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Abstract 

A quantum Monte Carlo approach is applied to the treatment of the pairing force in 
nuclear systems. The method makes possible the calculation of the pairing energy and the 
pair occupation probabilities for the ground state. It is computationally efficient, and also 
very simple to implement. The reliability of the method is checked with the use of two 
exactly solvable schematic shell models. The computed pair~~&.~nergy is also compared 
with the predictions of several approximatic:m method~'of common use. Numerical results 
for somenuclei with a realistici.nter~c·tion are also provided.::' . 
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1. Introduction 

A number of nuclear features such as the gap in the excitation spectrum of even-even nuclei, 
moments of inertia, and even-odd mass differences have been interpreted as the consequence 
of correlations between the nucleons in the nucleus, and are traditionally described by the 
Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity [1]. Because of its simplicity, 
BCS has been widely used as a first step in nuclear structure calculations involving pairing 
forces, and it is quite satisfactory when the number of valence nucleons is large and the pairing 
strength is large compared to the level spacing. However, when this is not the case, it suffers 
from two inherent drawbacks: 

i) It introduces a non-negligible error in the pairing energy caused by the particle number 
fluctuation (the BCS wave function is not an eigenstate of the number operator). 

ii) In some cases, there may be a critical value of the pairing force below which the BCS 
equations have no non-trivial solution. However, exact calculations show that this kind of phase 
transition is spurious. 

Many attempts have been made in the past to improve the BCS method by projecting out 
that component of the BCS wave function which corresponds to the right number of particles 
(e.g. the work of Kerman, Lawson, and Macfarlane [2], or that of Unna and Weneser [3]). Also, 
other methods were developed in order to eliminate the effects of the number fluctuation such 
as the Lipkin-Nogami method [4, 5], and the KamIah method [6]. A review of these questions 
can be found in ref. [7]. 

The exact solution of this problem is only available for some very simple systems, such 
as a single-level or a two-level model (see e.g. [7]). Richardson and Sherman [8] have also 
developed a method for determining the exact eigenstates and eigenvalues of the pairing force 
Hamiltonian when the pairing strength G is constant. It is based on the idea of reformulating 
the problem into a many-boson system with a N-body interaction (which includes the effect 
of the Pauli principle). They applied the method to various problems such as the case of a 
single- or a double-level model, or a system of N particles in N equispaced doubly-degenerate 
levels. However, no exact method is available for the case of a general pairing interaction (G 
not constant). 

In a previous paper [9], we proposed to apply a Monte Carlo technique to the treatment 
of the pairing force in nuclei. The quantum Monte Carlo method has been used to study a 
variety of problems in condensed matter, nuclear and high-energy physics. It has proven to 
be a powerful tool for investigating the properties of quantum systems with many degrees of 
freedom (see [10] or [11] for a review). It has been applied to liquid helium [12, 13, 14], molecules 
[15], the electron gas [16], nuclear systems [17, 18, 19, 20, 21, 22], and lattice gauge theories 
[23, 24, 25, 26, 27]. Thus it seems natural to resort to a Monte Carlo technique for studying 
the pairing-force Hamiltonian in nuclei. Our method makes possible an exact calculation of 
the pairing energies and pair occupation probabilities, at least in principle. It was restricted 
in ref. [9] to the case of a pure pairing force of constant strength. In this paper, we generalize 
this Monte Carlo method to G not constant, and show that it is computationally efficient for 
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treating realistic cases. 
Let us consider for the moment the case of a system of N particles with a pairing force of 

constant strength G. It is instructive to consider the two limiting cases of a strong and a weak 
coupling strength: 

i) If G :» d, where d represents the characteristic spacing between the single-particle levels, 
the solution tends to that of the seniority scheme (see [7]) for a single-level system (when all 
the states are degenerate). The pairing Hamiltonian of the seniority scheme has the form 

n 
H pair = -G L a~&,a~m,a-mam, (1) 

m,m'>O 

where 0 = j + 1/2 (j being the spin of the level) is the total number of conjugate state pairs 
(m, -m). The exact energy eigenvalues of this Hamiltonian are given by 

G
E = --(N - 05)(20 + 2 - N - 05) , (2)

4 

where 05 stands for the seniority quantum number. Thus the pairing energy of the ground state 
(05 = 0) is given by 

Esen = n(O - n + l)G , (3) 

where n = N /2 stands for the number of pairs. This expression, derived from group theory 
calculations, can also be obtained with the help of an elementary method, as noted in ref. 
[28]. Let us take one of the many configurations C which contribute to the ground state wave 
function of the pairing Hamiltonian Hpair, and count how many times the single configuration 
is repeated by the action of Hpair' The resulting repetition factor (which we call w), multiplied 
by the strength G of the pairing interaction, yields exactly the pairing energy. This property 
is evident, since all the configurations C play the same role in the ground state. It is clear that 
the pairing Hamiltonian Hpair annihilates a pair of particles (n possibilities) and creates a pair 
either on the same place (one possibility) or on an available orbit (0 - n possibilities). Thus, 
the number of different annihilation-creation actions, Le., w = n(O - n + 1), multiplied by G is 
just the pairing energy (see equation 3) as expected. 

ii) On the contrary, when G ~ d (weak coupling limit), the ground state will tend asymptot
ically to the unperturbed one-body Hamiltonian ground state (i.e., with G = 0). It is obvious 
that the pairing energy in this case is simply given by 

(4) 

This result follows straightforwardly from the BeS solution with Ll = 0 (i.e., the trivial solu
tion). It can also been interpreted in terms of pair diffusion. Indeed, only virtual diffusions 
(i.e., when a pair is annihilated and created on the same state) can exist in this case, since real 
diffusions produce configurations which do not belong to the (asymptotic) ground state. Thus, 
the number of possible pair diffusions is clearly equal to n. 
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For a general case between these two extremes, it seems quite natural to look for a way to 
count all the possible pair diffusions, taking into account the fact that the diffusions associated 
with a large increase of the one-body energy are more hindered than others. The resulting 
pairing energy should lie somewhere between nG and wG. This idea is at the basis of the 
nlethod we propose in this paper. l\Ioreover, as the number of diffusions for all the possible 
configurations is generally huge, a l\fonte Carlo approach is clearly appropriate to solve this 
problem. In fact, it can be considered as a procedure to exactly determine the lowest eigenvalue 
(and the corresponding eigenstate) of the pairing Hamiltonian, which could not be done with 
other methods since the dimension of the model space is huge in general. 

Finally, it is interesting to note that, as the pairing force is traditionally interpreted in terms 
of pair diffusion, our method simply consists in simulating this diffusion in order to measure 
interesting quantities rather than calculating them directly. In particular, the pair occupation 
probabilities (the vi in BCS theory) are related to actual probabilities in the Monte Carlo 
process. 

