H or L acting on it. Then 
one has to invert the system J . B :::: h (where only the relevant lines and columns of J are 
retained), to obtain the concentrations Bil' •.. , BiN'. Doing this for each possible choice of 
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the fields h il , ... , h iN, will provide us with 2N ' potential fixed points. There are thus at most 
3N fixed points for the whole system. But not all these fixed points have physical meaning. 
Indeed the matrix J-l generally has some negative elements so there is no reason for the vector 
B = J-1 

• h to have all of its entries positive. We must retain only those solutions which have 
B j ~ 0 for all i in order to keep the physical interpretation of the Bi's as concentrations. This 
will give us the real (realizable) fixed points. We are interested in the number of these fixed 
points. Clearly this number will depend on the affinity matrix J at hand, but since J is not 
known in practice, we consider statistical ensembles of affinity matrices. We are interested 
in average properties such as the mean number of fixed points for a network picked in the 
ensemble, and the corresponding memory capacity of the network. These properties depend 
on structural characteristics of the matrices of the ensemble, such as their mean connectivity, 
their continuous or discrete character, etc... For a general matrix J without any structure (the 
Jjj's being independant identically distributed (i.i.d.) random variables), we will see that the 
number of positive solutions of the system J . B = h is essentially on the order of one, rather 
than the maximum, 2N '. A parameter which has an important influence on the number of fixed 
points and thus on the memory capacity is the ratio L/H. This ratio characterizes the width 
of the activation window. 

For the realizable solutions of the fixed points equations to be of biological interest, they 
must be attractors of the dynamics, so they must correspond to stable fixed points. The problem 
of studying the stability of a given fixed point is quite complicated since it supposes one is able 
to compute the eigenvalues of the linearized equations of motion. However this problem is 
very important if we want to interpret the memory capacity of the network in terms of the 
attractors of the dynamics according to which it evolves. The property of stability or non­
stability will most likely vary between the Band AB models and generalizations thereof. It 
might be argued that the actual dynamics has been selected by evolution to give the greatest 
stability. This stability problem is beyond the scope of this article, but see section 6 for a 
qualitative discussion. 

5. The memory capacity for some ensembles of Jjj. In this section we examine 
the problem of determining the number of fixed points and the memory capacity for several 
ensembles of affinity matrices J. Some ensembles are only of academic interest, but they 
nevertheless provide insight into the mathematical problem considered. Most of the technical 
derivations are presented in the appendices. 

5.1. The case J diagonally dominant. We first consider the unrealistic case where each clone 
i is given a large self-affinity J ji and has little interaction with the other clones. If the matrix 
J is purely diagonal, the problem is trivial as the N clones evolve independantly from each 
other. For any choice of the fields h, the vector J-1 

• h has only positive entries, leading to the 
maximum possible number of fixed points. Clearly if we introduce small enough off diagonal 
elements Jij, this positivity property will remain valid. More precisely, one has the following 
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sufficient condition: if all the off diagonal elements of J satisfy the bound 

N Jij < f(L/ H) min(Jkk) (4)
k 

where f(z) = ( VI + 4z2 1 ) / 2z rv z when z ¢': 1, then for any choice of h with hi = H or 
L, the components of J-1 • h are all positive. This bound is obtained by writing the Neumann 
series for J-1 and bounding each term. This diagonally dominant ensemble corresponds to a 
"network" which has maximum memory capacity, M* = N, as any of the clones can be set to 
the immunized state. 

5.2. The case of a random matrix J. We suppose here that the Ji/s are given as LLd. 
continuous random variables, so that there is no particular structure underlying the network 
and all clones are statistically equivalent. This also means that we consider a highly connected 
network, where each clone experiences a collective influence from all the other clones in the 
system. The Jij'S could be e.g. gaussian variables, but we expect the average properties not 
to depend on the detailed form of the J ij distribution in the limit of large N, at least if the 
distribution at large affinities falls off sufficiently quickly. In the cases we will consider, the 
Ji/s will be taken to be uniformily distributed in the interval [0,1], but after rescaling, this is 
the same as any other interval [O,z]. 

Since affinities are defined pair-wise, we should take the matrix J to be symmetric. However 
we consider the two cases, J ij symmetric and Jij non-symmetric. The non-symmetric case is 
unrealistic, but it is much simpler to analyze and it helps one understand the symmetric case. 
To find memory capacities in these networks, we calculate the probability that the fixed point 
with M given clones at h = Land N' - M given clones at h = H have all clonal concentrations 
positive. Note that in a given ensemble this probability, P(N',M,L/H), depends on N', M, 
and on the ratio L / H. Without loss of generality, we take the immunized clones to have index 
i = 1, ... , M and the suppressed ones index i = M +1, ... , N'. We denote the set of concentrations 
Bi and the fields hi acting on them by the column vectors B and h. For each choice of the 
N' - M clones, we seek the probability that the solution of the syst~m J . B = h has all of its 
entries positive. (It is understood that one is to truncate J to the space of recruited clones, 
i = 1, ... , N'.) The sum (over the choice of the N' - M clones) of these probabilities gives the 
mean number of fixed points, denoted by .N(N, M), containing the M immunized clones: 

N (N - M)

.N(N,M) = N'f;M N' _ M P(N',M,L/H). (5) 

Clearly, for M small, there are many ways to choose the N' - M clones, so .N(N, M) should 
be large. If M becomes very large, .N(N, M) will decrease and tend towards o. The transition 
point M* is the memory capacity of the network. 

