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Abstract 

A Monte Carlo approach is presented for the treatment of the pairing force in nuclear 
systems. Our method is computationally efficient and is very simple to implement. Nu­
merical results are given and compared to an exact calculation and to the predictions of 
Bardeen-Cooper-Schrieffer (BCS) theory. 
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1. Introduction 

Monte Carlo methods have been used to study a variety of problems in condensed 
matter, nuclear, and high-energy physics. They have proven to be powerful tools for 
investigating the properties of quantum systems with many degrees of freedom including 
liquid helium [1-3], molecules [4], the electron gas [5], nuclear systems [6-10], and lattice 
gauge theories [11-15]. 

In this Letter, we propose a Monte Carlo technique which is very efficient for treating 
the pairing-force Hamiltonian in nuclei. Pairing forces are traditionally used to describe 
various properties such as the gap in the excitation spectrum of even-even nuclei, moments 
of inertia, even-odd mass differences, etc... In practice, the corresponding Hamiltonian is 
treated using the BeS method or improvements thereof, such as projection methods, the 
Lipkin-Nogami method, etc... [16]. It is well known that in some cases, these methods 
lead to significant errors. On the other hand, our Monte Carlo method makes possible 
an exact calculation, at least in principle. In what follows, we first introduce the model 
Hamiltonian, then discuss our Monte Carlo method. We close by comparing our results 
with exact values obtained for certain soluble systems. In practice, accuracies better than 
one percent are accessible within reasonable computation times. More realistic cases are 
presented in a second paper [17]. 

We consider here the case of a many-body system described by the Hamiltonian 

H = L 
n 

E1:(ala, + t{ai) - L
{} 

01:,1:' al,4 Gi G ' , 

'>0 ',i'>0 

where k and k are time-reversed conjugate states with energy E1:. The indices lc, le' run from 
1 to {l, where n is the total number of conjugate orbit pairs. Our purpose is to calculate 
the exact N-particle ground state energy of H, without resorting to various assumptions 
regarding the functional form of the wave function (such as the BCS ansatz, etc... ). For 
simplicity, this Letter treats the case of a pure pairing force of constant strength (Le., 
Gk,k' = G, with G > 0). We have chosen this model in order to compare with exact 
results [18,19], and thus to check the accuracy of our Monte Carlo method. However, our 
approach is not restricted to G constant (see [17]). 

Without loss of generality, one can assume that all particles are paired. We then work 
in a Fock space where the pair configurations denoted by IC > constitute a basis. We 
define 

{} 

IC >= Inl,n2, ...nn > with Lnk = n, nk = 0 or 1 , 
k=l 

where nk are the pair occupation numbers and n = ~ is the total number of pairs. 
Consider a direct calculation of the ground state energy or other observable. The 

ground state Iq,0 > of H can be expressed in the basis {IC >} as 

Iwo >= LQclC > , 
c 
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where the coefficients aC are to be calculated to obtain the ground state energy Eo. 
Since the dimension of our Fock space is (~), even writing this sum is impracticable as it 
involves a huge number of terms for usual model spaces. It is thus appropriate to consider 
a Monte Carlo approach, since a sampling procedure may avoid a complete enumeration 
of the whole set of configurations {IG >}. Note that as the configurations IG > contain 
the correct number of pairs n, the calculated ground state will also have exactly n pairs. 
This is a great advantage compared to the BCS formalism (without projection) where the 
number of pairs is fixed only on average which is a well known source of errors [16]. 

Let us apply the Hamiltonian to a given configuration 10 >, 

HIG >= Eb-biG > -G L 10' > , 
c' 

where Eb-b = L~=l 2fA; nA;(O) denotes the one-body energy of the configuration, and 
the summation, corresponding to the two-body part of B, runs over all the configurations 
IC' > obtained from IC > by moving at most one pair. There are n(O - n +1) such terms 
corresponding to all the possible pair diffusions, of which n(O - n) describe real diffusions 
(with Ie -lie') whereas the n remaining terms count the virtual diffusions associated to the 
diagonal terms (Ie = Ie') of the double summation in B. Thus, separating the one-body 
and two-body parts, the matrix elements of H are clearly given by 

b 
<C'IBI-bIC > = {Eb- if C = ?' ,o other~se, 

< 0'102 - b I0 > = {-G if 0 an.d C' are connected, 
o otherWIse, 

where we consider C and C' as connected configurations if they differ at most by the 
position of one pair. It is easy to show that the components ac of Iq,o > are positive: 

Eo . < q,olq,o > =< q,oIHIq,o > 

= L L ac,ac < C'IHIC > 
C C' 

= L lacl 2 Eb- b 
- G L ac,ac . 