In Section 2, we introduce our Monte Carlo method. Section 2.1 is devoted to the case of a 
constant G, whereas Section 2.2 treats a general pairing interaction. In Section 2.3, we expose 
the Monte Carlo estimators for the pairing energy and the pair occupation probabilities. Then, 
we introduce a symmetrized form for the breakup of the evolution operator in Section 2.4. In 
Section 3, we present the implementation and the results of the method. The exactly solvable 
cases of a two-level model and of a system of equidistant levels are considered in Section 3.1 and 
3.2 respectively, in order to check the reliability of the method. In Section 3.3, we apply the 
method to some nuclei with a realistic interaction. Finally, we conclude in Section 4. Statistical 
and systematic errors originating from the method are discussed in Appendix A. 

2. The Monte Carlo method 
2.1 PAIRING FORCE OF CONSTANT STRENGTH 

For simplicity, we consider first the case of a many-body system with a pure pairing force 
of constant strength G (> 0). It is described by the Hamiltonian 

n n 
H = L €k(alak + aiaAJ - G L al,ai,akak , (5) 

k>O k,k'>O 

where k and k are time-reversed conjugate states with energy €k. The indices k, k' run from 
1 to n, where n is the total number of conjugate orbit pairs. Our purpose is to calculate the 
exact N-particles ground state energy of H by use of a Monte Carlo procedure. This method 
does not assume a particular functional form {or the ground state wave function (such as the 
BCS ansatz), and is thus exact, at least in principle. 

We work in a Fock space where the pair configurations denoted by IC > constitute a basis, 
since one can assume that all particles are paired without loss of generality. We define 

n 
IC >= I{nk} > with L nk = n, nk = 0 or 1 , (6) 

k=l 
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where nk are the pair occupation numbers and n = ~ is the number of pairs in the fl conjugate 

orbit pairs (k, k). The dimension of our basis is G~), which rapidly becomes very large for a 

reasonable model space. The ground state l'lto > of H can be expressed in this basis {IC >} as 

l\lIn >= LaclC > , (7) 
c 

where the coefficients ar are to be calculated to obtain the ground state energy Eo or other 
observables. This summation is impracticable as it involves a huge number of terms for usual 
model spaces, and an approximation is generally needed. However, we show that a Monte 
Carlo sampling procedure allows to estimate this sum by a partial exploration of the IC > 
space, without need for a complete enumeration of the whole set of configurations {IC >}. 
~Ioreover, as the configurations IC > contain the correct number of pairs n, the resulting 
ground state l'lto > will also have exactly n pairs. This is a great advantage compared to the 
BCS formalism (without projection) where the number of pairs is fixed only on average, which 
is a well known source of errors [2]. 

It is easy to show that the coefficients ac must be positive if l'lto > corresponds to the 
ground state of H. Let us apply the Hamiltonian to a given configuration IC >, 

HIC >= Eb-biC > -G L IC' > , (8) 
C' 

where Eh-b = Er=12 nk(C) f.k denotes the one-body energy of the configuration, and the 
summation, corresponding to the two-body part of H, runs over all the configurations IC' > 
obtained from IC > by moving one pair. As explained above, there are w = n(fl - n + 1) 
such terms, corresponding to all the possible pair diffusions. Note that n(fl - n) of these terms 
describe real diffusions (with k ::j:. k'), whereas the n remaining terms count the virtual diffusions 
associated to the diagonal terms (k = k') of the double summation in H. Thus, separating the 
one-body and two-body parts, the matrix elements of H are clearly given by 

E~-b if C = C' , 
{ o otherwise, 

-G if C and C' are connected, 
{ (9)o otherwise, 

where we consider C and C' as connected configurations if they differ at most by the position 
of one pair. Now, it appears clearly that the ac are positive, by calculating 

Eo < 'ltuIHI'ltu > / < 'ltol'ltu > 

[~~ac,ac < C'lHIC >] / [~lacI2] 

= [L lacI 2 Eb-b 
- G L a~.,ac] / [L lacl2] (10) 

C connected C,C' C 
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We may arbitrarily define the Oc as real, and we see easily that changing Oc to /oc 1 can only 
decrease the energy Eo, since G > O. Thus the ground state 1'11 0 > must have its components 
Oc ~ 0, and a Monte Carlo procedure may be applied wherein each Oc is associated to the 
sampling probability of the configuration IC >. Note that, according to this probability inter
pretation, we impose here the normalization condition Lc 0(' = 1, slightly different from the 

2standard condition LC 10(' 1 = 1. So, the probabilities appearing in the ~Ionte Carlo process 
2are not the physical probabilities loc1, and this fact will be important when computing the 

pair occupation probabilities. 
In order to calculate the ground state properties of our Hamiltonian (see 5), we use a random 

walk algorithm based on the imaginary-time method (see [27] for a review). One applies the 
imaginary time evolution operator e- t(lI-l';) to filter the ground state Iwu > from an arbitrary 
initial state 14) >, that is 

lim e- t(lf-E)I4) >1'11 0 > 
t--+oc 

N 
lim II e-:J.t(ff-E) 14) > , (11)
~t--+O 

N .:It--+oo 8=1 

where E is a normalization energy which is adjusted along the random walk in order to keep 
the norm approximately constant during the time evolution of Iw(t) >. By inserting complete 
sets of configurations IC > between the infinitesimal evolution operators, the product becomes 

e-t (lI-t;)I4) >= L ... L ICN >< CNle-~t(f1-E)ICN_l > 
eN Co 

... < C2 Ie-.:lt (lf-E)IC1 >< C 1 Ie-.:l t(H-E)IC >< Col4) > , (12)o 

yielding a multiple summation representation for Iwu >. This allows one to express the ex
pectation value of any observable as a multiple integral (in fact a summation in our discrete 
configuration space) which is then calculated stochastically using a random walk algorithm. 
This procedure is the classical Path Integral Monte Carlo method [27]. 

The essential problem in our case is the difficulty of handling the infinitesimal evolution 
operator e-~t(II-E) in configuration space. Indeed, applying e-.:l t II to a given configuration 

Ie> obviously gives 

2 
:J.t H I /)"t 21e- IC >= IC > -/)"t He> +2!H C > +... , (13) 

where the second term in the r.h.s. contains configurations connected by 1 step (1 paIr IS 

moved), the third term contains configurations connected by 2 steps, etc... , finally yielding 

the whole set of (~) configurations. It is possible to consider only the 1st-order term in /)"t of the 
expansion, just keeping the one-step diffusions; this is a good approximation if ilt . Emax < 1. 
This constraint on ilt depends on the energy Emax of the most excited state, not on the solution 
l'l1u >, and makes thus the method impracticable. 
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We propose a solution of this problem by doing a breakup of H which provides a simple 
stochastical evaluation of the matrix elements < G'le-t(II-L)\G >, in analogy with what is done 
in ref. [29] and [30]. We write the Hamiltonian in the form H = H I

-
b + H'2-b and use the 

common breakup 
1 be-~t JI :::: e-~t 1I - • e-~l /(l-b + O(~e) , (14) 

which is an approximation since H'-b and H 2 -
b do not commute. However, the method is 

asymptotically exact since the commutator [~t H'-b, ~t H2-b] tends to 0 like ti.e,. The ad
vantage of this breakup is that the matrix elements of e-~t f11-b and e-~t /(l-b can be exactly 
evaluated separately (without truncating the expansion of the exponential). We will present in 
Section 2.4 a symmetrized form of this breakup which leads to a gain in accuracy of one more 
order in ~t. 