5.2.1. The limit L/ H --+ o. It is easy to see that as L / H decreases, it becomes more and 
more difficult to complete the network of M clones with N' - M clones at h = H. Suppose 

11
 



M > 1 and that we seek a fixed point with N' - M recruited clones at h == H. We may write 

N' 
L JikBk == L, i == 1, ... , M (6) 
k=l 

N' 
L JjkBk == H, j == M +1, ... , N'. (7) 
k=l 

If the network were to behave as in the WBP case (and as is biologically plausible), the immu­
nized clones should have much higher concentrations than the suppressed clones. Then for the 
first M fields to be anomalously low, it is enough for the upper left M x M submatrix of J to be 
anomalously low. This amounts to forcing the immunized clones to not interconnect. Then the 
probability for having a physical fixed point should be suppressed by (LI H)M2 

as LIH ~ 0 rel­
ative to the L ~ H case. One expects this probability to be a monotonically increasing function 
of the parameter LIH which interpolates from zero for LIH == 0 to some N'-dependent value 
for LIH == 1. The end result would be a memory capacity proportional to Vii, analogously to 
what happens in the WBP model. However the network with uniformily distributed Ji/s does 
not behave as in the WBP case; one does not have a nice separation between immunized clones 
of large sizes and tolerant clones of small sizes. This makes it necessary to suppress the first 
M lines of J, Le., M.N' rather than M 2 matrix elements (c.f. the last paragraph of section 5). 
The end result is a memory capacity which scales as In(N)/ln(HIL): clearly, this is too small 
to be biologically useful. unfortunately, the limit LIH ~ 0 is in fact biologically relevant: the 
threshold values Land H which characterize the proliferation function P are experimentally 
such that L ~ H. Typical values are LIH rv 10-2 to 10-4 depending on the work; see Faro 
and Velasco (1993) for an overview. 

In summary, in these standard models, the memory capacity is very suppressed compared 
to what it could be if Land H were comparable. However, in view of a possible extension of 
the model discussed in section 7, it is appropriate to understand the memory capacity when L 
and H are not very different. Analytically, we have been able to treat the general case, but we 
will first present the limit L = H before dealing with L'and H arbitrary. 

5.2.2. The case Jij non-symmetric. We suppose here that the Ji/S are LLd. random 
variables uniformily distributed in [0,1] with J ij and Jji independent. This is an unphysical 
ensemble (note however that previous theoretical studies considered non-symmetric idiotypic 
interactions), but the results for symmetric and non-symmetric matrices are nearly identical. 
Essentially, the symmetry constraint Jij == Jji seems to become unimportant in the large N 
limit. 

The analysis can be done exactly if one takes the limit L IH ~ 1, so that H and L are 
considered equal. The 2N ' systems of equations J . B == h are now one and the same equation, 
namely J . B == 1 up to a trivial scaling of the concentrations. 1 is the vector (1, ... ,1). By a 
geometrical analysis which uses symmetry arguments, it is possible to show that the probability 

1P(N', M, 1) is equal to 1/2NI
- • Briefly, J is a random set of independent row vectors so that 
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the vector J-1 • 1 is equidistributed in each of the 2N 
'-1 sectors defined by the relative sign of 

the entries for each index. We refer to appendix A.l for a proof. 
We may now evaluate the memory capacity for this non-symmetric random network in the 

limit L / H -+ 1. For this, we compute the average number of fixed points given that there are 
M specified clones and any number N' - M clones to be added in order to obtain a physical 
fixed point. The mean number of fixed points containing the set of M clones is 

N(N,M) = t (N, - M)2-N '+1 = 2-M +1(3/2)N-M. _(8) 
N'=M N-M 

We then see that the memory capacity as defined in section 3 is M* = >..N with 

In2 
(9)>.. = 1 - In 3· 

5.2.3. The case Jij symmetric. We consider here the more realistic case where the interac­
tions between B cells are symmetrical. As before, the Jij's are taken as LLd. random variables 
uniformily distributed in [0,1], except that we now have Jij = Jji • Again we seek the mean 
number N of fixed points given a set of M immunized clones in the network. We first deal 
with the limit L -+ H because it is analytically simpler. Then we generalize the analysis to 
general values of Land H. Because the calculation involves many steps, we refer the reader to 
the appendices for most of the details. 