C connected C,C' 

We may impose the ac to be real; then changing ac to lac I can only decrease the energy 
Eo, since G > O. Thus the ground state Iq,o > must have its coefficients ac ~ 0, and 
a Monte Carlo sampling procedure may be applied wherein each ac is associated to the 
occurrence probability of the configuration IC >. According to this probability interpre­
tation, we impose here the normalization condition Lc ac = 1, slightly different from the 

2standard LC lac 1 = 1. So, the probabilities appearing in the Monte Carlo process are 
2not the physical probabilities which are the lac 1 • 
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2. The Monte Carlo Procedure 

In order to calculate the ground state properties of the Hamiltonian of interest, we use 
a random walk algorithm based on the imaginary-time method (see [15] for a review). One 
applies the imaginary-time evolution operator e-t(H-E) to filter the ground state 1'1'0 > 
from an arbitrary initial state I~ >. Then, when t is large, 

where Ii = 1 and E is a normalization energy which is adjusted to keep the norm approxi­
mately constant during the time evolution of 1'1'(1) >. (Thus, once equilibrium is reached, 
E ~ Eo.) By reexpressing e-t(H-E) in terms of a product of infinitesimal evolution oper­
ators and by inserting complete sets of configurations 10 >, one obtains 

N 

e-t(H-E)I~ >= II e-&t(H-E)I~ >= L'" LION >< ONle-&t(H-E)ION_1 > 
.=1 CN Co 

... < 0 1 le-&t(H-E) 100 >< Ool~ > , 

yielding a multiple summation representation for 1'1'0 >. This allows the evaluation of 
observables via multiple integrals (in fact summations in our discrete configuration space) 
which are calculated stochastically using a random walk algorithm. This procedure is 
called the Path Integral Monte Carlo method [15]. 

One essential problem is the difficulty of handling the infinitesimal evolution operator 
e-~t(H-E) in our configuration space. Indeed, applying e-~t H to a given configuration 
10 > obviously gives 

where the second term in the r.h.s. contains configurations connected by 1 step (1 pair is 
moved), the third term contains configurations connected by 2 steps, etc... Thus it finally 
yields all the (~) other configurations. Of course one may truncate the expansion to the 
first-order term in ~t, just keeping the one-step diffusions, but this is a good approximation 
only if ~t . Emaz: ~ 1 where Emaz: is the largest energy of the system. This constraint 
on ~t depends on the most excited states, even if one is only concerned with the ground 
state, so that in general the method is impracticable. 

We solve this problem by doing an appropriate breakup of H in analogy with the 
work of Hirsch et ale [20]. We are then able to have an accurate approximation to the time 
evolution operator, and furthermore the method provides a simple stochastic generation 
of the configurations with the correct distribution. We write the Hamiltonian in the form 
H = H 1 - b + H 2 - b and use the expression 
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This is a symmetrized form of the more common breakup [15] 

(Note that H I - 6 and H 2 - 6 do not commute.) The advantages of our breakup are: (i) the 
matrix elements of e-¥ H 

1
-. are trivial, (ii) the operator e-~t H'l-' can be treated ezactly 

(though stochastically), and (iii) the increased accuracy (one order in ~t) is obtained at 
essentially no cpu cost. For the one-body part, we have obviously 

For the two-body part, we have 

e-6t 
H 

2

-',C >= IC > +G~t ~ a!,4,ak"ak/C>
'.">0 

(G~t)2 

+ 2! 

where the successive terms in the r.h.s. correspond to the contributions of 0-, 1-, 2-steps 
diffusions, etc... In our method the matrix element < C'le-~t H 

2 -'IC > is not obtained 
directly, rather 'C' > is generated stochastically with the correct distribution. To do so, 
write 