For the time evolution operator associated with the one-body part H'-b, we have obviously 

(15) 

so that evolving IG > comes to multiply by a factor depending on E~.-b. For the two-body 
part, we have 

e-~t H2-b IG >= IG > +Gti.t E al,a~akaklG >
 
k,k'>u
 

(Gti.t?
 
(16)+ 2! 

where the successive terms in the r.h.s. correspond to the contributions of 0-, 1-, 2-steps 
diffusions, etc... The matrix elements < G'le-~t 11 

2
-

b
1G > cannot be obtained directly, but will 

be generated by a stochastic process going from IG > to the destination configuration IG' >, 
such that the probability P(G', G) of going from IG > to IG' > is proportional to < G'I·IG >. 
We write 

< G'le-~1 H2-b IG >= N(G) P(G',G) , (17) 

where N (G) is a normalization factor, and is a function of the configuration IG > in general, 
and P( G', G) is a probability distribution in IG' >. 

In order to calculate this normalization factor, let us re-express equation (16) as 

(18) 

where IGt > represents the set of configurations reachable after a L-step diffusion. Of course, 
IGci >= IG > for a O-step diffusion. There are w = n(O - n + 1) possible destinations for 
a one-step diffusion (including virtual diffusions), so there are obviously wI., destinations (not 
necessary distinct) for a L-step diffusion. Thus, one gets 

N(G) = L < G'le-~t J/2-b IG > 
c' 
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(19) 

where we define v = w G ~t. Note that N(e) is independent of IG > for a constant strength 
pairing force, but this will not be the case for a general interaction Gi,j (see Section 2.2). Thus, 
it appears that the probability distribution of the number of steps L (between IG > and Ie' > ) 
is a Poisson distribution of parameter v, 

where v = E"fen ~t . (20) 

The parameter v simply represents the average number of steps per time interval ~t, and can 
also be written using the expression (3) of the energy in the seniority scheme (i.e., E.~nl = w G). 

Defining the probability of going from Ie > to IG' > as P(G',G) =< G'I·IG > jN(G), 
the stochastic process associated to the probability P(G', G) is thus the following : firstly, 
the number of steps L is chosen according to a Poisson law of parameter v; secondly, each 
effective step is chosen randomly among the w = n(n - n + 1) possible pair diffusions. This 
random process exactly simulates the evolution operator associated with the 2-body part of the 
Hamiltonian, Le. pair diffusion, up to the multiplicative factor exp(v). 

Now, the matrix elements of the complete time evolution operator can be written as 

< G'le-~t(l/-B)le > e-~t(f:~7b_E). eV P(G', G) "V • 

w(G') . P(C', G) , (21) 

where we have defined w(G) = e-~t(E~-b-Eun-E). Thus applying e-~t(H-E) to a given Ie > 
is equivalent to a random diffusion according to P(G', C), followed by a multiplication by the 
weight w(G') depending on the one-body energy of the destination configuration IG' >. The 
evolution operator associated with H'l.-b acts as if all the single-particle levels were degenerate, 
and diffuses the pairs in the available orbits (according to the Poisson distribution). Then, the 
evolution operator associated with H l -

b corrects for the real single-particle spectrum by taking 
into account the weights w(G). These weights become small when a diffusion leads to a large 
increase of the energy E 1- b• 

The above is analogous to the well-known Feynman procedure [31] related to the separation 
of H into a kinetic and a potential part, yielding two separate propagators. Here, H2-b plays 
the role of a kinetic energy by spreading out l'lt(t) > in the configuration space, whereas H l - b 

plays the role of a potential energy and concentrates 1'11(t) > in its components with little 
one-body energy E1-b. The balance between these two competing tendencies determines the 
exact ground state I'It0 >. 

It is interesting to note that, in the case of a single-level system, all the configurations IC > 
are degenerate (EL·- b = 0) and play the same role, so that we must have w(G) = 1 for all G in 
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order to keep constant the norm of Illt( t) > during the time evolution. Thus, the normalization 
energy must be E = -E.n:n (i.e., that of the seniority scheme) as expected. 

2.2 GENERAL PAIRING INTERACTION 

\Ve consider now the case of a many-body system described by the Hamiltonian 

n n 
H = L fk(alak + a~k) - L Gk,k' al,a~/akak , (22) 

k>IJ k,k'>u 

where the Gk,k' are the interaction matrix elements (Gk.k, > 0). It is easy to show that 
the components etc of the ground state must also be positive in this case, so that it is also 
appropriate to consider a Monte Carlo procedure (as in Section 2.1). 

The only difference here is the expression of two-body matrix elements of H, that is 

if C and C' are connected, 
(23)

otherwise, 

where we consider C and C' as connected if they differ by the position of one pair (which is 
diffused from state i to state j). Note that virtual diffusions are also included. Thus, using the 
same breakup as in Section 2.1, we have to generate stochastically the imaginary time evolution 
operator associated with the two-body part of this Hamiltonian. Let us evolve a given IC > 
with this operator, as in equation (18), 

co w L A I,
-~t l(l-b ~ ~ ut,X 

e \C >= L...J L...J ••• Gi,j··· -, ICL >, (24) 
L=o 'x=1 '----v-" L. 

L tcrnlS 

where the product of L terms Gi,j corresponds to the L successive diffusions from IC > to Ict >. 
It is impossible here to directly simulate this diffusion process, as in Section 2.1. However, it 
is possible to apply an importance sampling procedure [32] for the stochastic evaluation of the 
two-body evolution operator matrix elements. Let us consider the matrix element 

co wI, 
~tI·< C'le-~t H2-b 1c >= L L F(Ct) where F(C;) = ... Gi .••• - 6e l c>. . (25), ~ L! "L 

L=O 'x=1 
L terms 

If we proceed to a random sampling of the configurations let> according to the distribution 
corresponding to a constant G (arbitrary chosen for the moment), that is 

(26) 

with the normalization condition 
L

00 w

L LP(Ct) = 1, (27) 
L=O~=l 
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we may evaluate our matrix element by importance sampling, using 

(28) 

(29) 

Here E means the expectation value for a random sampling of the ct according to the proba
bility distribution P(ct). 

Thus, the two-body part of the evolution operator is obtained exactly by applying the 
random process corresponding to the constant G case, and then weighting each effective one
step diffusion by the factor Gi,j/G. In order to make this procedure efficient, it is clear that 
we have to choose for G a value of the order of the Gi,j. For simplicity, we arbitrary take the 
average value G = Ei,i Gi,i /0. 2 

• Thus, we simulate the diffusion process as if the matrix was 
constant (with Gi,i = G), and then we correct for the differences by taking into account the 
factors Gi,i/G. 

The matrix elements of the complete time evolution operator are then given by 

< C'le-~l(ll-E)IC > ~ w(C')· W(C',C). P(C',C) , (30) 

where W(C', C) is defined as the product of the factors Gi,i/G corresponding to the diffusion 
path from IC > to IC' >. Thus, the only difference when treating the case of a general 
interaction G i,i consists in multiplying by a supplementary weight W( C', C) in equation (21). 