There is no obvious way to generalize the geometrical analysis of appendix A.l, so we use a 
very different approach based on random matrix theory. The matrix J can be diagonalized in 
the subspace spanned by the recruited clones, and in the limit where N' is large, we may apply 
some known results (Metha, 1967) to obtain the properties of the eigenvalues and eigenvectors. 
From this, we obtain the probability distribution for the vector B solution of J . B = h, 
which allows us to estimate the number of fixed points. The calculation (c.f. appendix A.2) 
of the probability P(N', M, L / H = 1) gives a value which decreases exponentially with N', 
P( N', M, L/ H = 1) rv e-{JN', with fJ rv 0.68 which within uncertainties (c.f. appendix A.2) is 
compatible with In 2, the value in the non-symmetric ensemble. 

To obtain the memory capacity, we find the average number of fixed points including M 
given clones in the same way as for the non-symmetric case. One has 

It follows that the memory capacity in this limit L -+ H is given by M* = >..N where 

(11) 

If fJ = In 2, we recover of course the memory capacity of the non-symmetric case. 
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Now we generalize the calculation to deal with the case Land H arbitrary. The calculation 
is a bit more complicated (c.f. appendix A.3); we find 

P(N',M,L/H) "J e- f3 !(r)N' (12) 

where r = M / N' and I(r) is the expression given in equation (42) which in particular depends 
on L / H. The important point is that I(r) has for L f:. H a term proportional to N'. Thus 
P( N' , M, L / H) decays far more quickly to zero at large N' than in the case L = H. This 
decreases the memory capacity to insignificant levels: it crosses over from a linear behavior in 
N at L = H to a logarithmic behavior M* "J In N when L is not very close to H. 

6. Stability of the fixed points. So far we have said nothing about the stability of the 
fixed points in the large random networks that have been considered. Suppose that a fixed 
point for such a network consists of N' recruited clones. Two conditions must be fullfilled for 
this fixed point to be stable: 

1) The fixed point must be stable within the dynamics of the self-sustaining network formed 
by these N' recruited clones. Linearizing the dynamics about the given fixed point will provide 
an N' by N' matrix whose eigenvalues determine the stability of the fixed point. For large and 
random networks, we expect the probability for an eigenvalue to have a negative real part to 
be near one half. There is then naively an exponentially small probability in N' for the fixed 
point to be stable. To remedy this, the dynamics must be non-generic, for instance it might be 
nearly derived from a potential function (Varela and Stewart, 1990). 

2) The fixed point must be stable with respect to meta-dynamics: that is, the fixed point 
must be stable against the introduction of fresh clones from the bone marrow. Thus, the 
introduction of the small source term of equation (1) for an unrecruited clone should not lead 
to growth of this clone. However, from a biological standpoint, we do not think it is necessary 
to take such a strict point of view. One can easily imagine that for purposes of maintaining 
immunization, one simply requires that clones which might be recruited into the network insert 
themselves without affecting the M preassigned immunized clones. This seems more realistic 
and is a less severe constraint. 

If one nevertheless does take the strict point of view that the fixed point should be stable even 
within the meta-dynamics, each unrecruited clone i must experience either a low, unactivating 
field hi < L, or a high, suppressive field hi > H. Now if the affinities Jij are LLd. random 
variables with a continuous distribution, the fields hi for i = 1, ... , N will form a statistical 
ensemble with a nearly continuous distribution. We then expect that to reach a stable fixed 
point, one will have to recruit clones until N' is a finite fraction of N, no matter how small the 
number of immunized clones, M, may be. Interestingly, it seems from the simulations of De 
Boer and Perelson (De ~oer and Perelson, 1991) that their system dynamically creates such 
a state so that the L < h < H region appears very rarely. Nevertheless, since it is rather 
undesirable to have such large values for N', it is probably best to argue that the models are 
no longer accurate in that regime, for instance because cells compete for limited resources. 
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In a more realistic matrix ensemble, the affinities are not taken at random, but reflect the 
continuity of stereochemical interactions, so that similar antibodies have similar fields. Then 
the following argument suggests that the fixed points will be always unstable to meta-dynamics. 
Consider two clones in the network, one with a low field and one with a high field. Imagine 
creating, via changes in the amino acid sequences, a path in antibody space starting at the first 
clone and arriving at the second. The associated field along this path will go from h = L to 
h = H. All the clones in this path with L < h < H are "forbidden"; then any fixed point will 
be unstable to meta-dynamics. There is however a way out of this difficulty: the intermediate 
clones need not be realizable by the germ line. Indeed, antibody sequences are obtained-- by 
recombining a limited number of gene sequences (neglecting somatic mutations). It seems likely 
to us that the potential repertoire of antibody sequences is sufficiently discrete for this source 
of meta-dynamical instability to be inapplicable. 

Whatever the assumptions, it is clear that the number of fixed points for 8 = 0 is much 
greater than the corresponding number for 8 small. Thus the memory capacities previously 
calculated are actually upper bounds for the full problem including source terms. 