< C/le-At H 
2 -',C >= }/(C)P(C' I C) 

where P is a probability distribution in IC' > . Remembering that there are n(O - n + 1) 
possible destinations for a one-step diffusion (including diffusions where the pair comes 
back to its initial orbit), one gets 

N(C) = ~ < C'le-~t H 
2 
-'IC >
 

c'
 

= expv , 

where we have defined v = n(O - n +1)G~t. The fact that N(C) is independent of IC > 
is convenient ,though not essential for our Monte Carlo method [17]. Thus, defining the 
probability of going from IC > to IC' > as P(C',C) =< c'I-IC > IN, one finds out that 
the probability distribution of the number of steps L is a Poisson distribution of parameter 
II: 

L
 
P(L) = v ex{!(-v) .
 

The variable v thus represents the average number of steps per time interval ~t. The 
stochastic process giving rise to the transition probability P(C', C) is the following: firstly, 
the number of steps L is chosen according to this Poisson law; secondly, for each (real or 
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virtual) step, one hop is chosen randomly among the n(O - n +1) possible pair diffusions. 
This random process exactly simulates the 2-body part of the evolution operator, Le. pair 
diffusion, up to a multiplicative factor. 

Now, the matrix elements of the approximate time evolution operator can be written 
as 

< C'le- ~t (Hl-'-E)e-~fH2-'e- ~c (H 1-'-E) IC > 

= e-¥(E~-;·-E). e". P(0',0)e-¥(E~-6_E) 

= w(C') . P(C',C). w(O) , 

where we have defined w(C) = e-¥(E~-'-E..n-E), and E.era = n(O - n + l)G. This is 
the expression for the energy in the seniority scheme [16], which is the pairing energy for a 
single-shell system (when all the states are degenerate). Thus applying (our approximation 
of) e-~f(H-E) to a given IC > is equivalent to a random diffusion according to P(C', C), 
followed by a multiplication by the weight w(C' )w(C) depending on the one-body energy 
of the two configuration IC' > and 10 >. This is analogous to the well-known Feynman 
procedure [21] related to the separation of H into a kinetic and a potential part. Here, 
H 2

-
6 plays the role of a kinetic energy by spreading out Iw(t) > in the configuration space, 

whereas Hl-b plays the role of a potential energy, concentrating Iw(t) > into components 
with low one-body energies E 1 -b. 

Consider now the stochastic evaluation of the multiple integral appearing when cal­
culating an overlap with a given state I( > (see [15]). We have 

< (Ie-f(H-E)I~ >~ L···L < ('CN > W(CN) P(CN,ON-t} W 
2(CN_l) 

CN Co 

.. .W2 (C2 ) P(C2 ,C1) W2 (C1 ) P(ObOO) w(Co) < Col~ > . 

Let us take an ensemble of N en• initial configurations {CJ} selected according to ()(Co) = 
< Co I~ > taken here as a probability distribution. The algorithm consists in evolving 
the configurations 0; according to the matrix elements w(0:+1) P(C:+ l' C;) w(0;) so 
that a new ensemble {0;+1} is generated. Each C;+1 is chosen in accordance with the 
distribution P(C;+I,O;), and replicated stochastically by a factor tV = W(C;+I)W(C=). 
In practice, one selects a random number euniformly distributed in the interval [0,1], 
and then C;+1 is replicated [tV +e] times where [z] stands for the greatest integer less or 
equal to z (see [4]). In the limit of a large ensemble, the average number of replicates will 
be w, so that the evolution of the ensemble {C;} is correctly reproduced stochastically. 
After this random walk process, the final ensemble {CJv} will be distributed according to 
n~=1 w(C:) P(C:,C;_I) w(C:_1)+(CO), and we will have (if E is set so that the ensemble 
size is stable), 

N ena1 • 

< (IWo >~ N- L < (I°iv > . 
en. i=1 
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The ensemble {Cfv} represents a sample of I\{fo > and thus each IC > appears with 
probability ac. The above formula enables one to estimate the a's by setting ,( >= IC >: 

which is indeed the frequency with which the configuration IC > appears in the Monte 
Carlo simulation. 