2.3 EXPECTATION VALUE OF OBSERVABLES 

Let us consider now the stochastical evaluation of the multiple integral appearing when 
calculating the ground state wave function (see [27]). We have, using expression (12), 

1'1'0 > ~ e-t(H-I-:)I~ >= L··· L ICN > w(CN) W(CN,CN-I) P(CN , CN-d 
eN Co 

(31 ) 

where we take the weights W(CN,CN-d = 1 when treating the case of G constant. Let us 
take an ensemble of Nens initial configurations {C~} selected according to ~(Cu) = < Col~ > 
taken here as a probability distribution. The algorithm consists in evolving stochastically the 
configurations C; (with i = 1,·" Ncn ... ) according to the matrix elements W(C;+I) »1'(C;+1' C,~) 

x P(C,:+I' C;) so that a new ensemble {C;+l} is generated. Each C,~+I is chosen randomly with 
the probability distribution P(C;+P C;), and replicated stochastically by a factor w( C.~+I) 
x W(C;+l' C;). This is done (see [15]) by choosing a random number euniformly distributed 
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in the interval [0,1], and taking NrcT}1 replicates for each C.~+ I. The number of replicates N nTJ1 

is wri t ten as 
(32) 

where [x] stands for the greatest integer in x. In the limit of a large ensemble, the average 
number of replicates will be w( C~+I) W( C.~+l' C.~), so that the evolution of the ensemble {C.~} 
is produced stochastically. 

After this random walk process, the final ensemble {C~.} will be distributed according to 
N . .. ., 

n~=, w(C.~) W(C~,C.~_l) P(C~,C;_I) <Jl(Co), and we will have 

(33) 

Hence, this stochastic method allows the evaluation of matrix elements of any operator as an 
average on the final ensemble of configurations. This ensemble {C~,} represents a sample of the 
Oc of the exact solution l\l1u >, so that each configuration IC > appears with the probability 
0c in the Monte Carlo simulation. Indeed, we have 

1 NenlJ 

°c ==< CIlJ10 >~ N L hc,c~ . (34) 
ens i= I 

In particular, we may evaluate the ground state energy from its wave function llJ1u >. Using 
the normalization condition Lc Oc == 1, we can write 

Eo L < C'IHIlJ1o > 
c' 

L ac < C'IHIC > 
CTC' 

b"a (E 1
-

b + E 2
- ) (35)L....JC c c, 

c 

where we have defined 

EZ/-b == L < C'jH2
-

b IC > == - L
'.tJ 

Gi,i . (36) 
C' A=I 

This corresponds to a summation over the w possible one-step diffusions from the configuration 
IC > (the pair being diffused from state i to j). Note that, in the case of a constant G, it is 
simply given by E~-b == -E.'1cn' and is thus independent of the configuration Ie >. Thus the 
energy Eu is given by the average of the (E~/-b +E~-b) weighted by the Monte Carlo sampling 
probabilities ac. The Monte Carlo estimator for the energy is 

NCnlJ1 {E~I.b - E.,en for a constant G , 
Eo L (37)f"oJ -

Hens i= I E~~b + E~ib for a general interaction Gi,i . 
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Note that, in the case of a single-level system with a constant G for which all the configurations 
IC > are degenerate (E~/.-b = 0), this estimator clearly yields Ell = - E.'1fTl as expected. 

The value of the energy can also be detennined from the normalization energy which ap
pears in the time evolution operator. Indeed, if E;v is defined as the value of E which keeps 
the size of the ensemble of configurations stable, it is clearly another estimation of Ell. The 
agreement between these two methods constitutes a nontrivial consistency test of the Monte 
Carlo algorithm (see [27]). A particular example is the case of a single-level system with a 
constant G, where both Monte Carlo energy estimators yield Eo = EN = -E''1en' that is the 
exact solution with no statistical noise. 

The ~Ionte Carlo algorithm also makes possible the calculation of the exact pair occupation 
probabilities. Indeed, the expectation value of the pair number operator nk is given by 

< wolala}ak'aklwu > < (!e-t(ll-r;)lalataraklwo > 
< nk >= = . (38)< '11 0 1'110 > < (le-t(lJ-/';)lwo > ' 

where I( > is an arbitrary state, and t should be taken large enough to eliminate contributions 
from excited states. Using the fact that the nk operator is local in our configuration space and 
taking < CI( >= 1 for all IC >, we have 

LC,C' < C'le-t(H-E)IC > nk(C) etc 
< nk >= ( F) • (39)

LC,C' < C'le- t 1/- • IC > etc 

This clearly requires further evolution of the random walk, in order to filter the ground state 
from the state Ink Wu >. Expression (39) can be used as follows. Starting at time t[ with an 
ensemble of configurations distributed according to 1'110 >, apply the local operator nk to the 
ensemble, i.e. weight each IC > by its occupation number nk(C). Then evolve the ensemble to 
the time t //. We take as estimator for the occupation probability: 

1 N en .• "( .) 

< nk > ~ N 2: nk(C; J ) , (40) 
ens j=l 

where nk(C;(j)) is the k'h occupation number of the configuration C}, progenitor of Cf,. Thus, it 
is necessary to keep track of each ensemble member's history in order to calculate the occupation 
probabilities. 

The exact expectation value of other local observables could be obtained in principle with 
this Monte Carlo method, even if their calculations may be tedious. The case of non-local 
observables is still more complicated, since their expectation value can only be obtained ap
proximately by a perturbation method (see [27]). We have not considered this problem here. 

2.4 SYMMETRIZED BREAKUP OF THE EVOLUTION OPERATOR 

As already mentioned, it is possible to replace the breakup of the evolution operator (equa
tion 14) by the symmetrized form [30]. 

-~t H _at HI-b -At H2-b _at Hl-b P\( A :1)e = e:2 . e . e 2 + v ut . (41) 
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It is obvious to show, by expanding both l.h.s and r.h.s. of this equation, that it is exact to 
the 2nd order in ~t, so that one order is gained compared to the more common breakup (14). 
\Vhen using this breakup, the matrix elements of the complete time evolution operator become 

< C'le-~l(ff-t;)IC > ~ w(C',C) . l'V(C', C) . P(C',C) , (42) 

where we have defined w(C', C) = [w(C'). W(C)]1/2. Thus the same stochastic procedure can 
be applied here, if we replace the weights w(C') by w(C', C) in equations (31) and (32). In fact, 
the decomposition of exponential operators may be generalized [33] to get an exact expression 
up to any order in ~t. However, in general it cannot be applied in a quantum Monte Carlo 
simulation because it calls for the existence of an inverse exponential diffusion operator. 