7. Discussion. We have seen that memorization in the standard immune network models is 
satisfactory when L is very close to H: the memory capacity is then linear in N. Experimentally 
however, Hand L differ by two to four orders of magnitude. We have also seen that when 
L << H, the standard models have a much smaller memory capacity, M* I'V In N: memorization 
is for all practical purposes non-existent. The model ofWeisbuch, De Boer, and Perelson escapes 
this bad behavior by having a memory capacity M* I'V Vii which is independent of L/H. This 
is possible for two reasons. First, the connectivity of the network is so low that almost certainly 

two immunized clones will not influence one another as long as M << JN / p. It is thus much 
easier to have large immunized clonal populations without affecting the h = L equations than 
in our J ensembles. Second, and perhaps most importantly, the affinities in the WBP model 
are 0 or 1. As a consequence of this, the field produced by one immunized clone is the same 
for all the clones connected to it, so that it is very easy to satisfy the h = H equations with 
positive concentrations. This nice property dissapears when one introduces fluctuations in the 
affinity values: memorization in the WBP model is not structurally robust. To give a simple 
illustration of this, consider for instance a localized memory in the WBP model consisting of 
one immunized clone B1 and its p (p > 1) nearest neighbors in the suppressed (tolerant) state. 
Now change the Jij = 1 affinities by random infinitesimal amounts. If there is no source term 
(Si = 0 for all i), at a fixed point, the suppressed clones B i (i =J. 1) must have a field hi = H; but 
since hi = J i1 B1 , this is not possible unless all the J i1 are equal. Thus WBP fixed points are 
destroyed by infinitesimal perturbations: the limit Jij --+ 1 or 0 is singular. (To some extent, 
this is traceable to the non-invertibility of J.) When there is a source term, a straightforward 
perturbative calculation shows that the relative change in the clonal concentrations of the 
fixed point is of order f./S where f. is the relative size of the affinity fluctuations. Thus as S 

becomes small (which is the case biologically), the WBP fixed points become very sensitive to 
affinity fluctuations, so that for any reasonable estimates of s and of the intrinsic fluctuations of 
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affinities, the fixed points have some negative clonal sizes, and thus become unphysical. In sum, 
the WBP model does not satisfy the "Unpredictability Axiom" (De Boer and Hogeweg, 1989a). 
Note that this bad feature is apparent at the static level, i.e., the fixed points dissapear when the 
Ji/s are continuous. It is thus not surprising that dynamically one finds damage spreading or 
percolation (De Boer and Hogeweg, 1989b; Neumann, 1992; Weisbuch and Neumann, 1991). In 
our opinion, this difficulty will always plague the standard models in their current formulation, 
making it difficult to solve the memorization problem satisfactorily. 

We now point out that a small yet plausible modification of the standard models increases 
their memory capacity. During immunization, clones undergo somatic mutation, leading to 
higher antibody-antigen affinities by factors of 102 to 104 (Berek and Milstein, 1987). Ac­
cording to the theoretical models, the immunized clone should be able to respond to much 
lower concentrations of antigen than before immunization. The extent to which this is the 
case experimentally is not clear. One can easily imagine that during the somatic mutation 
process, a cell sees the number of its membrane antibodies or other molecular species change. 
Thus its activation function (proliferation and/or maturation functions) might be modified so 
that the threshold field for activation is shifted towards higher values. This would avoid an 
immune response to minute quantities of antigen, permitting recruitment of new clones during 
secondary and tertiary responses, as observed experimentally (Berek and Milstein, 1987). With 
this (slight) modification to the interpretation of the standard models, the limit L --+ H be­
comes more relevant. Indeed the field required by the immunlzed clones (h = L in the standard 
models) could be increased by several orders of magnitude, until it became comparable to the 
high field required by the virgin clones. The model would then allow for memorization much 
more easily. 

In closing, let us note that the standard models have had both successes (Weisbuch et al., 
1990) and failures (De Boer and Hogeweg, 1989b; Neumann, 1992); we think it is worthwhile to 
continue their investigation". Our work has shown that these models encounter major difficulties 
for memorization from a purely static point of view, without consideration of dynamical issues 
which no doubt further diminish memory capacity. But we also saw that natural modifications 
of the models can change the picture significantly. In .particular, it seems necessary to consider 
somatic mutations at least implicitly: 

- to obtain a nearly one to one map between antigens (epitopes) and antibodies; 
- to modify the threshold field of immunized clones. 
We believe that the possibility that the proliferation function and the threshold field might 

depend on the history of the cell is appealing both biologically and theoretically, even outside 
of network models. 
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APPENDICES. 