The ground state energy can be obtained from 1'110 > via 

Eo = L < C'IHI'1Io > 
C' 

= L ac < C'IHIC > 
C,C' 

= Lac [Eb-6 
- E.en] , 

c 

where we have used the normalization condition ~c ac = 1. Thus the energy Eo is 
simply given by the average of the [E~-b -- E.en ] weighted by the Monte Carlo sampling 
probabilities ac. This formula is implemented by calculating the estimator 

The value of the energy can also be determined from the normalization energy which 
appears in the time evolution operator. Indeed, if EN is defined as the value of E which 
keeps the size of the ensemble of configurations stable, it is clearly another estimation of 
Eo. The agreement between these two methods constitutes a nontrivial consistency test 
of the Monte Carlo algorithm (see [15]). It's interesting to note that, in the case of a 
single-shell system, all the configurations IC > are degenerate (Eb- b = 0) and play the 
same role, so that both methods clearly yield Eo = EN = - E.en as expected. 

This Monte Carlo algorithm also makes possible the calculation of the exact pair 
occupation probabilities. Indeed, the expectation value of the pair number operator nk is 
given by 

< (le-t(H-E)lal4a~A;I"o > 
< (le-t(H-E)lwo > 

where I( > is an arbitrary state, and t should be taken large enough to eliminate contribu­
tions from excited states. Using the fact that the nA: operator is local in our configuration 
space and taking < CI( >= 1 for all IC >, we have 

Lc C' < C'le-t(H-E)IC > nA;(C) ac 
< n >= ---=--'------------,----=----­

k Lc C' < C'le-t(H-E)IC > ac 
I 
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This relation can be used as follows. Starting at time tl with an ensemble of configurations 
distributed according to I'l'o >, apply the local operator nk to the ensemble, Le. weight 
each IC > by its occupation number nk(C). Then evolve the ensemble to the time tF. We 
take as estimator: 

where nk(C~(j») is the (kth ) occupation number of the configuration Cj, progenitor of C~. 
Thus, it is necessary to keep track of each ensemble member's history in order to calculate 
the occupation probabilities. 

3. Results 

As an illustration, we apply our method to the case of equispaced doubly-degenerate 
single-particle levels. This problem has been solved exactly [18,19] for some model spaces 
with different values of the interaction strength reproducing typical values of the nuclear 
pairing energy. 

In order to get good statistics for the ground state energy and pair occupation prob­
abilities, we average our estimates of Eo and nk over time, after removing the initial tran­
sients so that the excited states have decayed away from the wave function. It is convenient 
to define a reduced time T = n(O - n + l)Gt which has the advantage of corresponding to 
the average expected number of steps (pair exchanges) along the random walk of length t. 
Thus we average our estimators from Ti to Ti + T using steps of II = n(O - n + l)G at. 

We have investigated the convergence of our estimate for the ground state energy Eo 
as a function of ~t (or v). Figure 1 shows the dependence of the measured Eo on v for 
a test case of 8 particles in 8 levels (Le. n=4, n = 8) with G = 1.0. We express energies 
and the pairing strength G in units of the single particle level spacing. The runs were such 
that statistical errors are of the same size as the symbols. We show: (a) the case for the 
symmetrized operator (Le., ~t3 breakup); (b) the case of the non-symmetrized operator 
(i.e., ~t2 breakup). When going from the infinitesimal evolution operator to the finite 
time evolution operator, on the order of 1/~t steps are required, so that the accuracy is 
reduced by one order in ~t. Thus, as confirmed by the numerics, the systematic error (due 
to ~t f. 0) in the estimator of Eo is proportional to ~t2 in the case of the symmetrized 
operator while it is proportional to ~t for the non-symmetrized case. This clearly exhibits 
the accuracy gained when using the ~t3 breakup, while the extra computation time is 
negligeable. 