As an illustration, we have investigated the convergence of our estimate for the ground state 
energy Ell as a function of ~t (or v). vVe define here the pairing energy as Ep = lEu - E,',-bl, 
where El~ -b is the one-body energy of the unperturbed ground state Iq,,~ -b >. Figure 1 shows 
the dependence of the measured E p on v for a test case of 8 particles in 8 equispaced doubly
degenerate single-particle levels (i.e., N = 0 = 8) with G = 1.0. Note that we express energies 
and the pairing strength G in units of the single-particle level spacing. We show: (a) the 
case for the symmetrized operator (i.e., ~t3 breakup); (b) the case of the non-symmetrized 
operator (i.e., ~t'2 breakup). The runs were such that statistical errors are of the same size as 
the symbols. When going from the infinitesimal evolution operator to the finite time evolution 
operator, on the order of 1/~t steps are required, so that the accuracy is reduced by one order in 
~t. Thus, as confirmed by the numerics, the systematic error (due to ~t -=J 0) in the estimator 
of Eu is proportional to ~t2 in the case of the symmetrized operator while it is proportional 
to ~t for the non-symmetrized case. This clearly exhibits the accuracy gained when using the 
~t~1 breakup, while the extra cpu cost is negligible. We have also numerically checked that, 
when suppressing the terms of order L > 1 in the Poisson distribution, the convergence still 
goes like ~t, so that one order is lost. This shows that the Poisson distribution allows to gain 
the supplementary order in ~t. 

The detailed discussion of the different sources of errors (statistical and systematic) is re
ported in Appendix A. 

3. Results 

In order to get good statistics for the ground state energy and pair occupation probabilities, 
we have to average our estimates of Eu and nk over time, after removing the initial transients 
so that the excited states have decayed away from the initial state 1<) >. We arbitrary choose 

bfor 1<) > the ground state wave function Iq,~-b >= /C 1- > of the unperturbed one-body 
Hamiltonian, where IC1-b > is simply the configuration obtained by putting the pairs into 
the lowest available orbits. Thus we take <)(Cu) =< Co]<) >= OCO,Cl-b, that is the initial 
configurations {C,~} for the whole ensemble are always taken equal to C I-b. 

It is convenient to define a reduced time T = wGt = n(O-n+ I)Gt which has the advantage 
of corresponding to the average expected number of steps (pair diffusions) along the random 

13
 



walk of length t. Thus we average our estimators from Ti = N 6.t (where N is the number of 
terms in expression (31) needed to have negligible contribution from the excited states) to TJ === 

Ti + T using steps of v = wG 6.t. Note that we use the syrnmetrized breakup (see Section 2.4) 
for all our calculations since it permits to gain accuracy at essentially no computation cost. 

3.1 THE SYMMETRIC TvVO-LEVEL l\IODEL 

We study here the case of an exactly solvable symmetric two-level model, with the number 
of particles N equal to the degeneracy 0 = 2j + 1 of each level (i.e., n = 0/2). This model 
has been first examined in ref. [34], and its exact solution was studied in details by Rho and 
Rasmussen [35]. Then, it has been extensively used to validate various approximation methods 
(see e.g. [36, 37, 38]). More recently, the general case of a two-level model with N -1= 0 has 
been discussed in ref. [39]. 

The pairing Hamiltonian for this model can be written as 

n/2 0 n 
H = -f L(akak +a~k) + f E (alak + al-ak) - G L al,a~,akak , (43) 

k=l k=O/2+1 k,k'=l 

the energy gap between the two levels being thus 2f. In the following, we will be interested in 
the two-body pairing energy Ep which we define as Ep = lEu - EMFI, where Eu is the total 
ground state energy of the system, and EMF =< 'I1~-bIHI'I1~-b >= -Nf - nG is the mean 
field energy (corresponding to the solution 1'I1(~-b > of the unperturbed one-body Hamiltonian). 
Note that the term nG is the pairing energy in the case G ~ 0, and corresponds to the part 
of the pairing energy which can be incorporated into the one-body energy (i.e. the virtual 
diffusions) . 

The exact solution Epxacl is obtained by introducing two sets of quasispin operators, and the 
problem finally reduces to the diagonalization of a tri-diagonal matrix of dimension n + 1 (see 
[35]). The BCS energy for this model can be easily computed (see e.g. [39]), and it appears 
that there is a critical value of the pairing strength Gc: = 2f/(O - 1) below which there is no 
non-trivial solution. Thus we define for convenience a reduced pairing strength x = G / Ge • 

In Figure 2, we plot the pairing energy as a function of x for the case N = 0 = 24. It is 
useful to define here a dimensionless pairing energy P = Ep / N f, with N f being the unperturbed 
one-body energy (i.e., < 'I16-bIH1-bl'l1l>-b ». The solid line stands for the exact energy Pexael , 

whereas the symbols correspond to our computed energies PMC obtained by a Monte Carlo 
simulation with the parameters: v = 0.5, Ti = 100, T = 3000, and Nen.'f = 10000. The two 
different Monte Carlo estimations Eo and EN of the energy agree very well (i.e., their difference 
is smaller than the statistical errors of either). They are consistent with the exact solution 
(within statistical errors) in the whole range of x (or G) values. Note that, for x ~ 0.5 (i.e., 
at the limit of weak pairing), the Monte Carlo estimation of E p becomes difficult because E is 
very close to EMF, and thus E p is dominated by statistical noise. However, it has no practical 
importance since the pairing energy becomes very small compared to the one-body energy. 
Also, perturbation methods apply very well in this low pairing regime. 
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In Figure 3, we compare our computed energies with the energies resulting from different 
approximation methods. We are interested in the quantities Q = EIJ / Ei{Ud, that is in the ratios 
of the pairing energy (in various approximations) to the exact result. We show for reference 
the solution of BCS equations without particle number projection and with exact projection 
(variation after projection), and the solutions of the KamIah and the Lipkin-Nogami methods 
from [40]. It is well known that BCS method accounts only for part of the two-body pairing 
energy Ell since it is a variational method, and thus QHCS < 1 especially for low x. Note that 
it has two major problems: firstly it yields Q = 0 for x ~ 1, and secondly it tends to give 
Q = (0 - 1)/0 in the strong pairing limit (i.e., x ~ 1). The exact particle number projection 
method is very accurate in both small x and large x limits, but it introduces an error (less than 
10%) to the pairing energy when x is close to 1. The KamIah and Lipkin-Nogami methods 
give very accurate energies for x ;<: 1, but the ratio Q becomes very low for small x with both 
methods. However, we should mention that the predicted energies become much more accurate 
in the case N i- 0 for both methods (see [39]). The symbols in Figure 3 represent the results 
of our Monte Carlo simulation. In order to reduce the statistical noise, we had to increase the 
integration time T and the ensemble size Ncns compared to Figure 2 (we took T = 6000, and 
Nens = 20000). It clearly appears that the Monte Carlo method gives a very good agreement 
with the exact result (i.e., Q",c '::: 1 within statistical errors) in the considered range of x (or 
G) values, better than with any approximation method. Such an accuracy could not be useful 
for practical applications of the method, but what we intended here was just to show that the 
result is asymptotically exact. Note that the critical value x = 1 does not playa particular role 
in the l\Jlonte Carlo method, since no assumption is made concerning the functional form of 
the ground state wave function. The spurious critical behaviour at x = 1, originating in BCS 
method itself, is thus absent in the Monte Carlo results. 

3.2 EQUIDISTANT DOUBLY-DEGENERATE LEVELS 

We study now the case of equispaced doubly-degenerate single-particle levels. This problem 
has been solved exactly [8] for some model spaces with different values of the interaction strength 
reproducing typical values of the nuclear pairing energy. We only consider here the calculation 
of the pair occupation probabilities; the corresponding pairing energies can be found in ref. [9]. 