A.I. The case J ij non-symmetric, L = H. Suppose the affinity matrix elements Jij are 
i.i.d. random variables, no symmetry condition being assumed. For specificity, we take Jij 
uniformily distributed between 0 and 1, but the results hold for a general interval. We consider 
this ensemble because it leads to an exact solution (no approximations are necessary) when 

L=H. 
As explained in section 5, to obtain the memory capacity, it is enough to determine the 

probability that the vector J-I . 1 has all of its entries positive. We consider the problem 
from a geometrical point of view. In the above ensemble each matrix J can be considered to 
consist of N' independant row vectors J 1 , •• ,IN', one for each line of J. Each such vector J i is 
uniformily distributed in the N'-dimensional cube [0, 1]N' of N'-dimensional space. The vector 
B = J-1 ·1 is the solution of the set of equations 

J i . B = 1, 1 ~ i ~ N' (13) 

where the dot represents matrix multiplication which here coincides with the standard scalar 
product. As a consequence of these equations, the vector B is perpendicular to the hyperplane 
which passes through the extremities of all the J i. In other words, defining l to be the line 
passing through the origin which is given by the equations J 1 ·l = ... = J N' ·l, B is parallel to 
i. So, if the vector B belongs to the positive sector {Bi ~ O} of N'-dimensional space, then the 
line l passes through this sector. Conversely, if the line l passes through the positive sector, 
it defines a vector B having all entries positive such that J 1 • B = = I N , • B. Then by a 
rescaling one obtains a vector B of positive entries such that J 1 • B = = J N' • B = l. 

Thus we seek the probability that the line l passes through the positive sector. It is easy 
to see that the condition J 1 ·l = ... = J N' ·l is unchanged if one adds the same constant to all 
the Jij; thus we shift the Jij'S by the vector -ll so that they are uniformily distributed in the 
cube K = [-l, l]N'. By symmetry, the probability distribution of the Ji/s is clearly invariant 
by any orthogonal transformation which leaves the cube K invariant. It follows that for any 
sector (a sector being defined as the set of vectors B for which each entry has a specified sign), 
the probability that l passes through this sector is the same. There are in all 2N ' sectors which 
are mutually disjoint (up to some sets of measure 0), and a given line l passes through two 
opposite sectors, so the probability that the vector J-I . 1 has all of its entries positive is 

- 2-N '+1P - (14)~o . 

In fact, this result is valid for more general probability distributions. The only property used in 
our demonstration is the hyper-cubic symmetry of the l probability distribution. This follows 
directly from the fact that the probability distribution for the line vectors J i has the same 
symmetry, once suitably translated. Clearly there is no need to suppose that the Ji/S are 
uniformily distributed in a certain interval for this to be true. A sufficient condition is that the 
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probability distribution for the Ji/s be symmetric with respect to its mean value. The most 
symmetrical example occurs when the Jij are (Li.d.) gaussian variables. Then the row vectors 
J i are gaussian vector variables, and the line L is uniformily distributed. 

A.2. The case J ij symmetric, L = H. Here we assume that the Jij are independent random 
variables for i ~ j, all uniformily distributed in [0,1], but as in appendix A.l, our results extend 
to more general ensembles. The matrix J being symmetric, denote Ai its eigenvalues, with the 
Ai real and assumed given in increasing order. Let 1\IIi > be the orthonormal eigenvectors, 
Jl\IIi >= Ail\lli > for i = 1, ... , N'. We use Dirac's notation, so that 1\11 > denotes a collumn 
vector, < eJ?1 a row vector, < eJ?I\II > their scalar product, and 1\11 >< eJ?1 their outer (dyadic) 
product. Then we may write: 

N' 

J = L '\i I\IIi >< \IIil, (15) 
i=l 

and 

(16) 

For a choice h = (hI, ... , hN ,) of the fields acting on the clones, the solution to the system 
J . B = h is thus 

N' 

B = L l\II i >< \IIilh > / '\i. (17) 
i=l 

As for the non-symmetric case, we consider first the limit L/H ~ 1 (the general case L =f:. H 
is given in appendix A.3). The problem is then to find the probability P~o that the vector 

N' 

B =	 L l\IIi >< \IIil 1 > / Ai (18) 
i=l 

has all its entries positive (with 11 >= (1, ... , 1». 
Let us begin with some properties of the eigenvalues and the eigenvectors of J. First, since 

the Jij are positive, the largest eigenvalue AN' is positive and the corresponding eigenvector 
I\II N' > has all its components of the same sign, which we may take to be positive. Second, 
there is a variational principle for J, so that 

A < \IIIJI\II > (19)
N' = ~a;c < '111'11 > . 

If one writes Iq,N' >= (1 + 18'11 »/v'N', then a perturbative treatment of the equation 
JI\IIN' >= '\N,lq,N' > shows that the components of the vector 18'11 > are random variables with 
zero mean and standard deviation 0(1/v'N'). Thus as N' ~ 00, the vector 18\11 > represents 
a correction which goes to zero. Furthermore, one has 