We show in table lour computed ground state energies along with the exact values 
[18,19] in the case of 24 particles placed in 24 equispaced single-particle levels (n = 12, 
n = 24). Also shown are the corresponding BCS (without projection) energies. It is 
interesting to note that the number of configurations in this model space is on the order 
of 3 108 , so that a Monte Carlo sampling is clearly appropriate. We took the following 
values for the parameters: v = 0.3, Nen• = 10000, Ti = 250, and T = 3000. Our computed 
energy Eo exhibits a very good agreement with the exact calculation in the whole range of G 
values. (In fact in all of our runs, the results were consistent with the exact answers within 
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statistical errors.) The two different Monte Carlo estimations of the energy also agree very 
well. (We have found that they are very correlated and their difference is smaller than 
the statistical errors of either.) Thus we only display Eo which is considered the better 
estimate of the ground state energy (see [9]). We have also indicated for reference the 
predictions of the BCS equations in order to demonstrate the precision gained with our 
approach. For both Monte Carlo and BCS calculations of Eo, the last columns show the 
quantities 

Q = E - EA-fF , 
E ezact - EMF 

where E = EMc or EBcs, and EMF = n·G stands for the mean-field energy (that part of 
the pairing energy which can be incorporated into the one-body energy). It is well known 
that BCS accounts only for part of the two-body pairing energy, and thus QBCS < 1, 
especially for low G. On the contrary, the Monte Carlo method gives QMC ~ 1 within 
statistical errors. 

Finally, we show in table 2 the occupation probabilities for three levels above and 
below the Fermi level in the case n = 8, n = 16, and G = 0.48. For comparison, we 
indicate the result of our Monte Carlo computation, the exact values [18,19], and the 
predictions of BCS equations (i.e., vf). We increased the integration time T compared to 
table 1 in order to reduce the statistical noise. Note that in order to implement our time 
averaging for the n~, we have to keep in memory an associated n~ for each configuration of 
the ensemble during a given time (long enough to get relaxation). We calculate a running 
average of the n~ from the ensemble, using a time difference tF - t1 of 100 steps. This 
choice results from a compromise. For small values of tF - t1, the contributions from 
excited states have not sufficiently decayed, whereas for large values the statistical errors 
in the estimator for < n~ > become important. This behavior was worsened when n = 12, 
n = 24, so that no good compromise was found in that case. 

4. Conclusions 

Our Monte Carlo algorithm is very appealing for its conceptual simplicity. Pair diffu­
sion is simulated stochastically, and the corresponding sequence of random walk processes 
followed by replications corresponds very well to one's intuitive view of the processes in­
volved. In particular, it is interesting to note that the pair occupation probabilities which 
are simply the v~ = < BCslalaiaIBk IBCS > in the BCS formalism appear in our method 
as actual probabilities in the Monte Carlo process. The method is also very efficient from 
the computational point of view. A comparison with other methods (such as BCS with 
refinements, Lipkin-Nogami method, ... ) and the extension to a general interaction matrix 
Gij will be presented in a subsequent article [17]. 
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Table 1 

G Eezoct EMC E BCS QAtIC QBCS 

0.38 
0.42 
0.46 
0.50 
0.54 

7.487 
9.083 

10.950 
13.096 
15.518 

7.471 ± 0.050 
9.010 ± 0.050 

10.879 ± 0.050 
13.123 ± 0.050 
15.492 ± 0.050 

5.532 
6.819 
8.390 

10.251 
12.398 

0.9945 
0.9819 
0.9869 
1.0038 
0.9971 

0.3321 
0.4400 
0.5285 
0.5991 
0.6548 

Table 2 

Ie < n. >ezod < n. >MC v2 
k 

+3 0.0929 0.0926 ± 0.0010 0.0899 
+2 0.1570 0.1598 ± 0.0010 0.1693 
+1 0.3056 0.3050 ± 0.0010 0.3551 
-1 0.6944 0.6952 ± 0.0010 0.6449 
-2 0.8430 0.8430 ± 0.0010 0.8307 
-3 0.9071 0.9068 ± 0.0010 0.9101 
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Table captions 

Table 1: 

Pairing energy for the case (n = 12, n = 24) as a function of G. The 
quantity Q defined in section 3 is also presented. The energies and G 
are expressed in units of the single particle level spacing. 

Table 2: 

Pair occupation probabilities of the 3 levels above and below the Fermi 
level for the case (n = 8, n = 16, G = 0.48). 
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Figure captions 

Figure 1: 

Systematic error in the pairing energy estimate Ep due to a finite ~t, 

as a function of II for the case (n = 4, 0 = 8, G = 1.0). (The exact 
value is 9.513) 
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