We chose the problem of 16 particles placed in 16 equispaced single-particle levels (i.e., 
N = 0 = 16) with a pairing strength G = 0.48 (expressed in units of the single-particle level 
spacing). In Table 1, we show the occupation prohabilities for three levels above and below 
the Fermi level. For comparison, we indicate the result of our Monte Carlo computation, the 
exact values [8], and the predictions of BCS equations (i.e., v2). We made the ~Ionte Carlo 
simulation with the parameters v = 0.2, Ti = 300, T = 16000, and Ncns = 20000, in order 
to get very good statistics (the pair occupation probabilities are more subject to statistical 
noise than the pairing energy). Note that in order to implement our time averaging for the nk, 

we have to keep in memory an associated nk for each configuration of the ensemble during a 
given time (long enough to get relaxation). We calculate a running average of the nk from the 
ensemble, using a time difference TIl - TI of 100 steps. This choice results from a compromise. 
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For small values of TIl - TI, the contributions from excited states have not sufficiently decayed, 
whereas for large values the statistical errors in the estimator for < nk > become important. 
This behavior was worsened when studying larger model spaces (in particular, we considered 
the case N = n = 24 where no good compromise was found). 

3.3 THE CASE OF 21J8Pb AND IlfiSn 

For illustrative purposes, we have applied our Monte Carlo method to the case of two nuclei,
2U8 116Pb and Sn, because they essentially correspond to two extreme cases. For the doubly-
magic nucleus 2uHpb, the effect of the pairing correlations is considered as very weak (the pairing 
never switches on with a reasonable strength within BCS). On the contrary, the neutrons in 
116Sn (midway between two shell closures) pair strongly, so that the calculations using variation 
after projection are expected to be accurate. We have thus calculated the pairing energy for 
these two nuclei using realistic single-particle energies fk and pairing matrix elements Gk,k' from 
[41]. These come from a self-consistent Hartree-Fock plus BCS (HFBCS) calculation [42], with 
the Skyrme SkM'" [43] effective interaction for the mean-field. For the pairing interaction, a 
zero-range force [44] is used, 

-+ -+ 

T( -+ -+ ) VT 1 - 0"1 • 0"2 t5( -+ -+ )V T17 0"1; T2, 0"2 = 0 4 Tl - T2 , (44) 

where r and iT are the space and spin variable respectively. Here, ~T is the strength for the 
neutrons (T = n) or the protons (T = p). Thus, the derived wave functions from HFBCS 
calculation are used to determine the matrix elements Gk,k' of this two-body interaction. Then, 
the variation after projection equations are solved in order to yield the pairing energy and 
occupation probabilities. 

In Table 2, we compare the pairing energy predicted by our Monte Carlo method for both 
neutrons and protons in 208Pb and 116Sn to the result of a variation after projection calculation. 
This energy represents thus the energy gained by switching on the delta-force for the pairing 
interaction. The strength was taken to be li;) = -240 MeV Fm3 for both neutrons and protons. 
Note that we took for the cut-off a Fermi factor with a range near 5 MeV. \Ve ran the ~lonte 

Carlo simulations with the parameters v = 0.5, T = 500, and Ncno'l = 20000, which took a 
reasonable computation time (e.g. 10 min. on a Vax Station 4000). From Table 2, it clearly 
appears that the variation after projection calculation cannot account for the totality of the 
pairing energy, especially in the weak pairing regime (i.e., near shell closures). On the contrary, 
in the case of the neutrons in 116Sn, one notices that the variation after projection predictions 
are much closer to the exact result, as expected. Thus, our Monte Carlo procedure proves to be 
appropriate for calculating realistic pairing energies in nuclei, yielding a better accuracy than 
the available approximation methods. 

4. Conclusion 

We presented a novel quantum Monte Carlo approach, and successfully applied it to nuclear 
systems with a pairing interaction. Our Monte Carlo algorithm is very efficient from the 
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computational point of view, and is also very appealing for its conceptual simplicity. Pair 
diffusion is siIDulated stochastically in order to calculate interesting quantities such as the 
pairing energy or the pair occupation probabilities. The sequence of random walk processes 
followed by replications corresponds to one's intuitive view of pair diffusion. 

Comparison of our results with exact calculations for the simple models presented in Sec
tion 3.1 and 3.2 show that the method is reliable. lV!oreover, it leads to a better agreement with 
the exact solution than the standard approximation methods such as the KamIah method, the 
Lipkin-Nogami method, or the exact particle number projection method. It is the only method 
able to give, at least in principle, an exact solution when treating a general pairing interaction 
(i.e., G not constant). Thus, it is very promising for treating realistic pairing correlations in 
nuclei. 
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Appendix A : Statistical and systematic errors 

The ~10nte Carlo estimators for the ground state energy and the pair occupation probabil
ities are subject to both statistical and systematic errors. 

i) Systematic error: The first source of systematic error is trivially due to the fact that the 
exact evolution operator in configuration space is not simulated, as mentioned in Section 2.1. 
In particular, the breakup of the evolution operator leads to an error quadratic in Llt (in the 
case of the symmetrized breakup) as explained in Section 2.4. Besides this, there exist a more 
subtle bias in the Monte Carlo estimation of the energy (and other observables) related to 
the finite size of the ensemble (N(;ns is finite). This bias is specific to projection Monte Carlo 
methods (i.e., Green Function and Path Integral Monte Carlo calculations) [10]. Generally, it is 
not recognized that this bias exists, or at best it is believed to be negligible, but we have found 
that it is important in some cases. (For instance, a size of about ten thousand configurations is 
required to make this error negligible for reasonable model spaces.) The main purpose of this 
Appendix is to quantify this systematic error. In particular, we will show that it scales like 
1/N cns for all estimators. 

Firstly, we have numerically checked the existence of this bias for our estimates of the energy 
in the case treated in Section 2.4 (i.e., equidistant doubly-degenerate levels with N = n = 8 
and G = 1.0). We have chosen for 1,1 the value 0.5 so that the systematic error due to Llt =1= 0 
is small (see Figure 1). In Figure 4, we plot the measured pairing energy E p as a function of 
Nr~&~'f. The existence of a bias inversely proportional to N ens is thus confirmed in this case. Note 
that this bias leads to underestimating the pairing energy, so that the estimated ground state 
energy is too high. This behaviour will be explained in what follows. 

Let us show how Nr~n.'f finite introduces a bias. It is the fact that the weights (after time 
evolution) are distributed with a non-zero variance which is at the origin of the bias. The 
estimator for an observable consists in an average over the ensemble of size Nr;ns, and is thus 
expressed as a ratio, the denominator of which being the sum of the weights of the configurations 
(i.e., the normalization factor). Then the bias originates from the fact that the expectation 
value for a ratio is not the ratio of the expectation values, if the denominator is a fluctuating 
quantity. Here, the denominator is the normalization factor, and fluctuates because of the 
variation of the weights. In order to simplify the discussion, we will limit ourselves to showing 
that the application of the time evolution operator to an ensemble of configurations distributed 
according to the exact ground state yields a new ensemble with a biased distribution. This will 
demonstrate that our stochastic procedure tends to a steady-state distribution which does not 
exactly correspond to the exact ground state when Nens is finite. (The determination of the 
actual steady-state distribution is beyond the scope of the present paper.) For convenience, we 
will also neglect the replication procedure in the following, because it seems difficult to precisely 
account for the error which it introduces. Also, the purpose of the replication is to make the 
Monte Carlo procedure efficient (that is to significantly reduce the statistical error), and one 
may reasonably assume that the replication will not suppress the systematic error. Thus, we 
also neglect the fact that the ensemble size is not constant in practice (in fact the normalization 
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energy EN is constantly adjusted in order to compensate for deviations from N,'ns), but this 
does not change our conclusions. 