'\N' = N' /2 + 0(1).	 (20) 
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Consider now the rest of the spectrum. For each eigenvector 1'11. >, i -I N', the orthogonality 
condition < 'I1N,I'I1. >= 0 and the normalization < '11.1'11. >= 1 implies that the components 
of 1'11. > are random variables with zero mean value and standard deviation (T = 1/Vii'. 
(This can also be shown from random matrix theory. Note however that the eigenvectors are 
correlated because of the orthogonality conditions.) The components of the vector JI'I1, > 
can be considered as a sum of N' random variables; as N' becomes larger and larger, by the 
central limit theorem, these components become gaussian variables with mean value 0 and 
standard deviation of the order of 1. Then one sees from the equation J I'11. > = A. 11). > that 
the eigenvalues A. (i -I N') are distributed in an interval centered at 0 and with a size O(Viii). 
In fact, it is known from random matrix theory that the eigenvalues of a random matrix have a 
probability distribution given Wigner's semi-circle law (Metha, 1967) and that two consecutive 
eigenvalues repell one-another. This property gives the spectrum what is called "rigidity". One 
may think of the spectrum as fluctuating around a mean position obtained by distributing the 
eigenvalues AI, ... , AN'-l roughly equidistantly in an interval of size Vii' centered on o. The 
distance between two successive eigenvalues fluctuates around a mean value dN , which scales 
thus as 1/Vii'. 

In the expression for B in equation (17), let us replace the terms by their asymptotic 
values. For i = N', we drop the 16'11 >, and for the other terms, we project onto the hyperplane 
perpendicular to (1, ... , 1). This gives the following approximation: 

B ~ IR > /Vii' + 211 > /N' (21) 

with IR > a random vector, the components of which are 0(1). The two terms on the right 
hand side are orthogonal, and a scaling analysis shows that the relative error introduced into 
either term by this approximation is 0(1/Vii'). 

According to random matrix theory, the distribution of the matrix J truncated to the 
hyperplane I.:~1 B. = 0 becomes in the limit N' -t 00 the same as the Gaussian Orthogonal 
Ensemble (GOE) (Metha, 1967), so we deduce the probability law for the 1'11. >'s and the A.'s 
in this limit: the distribution of the 1'11. >'s is invariant under any rotation which leaves the 
axis (1, ... , 1) invariant. It follows that the vector IR > has a distribution which is invariant 
by any rotation in the hyperplane where it lives. Using the normalization of the 11). >'s, the 
squared norm of IR > /Vii' is 

< RIR > N'-l 1< '11.11 > 1
2 N'-l I < '11.16'11 > 12 

(22)x= N' ~~ A.2 =~ A.2 , 
1=1 1 1=1 1 

where the vector /6'11 > is as previously defined. Since the first term in the r .h.s. of (21) has a 
typical size Vii' times larger than the second term, we see that the vector B will almost always 
have negative components, unless the vector IR > has an exceptionnaly small size or unless it 
is oriented in a very special way (so that its negative components are all small), or more likely, 
a combination of these two posssibilities. 

In order to estimate the probability P>o that J-1 
• 1 has all its entries positive, we will first 

obtain the probability distribution for th~ norm of the vector IR >. Then we will determine 
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the "orientation factor", that is the probability that B has all its entries positive given that 
the vector IR > has a fixed norm but an arbitrary orientation. The scaling behaviour of P>o 
as N ' becomes large can then be obtained by using a saddle point expansion. ­

What is the probability distribution P(X) of the squared norm X =< RjR > /N'? To make 
the calculation feasible, we make two approximations. First, we neglect the fluctuations of the 
eigenvalues Ai, and work with a freezed version of the spectrum. We have set the positive and 
negative eigenvalues (i f= N ' ) to be integer multiples of 0 ' / v'N' where 0 ' is a constant given 
by the Wigner semi-circle law (Metha, 1967) so as to obtain the correct eigenvalue density. 
The main source of error in this approximation comes from neglecting the fluctuations of the 
eigenvalue closest to zero. When this eigenvalue is very near zero, the norm of IR > becomes 
larger than expected. However, since we are interested in fluctuations which render the norm 
of IR > small, we are not too sensitive to this approximation. In our second approximation, 
we consider the random variables < Wi!OW > in the limit N ' ~ 00 as independant gaussian 
variables with zero mean and standard deviation proportional to 1/v'N'. 

With these approximations, the problem is to find the probability distribution for the ran­
dom variable 

N'-l X.2 
X = 0 L + (N' ~ 00) (23) 

i=l 1. 

where the Xi'S are independant gaussian variables with zero mean and unit standard deviation, 
and 0 is a constant in which numerical factors (C' and the standard deviation of the < Wi loW » 
have been absorbed. This constant merely induce a rescaling on the distribution P(X), so for 
simplicity, we have omitted it in most of the presentation. 