Let us follow the time evolution of an ensemble of finite size from an initial ensemble of 
configurations {Ci } (with i = 1" .. N, "!l) randomly chosen according to the exact distribution 
of the ground state, i.e., ac. For the time being, we assume that the exact time evolution 
operator is used, so that we can ignore the trivial bias due to the breakup. We will show that 
the estimators for observables are sensibly biased when one uses the new distribution obtained 
by evolving the initial one for a time t. We define here the exact evolution operator by 

(45) 

where Ell stands for the exact ground state energy. Of course, this expression depends on an a 
priori knowing of Eo, but it is just a way to normalize the weights, and it has no importance 
in the following. The matrix elements of Ut are given by 

Ut(C', C) =< C'IUtIC >= P(C', C)· w(C) , (46) 

where the weights are defined as w(C) = }:c' Ut(C', C), in order to normalize the transition 
probabilities P(C',C). (Note that w(C) has an implicit dependence on t.) It is clear that 

Ut IlJIo >= E E U(C', C)acI C' >== E ac,IC' > , (47) 
c C' C' 

so that we have the following equation for Ut 

E acUt(C', C) = ac, . (48) 
c 

In the following, we will apply estimators acting on the initial ensemble of configurations {Ci } 

and the corresponding ensemble of configurations {Cn (after the evolution for a time t), in 
order to measure the energy Eo and the probabilities ac. We introduce the quantities 

Wens = 
,V,n.s

L w(C;) , (49) 
i=l 

E,;n., 
Ncn.s 

2: w(Ci)E(C;) , 
i=l . 

(50) 

N.n.s 

Aen.,(C) 2: w(Ci)e5c !,6
i=l I 

, (51) 

where the w( C i ) are the weights of the configurations (before the time evolution), and the E(Cf) 
are the energies of the corresponding configurations after time evolution with the definition 
E( C) = E~-,.-b + E~-b. Here, Ei.-b and E~-b are defined as in Section 2. Note that, with this 
definition we have Eo = }:c acE(C). Thus we clearly see that Een.,,/Wenlf yields an estimator 
for the ground state energy Eo, while Acms ( C)/Wcns is an estimator for the probability 0.(;. 
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Now we are interested in the distribution (in fact, the first moments) of these estimators. 
Let us consider first the estimator for the ground state energy. We have respectively for its 
expectation value and its variance 

E[E,w,/W(T/."] 1 Cov[ E(:".~, W(:TI.~] Var[W(;fIs] 
(52)

E[E( ".~] /E[Wt:r..~] E[E(:TI.~]E[Wr:lI.~] + E[W(:n.~J2 'I"V 

Var[ E(fl.~/ ~V~ns] Var[E('n.'I] + Var[~V(;ns] _ 2Cov[Etcns , ~~;TI.'1]I"V 

(53)
(E[Ecn.~] /E[Wen.,])2 E[EcTisF E[Wen.,J2 E[Ecn.,]E[Wens]· 

vVe thus need the expectation value, variance, and covariance of the quantities introduced in 
equations (49), (50), and (51). Since the configurations Ci of the ensemble are independent (only 
the replication process introduces a correlation between the configurations), these quantities 
can be simply expressed with the help of the corresponding one-configuration quantities (acting 
on one individual configuration C and the corresponding one C' after time evolution) as 

iVCn3 

Wens L Wl(C;) (54) 
i=1 

N Cn3 

Eens = L E 1(Cd (55) 
i=1 

The expectation value for these one-configuration quantities, when beginning with a configu
ration distributed according to o.c (the exact ground state distribution) can be easily obtained 
as 

E[Wd L o.cw(C) = 2: L o.cUt(C', C) = 1 , (56) 
c c c' 

E[ELl L L o.cP(C', C)w(C)E(C') = Eu , (57) 
c c' 

where we have used equations (46) and (48), and the definition of w(C). In order to express 
their second-order moments (variance and covariance), we must find an approximate expression 
for the weights w(C). It is easy to show that, for small values of t, 

w(C) ~ e-t[E~-b+E~-b_Eo] = e- t [1':(C)-Eo] , (58) 

so that we have 

Var[Wd 2: o.c[w(C) - 1]2 
C 

I"V e· L o.c[E(C) - Eo]2 • (59) 
C 

We can also express 

Var[Ed 2: L o.cP(C', C)[w(C)E(C') - Eo]2 
(,' G" 

I"V L o.c [E (C) - Eu]2 , (60) 
C 
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using the fact that P(C', C) ~ 8c',c and w(C) ~ 1 at the lowest order in t. Finally, we calculate 
t he covariance 

L L acP(C', C)[w(C) - 1] [w(C)E(C') - Eu] 
c (,', 

-t· L ac[E(C) - Eo]2 , (61) 
C 

showing that E 1 and WI are perfectly anticorrelated (at the lowest order in t). 
Now, we may calculate the corresponding quantities for Et:n.'I and Wewq using equations 

(56), (57),(59),(60), and (61), and using the fact that the configurations are independent: 

E[lVens ] Nen.'I , (62) 
') ')

Var[Wens ] N ens t- (j- , (63) 
E[Een!f] N('ns Eo , (64) 

Var[Eens ] Ncns (j2 , (65) 

Cov[Ecns , Wens] -Nens t (j2 , (66) 

where we have defined (j2 = Ec ac[E(C) - Eu]2. Thus it appears naturally that the expectation 
value for our energy estimator is biased since one has, using expression (52), 

(67) 

This leads (at the lowest order in t) to a bias equal to tu2 
/ Nens , thus scaling like 1/Nens . The 

Monte Carlo method provides thus a zero bias only in the limit of Ncns infinite. This bias is 
also proportional to the quantity (j2, depending on the exact ground state of the considered 
system. Note that in both the weak and strong coupling limits, u 2 tends to zero. Indeed, when 
G tends to zero, only one configuration (i.e., C I - 6 

) contributes to the ground state, and one has 
Qc = 8C,cl -b, so that u'l = o. When G tends to infinity, all the configurations play the same 
role and the E(C) are degenerate, so that one has also (j2 = O. This explains why the Monte 
Carlo method tends to give the exact result in these limiting cases. It is also interesting to note 
that the predicted bias is always positive, so that the ground state energy is overestimated, 
which is exactly what appeared in the numerical simulations (see Figure 4). 