An integral representation for P(X) may be obtained by Fourier transformation. The prob­
ability distribution for the n'th term, Un = X n 

2 /n2 
, is easily seen to be 

(24) 

B(Un) being the Heaviside threshold function. Defini":g the Fourier transform. of a function f( z ) 

by the formula 
A /+00f(k) = -00 eikxf(z)dz (25) 

one readily computes 
A (2ik)_1

Pn(k) = 1 - -:;;2 2 • (26) 

From standard properties of Fourier transformation one then finds the following expression for 
P(X) : 

1 +00 ( 00 1 ) 1 1 +00 
0 

(V?Ik) tP(X) = - dke- ikx II 2 k 2 = _ dke-ikx 1. • (27)
2,.. [00 n=l 1 - ,;. 2,.. [00 sin ,..V?Ik 
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We are interested in the behaviour of P(X) as X ---+ 0, so we use a saddle point expansion. The 
integrand in the previous expression is of the form exp f( k) with 

1 00 2ik 
f(k) == -ikX- - ~ln(I--) (28)

2 LJ n 2
"=1 

By differentiating f( k) one obtains the saddle point equation 

_ ~ 1 1_ 1rcoth1rVK 
X - ~ n2 + K - 2K + 2VK ' (29) 

where we have set k == iK/2. We seek a solution K which is real and positive. It is not too 
difficult to see that for small enough X such a solution Kc exists and that Kc ---+ 00 as X ---+ o. 
Keeping only the leading term of the last equation in this limit one obtains 

1r 2 
K c "" (2X) . (30) 

The second derivative f"(kc ) is easily obtained using the analytical expression for f'(k). In 
the limit X ---+ 0, one has 

f "() 1r 1 ( 2)2 3kc "" ---3 "" - - X· (31)
2 Kl 1r 

The saddle point approximation then gives the following asymptotic behaviour for P(X) as 
X ---+ 0: 

A_~
P() "" -e x. (32)X 

X2 

A and a are positive constants which depend on the value of the rescaling constant C of equation 
(23) which may be estimated numerically. We find a = 1r

2C/8. 
We now consider the orientation factor, that is the probability that B has all its entries 

positive given that the vector IR > has a fixed norm but an arbitrary orientation. This factor 
is equal to nN ,(N'X/4), where nN ,(p2 ) is the following conditional probability: 

n (2) _ f dN'Z8(Z2 - p2)8(< zll » I1~1 8(Zi +1/VN') 
(33)

N' p - f dN 'z8(Z2 - p2)8(< zll » . 

This is the portion of an N' - I-dimensional sphere of given radius which lies in a concentric 
N' - I-dimensional regular simplex of given size. We have written a computer program which 
computes this probability for any value of N'. We find that as N' ---+ 00, the function nN ,(p2) 
approaches a step function, nN ,(p2) == 1 for p < pc and nN t(p2) == 0 for p > pc, where Pc is a 
finite constant approximately equal to 0.5. 

Given the probability distribution P(X) and the orientation factor nN ,(p2), we can now 
compute the large N' behaviour of .the probability P~o we were seeking: 

4. p2
 
oo
 N'X L=rti" A _~ /00 A,P>o == dXP(X)ON'(--) "" -2e x == A e-o:xdz == _e-/3N , (34) 

- L0 4 0 X N' a
4"PI 
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with f3 = 0./4p~. We thus find, as anounced, an exponential behavior for the probability P>o. 
We have verified this law by direct Monte Carlo simulation for small values of N', and we obt~n 

{3 = 0.68 ± 0.015. This is compatible with {3 = In 2 rv 0.693 within statistical errors and possible 
systematic effects at small N. Furthermore, we have calculated numerically the value of C in 
equation (23) and this too leads to a value of f3 which is very close to In 2. There is thus good 
numerical evidence that the symmetric and non-symmetric ensembles give the same memory 
capacity at large N; unfortunately we have no good theoretical arguments which would validate 
this result. 

A.3. The case Jij symmetric, H ¥ L. In this appendix, we study the same affinity matrix 
ensemble as in appendix A.2, but we no longer impose the simplifying condition H / L = 1. We 
shall see that when the quantity H/ L -1 is not very small (which is the case biologically), the 
memory capacity is drastically reduced from O(N) to O(ln N). We use the same notations as 
before. Given a choice h = (hI, ... , hN') for the fields, the probability that the vector B = J-l·h 
has all its entries positive now depends on h, but clearly only through the number M of low 
fields hi = L in h. We may thus replace h by the vector h M = (L, ..., L, H, ..., H) (where the 
M first entries are low fields) without loss of generality. Using the same notation as in section 
5, we denote by P(N', M, L/H) the probability that B has all its entries positive. 

In the same spirit as in appendix A.2, we write the vector BM = J-1 
• hM in the form 

N' 

BM = E I\IIi >< \IIilhM > /)..i, (35) 
i=1 

and we split the sum by replacing the last term by its projection onto the vector (1, ... , 1) and 
the N' - 1 first terms by their projection onto the hyperplane orthogonal to (1, ... , 1). This 
leads to an approximation for the vector B M analogous to equation (21). The only difference 
lies in the respective sizes of the two terms thus obtained. These sizes are given by the scalar 
products < \IIilhM > which reduced to < \IIill > in the case L/H = 1. As before, we use the 
identity ViV'I\IIN' >= 1 + 18\11 >, where the "error" 18\11 > tends to zero as 1/ViV'. For i = N' 
one has 

ML+(N'-M)H ,
< \IIN,lhM >= ViV' + O(l/Vifi). (36)

N' 
For i ¥ N' we write 

(37) 

= -L < \IIil(6\11)M > -H < \IIil(6\11)N'-M > +Vifi(L - H) < \IIil('liN')M >, (38) 

where the symbol I(\II)M > (respectively I(\II)N'-M » denotes the vector 1'Ii > truncated after 
the M'th entry (respectively before the N' - M'th entry). We have made use of the identity 

)N'M< \IIil(\IIN')M >= - < Wi I(\liN' - >. 

22
 



Each of the three terms of equation (38) is a sum of nearly independent variables, so we 
treat them as gaussian variables as we did previously for the variables < lJi i15lJi >. Each term 
has a zero mean value. The standard deviations of the first and second term are respectively 

LVCMIN' and HVC(N' - M)IN' where C is a finite constant, equal to the squared norm of 
15lJi >. For the third term one must take care of the orthogonality condition < lJiillJiN' >= O. It 
is not difficult to see that the consequence of such a correlation is that the standard deviation 

of the M'th partial sum < lJiil(lJiN')M > is, as N' becomes large, of the form vr(l - r)/v'N' 

where r = MIN'. Thus the standard deviation of the third term is (H-L)vr(l - r). Note that 
this is zero when L = H which explains why that limit is simpler to analyze. We conclude that 
the < lJii/hM > are nearly gaussian variables with standard deviation u(M,N')/v'N' where 

(39) 

and the analog of equation (21) then reads 

u(M, N') 2 
B M ~ v'N' IR> +N,(Lr + H(l - r))(l, ... , 1) (40) 

where the relative error is again O(l/v'N'). In this equation, the random vector IR > is exactly 
the same as that of appendix A.2, possible numerical factors being absorbed in u(M, N'). We 
are now faced with the same problem as before except that the relative size of the two terms 
in the equation is now greater by a factor u(M, N')/(Lr + H(l - r)). One may thus directly 
write the large N' behaviour of the probability P( N', M, LIH) as 

P(N',M,LIH) '" e-fJ!(r)N' (41) 

where 
f(r) = u2(M, N') _ C(L2r + H2(1 - r)) + N'(H - L)2r (1 - r) 

(Lr + H(l - r))2 (Lr + H(l _ r))2 (42) 

We see that when the ratio r = MIN' is finite, the probability P(N', M, LIH) has a behaviour 
of the form exp( - N,2) rather than exp( - N') which was the LIif = 1 behavior. 

To derive an estimate for the memory capacity M* we use the following rough upper bound 
for P(N', M, LIH): 

P(N', M, LIH) ~ e-fJ(1l)2N'e-fJ(H-L)2r(~2r)NI2~ e-fJ(/l)2Me-fJ(l-1l)2M(NI-M). (43) 

This gives the following majoration for the number of fixed points with M clones in the immu­
nized state: 
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One sees that .N(M, N) will be a growing function of N as long as M satisfies 

(46) 

This gives a memory capacity of the form 

M * inN (47)
rv ( 1- HL)2' 

Two comments are in order concerning the above derivation. The first concerns the approx­
imation made by projecting each term of equation (35). In the limit LIH = 1, this is justified 
by the fact that the terms dropped are 0(11v'N') in relative size. This is not the case when 
L # H. A scaling analysis shows that the projection of the N' - 1 first terms of equation (35) 
on the vector (1, ... , 1) has a size comparable to that of the second term of equation (40). This 
modifies the factor before (1, ... , 1) by adding to it a noisy component of comparable size and 
zero mean value. We did not take this into account for the presentation because it would have 
complicated unecessarily the formulae to obtain the same result. 

The second remark concerns the dependence of the memory capacity M* on the ratio LIH. 
Clearly the expression found for the probability peN', M, LIH) reduces to that of appendix 
A.2 in the limit LIH --+ 1, which is to be expected. However in the limit LIH -+ 0 we find 
an LIH-independent, positive value for peN', M, LIH), and a still growing memory capacity, 
although section 5 suggested that P(N', M, L IH) must vanish as (LIH)A-fN' in this limit, which 
would make the corresponding memory capacity tend to 0 as In(N)/In(HI L). (In fact the above 
analysis in terms of r gives a more symmetrical expression which is valid also when N' = M, 
suggesting that P(N', M, LIH) must vanish as (LIHyvf(N' -M).) It is not too difficult to see that 
the distribution that we·postulated for the vector IR > in eq. (40) has drawbacks when LIH 
becomes too small. The term proportional to (1, ... , 1) has a norm equal to 2(Lr+H(I-r))Iv'N'. 
However, we know that in order for the equation J . B M = h to be fullfilled, the vector B M 

cannot have a norm lower than HIN' (we assume that the vector h contains at least one high 
field). So the probability distribution of BM falls down to zero in the region IIBMII < HIN'. 
One expects that this will have nearly no effect on the probability distribution of IR > as long 
as the relation LIv'N' ~ HIN' holds. We thus expect our analysis to be sensible as long as 
HIL ~ v'N'. 
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