The reduced variance of the estimator for the energy can also be expressed, using (53), as 

(68) 

so that the (squared) relative statistical error on Eu is approximately given by (j2 /(NcnsE~), 

with the same dependence in Ncns and u 2 as the bias. Note that, up to now, we have not 
specified the time t. If one followed the evolution during a long time interval (taking into 
account the exact dependence in t, and not only the lowest order terms of the expansion in 
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t), one would tend to a steady-state sit uation and the corresponding bias and statistical error 
would then saturate. Thus, the value of t has no real significance here, except for describing the 
short time behaviour (and in particular, times shorter than the replication time). However, our 
analysis has already the merit of clearly exhibiting the existence of a bias and its dependence 
on N(Tl.~ and u/ Eo. 

Let us consider now the estimator for the probability a G" that is AF.n."(6)/~V::Tl.,, where we 
define 

N"n~ 

(69)Au l.1(C) = L A1(Ci ) 
i=1 

In order to determine its expectation value and variance, we have to calculate the corresponding 
moments for the one-configuration quantity AI. We have for its expectation value 

E[A.] = L L acP(C', C)w(C)8c ',G' = at , (70) 
C (;1 

and for its variance 

Var[Ad L L acP(C', C)[W(C)8C I,t - 0.6]2 
C C'I 

'" L ac[8c,t - at]2 
c 

'" at (1 - at) , (71) 

where we used the same approximation as previously. For the covariance between the quantities 
At and WI, we have 

L L acP(C', C)(w(C) - 1][w(C)8c l,t - at]
 
C c'
 
-t . ac(Ec - Eo) . (72)
 

Using relations analogous to expressions (52) and (53), one gets the following expressions for 
the expectation value and variance of the estimator A,;n.,(C)/Wen ." for the probability at : 

E[Aens (C)/WF.ns] 1 ( 2 2)'" 1 + N !! t(Ec - Eo) + t u , (73)
at en
 

Var[Aens(C)/Wr.ns] l
 
'l '" N (u~/a~ + 2t(E{; - Eu) + t 2u2 

) (74) 
a G• ens 

where we have defined u~ = at (1 - at). The bias is approximately (at the lowest order in t) 
equal to ta(;(Ec - Eu)/Nens , whereas the (squared) absolute statistical error is about u~/N(;n"f" 

Thus, both the bias and the (squared) statistical error on the ac scale like liN,n!!, as in the 
case of the energy estimator. Expression (72) shows that, for all the configurations C such that 
Ee < Eu, the estimators AI and Wt are (positively) correlated, whereas they are anticorre1ated 
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when E(. > Eu. Thus, the Monte Carlo estimator underestimates the components of the 
low energy configurations and overestimates those of the highly excited configurations. The 
consequence is a bias in the occupation probabilities nk; they are underestimated below the 
Fermi level and overestimated above this level. We have numerically checked the existence of 
this bias in the case N = n = 16 and G = 0.48 presented in Section 3.2. Also, since the 
statistical error is principally related to the variance on A I, expression (71) implies that this 
error is maximum for the configurations having a component close to 0.5, and tends to zero for 
the configurations with a component close to zero or when only one configuration significantly 
contributes to the ground state (i.e., when G ~ 0). This results in a statistical error on the 
occupation probabilities nk which is important in the region of the Fermi level principally. 

ii) Statistical error: It is clear that a statistical noise is superimposed on the (biased) value 
of the observables, due to the principle of the ~Ionte Carlo method (i.e., the sampling of a finite 
number of configurations). We have already calculated the statistical error on the observables 
for each ensemble (see equations 68 and 74). However, another fact has to be taken into 
account when calculating the total statistical error on the estimators averaged along the time 
evolution as described in Section 3. After the ensemble has relaxed to its steady-state situation 
(after N applications of the infinitesimal evolution operator e-~t ll), the continued evolution 
yields successive ensembles of N ens configurations distributed according to the ground state 
wave function o.c (except for the above mentioned bias). This distribution is then sampled by 
repeated applications of the infinitesimal evolution operator, each sample of N,;ns configurations 
yielding an energy estimate E,wJWcn ,<4 as explained above. However, the successive ensembles 
are clearly correlated, since each one is obtained by diffusing generally one pair at most (v pairs 
on average) from the previous one. This fact has to be taken into account in the estimation 
of the statistical error. It is necessary to compute the autocorrelation function in order to 
determine the number of time steps ti.t required to yield statistically independent samples. In 
fact, it is clear that an average number of random pair diffusions of the order of the number 
of pairs n = N /2 is needed to yield a completely random configuration from a given one, so 
that about n/v time steps ti.t are necessary. Thus, if the total number of sampled ensembles 
(after relaxation) is called N, the relative statistical error will be (Nv/n)-'/'l . fen,,,, where 
f cru = (u / Eo) . N(~1~/2 is the statistical error on the energy for each sample (see 68). Of course, 
the same reasoning is also valid for the calculation of the statistical error on other observables 
such as the occupation probabilities. 
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Table captions 

Table 1: 
Pair occupation probabilities of the 3 levels above and below the Fermi level for the case of 

equispaced doubly-degenerate levels with N = n = 16, and G = 0.48. 

Table 2: 
Pairing energy for both neutrons and protons in 2lJHpb and 116Sn. The result of our l\fonte 

Carlo simulation is compared to the prediction of a variation after projection calculation. 
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Figure captions 

Figure 1: 
Systematic error in the pairing energy estimate El' due to a finite tJ..t, as a function of l/ 

for the case of equispaced doubly-degenerate levels with N = n == 8, and G = 1.0. (The exact 
value is 9.513) 

Figure 2: 
Dimensionless paIrIng energy P as a function of the reduced paIrIng strength x for the 

symmetric two-level case with N = n = 24. The solid line stands for the exact energy, whereas 
the symbols correspond to the values computed by the Monte Carlo simulation. 

Figure 3: 
Ratio Q of the pairing energy (in various approximations) to the exact result for the sym

metric two-level case with N = n = 24. The symbols correspond to the values computed by 
the rvlonte Carlo simulation, while the different lines represent the predictions of various ap
proximation methods: (a) exact projection; (b) KamIah method; (c) Lipkin-Nogami method; 
(d) BCS without projection. 

Figure 4: 
Systematic error due to a finite Nen., for the pairing energy estimate E p as a function of 

1/NUL.., for the case of equispaced doubly-degenerate levels with N == n = 8, and G = 1.0. Note 
that the extrapolated (for an infinite N(:n.,) pairing energy is about 9.52, which is still weakly 
biased compared to the exact value 9.513 because of tJ..t =1= O. 
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Table 1
 

k < nk >;\fC V~. 
2 

+3 
+2 
+1 
-1 
-2 
-3 

0.0929 
0.1570 
0.3056 
0.6944 
0.8430 
0.9071 

0.0926 ± 0.0010 
0.1598 ± 0.0010 
0.3050 ± 0.0010 
0.6952 ± 0.0010 
0.8430 ± 0.0010 
0.9068 ± 0.0010 

0.0899 
0.1693 
0.3551 
0.6449 
0.8307 
0.9101 
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Table 2 

E,,:\P E,\/c 
[MeV] [MeV] 

2UHpb v 0.22 2.06 
1('" 0.17 2.21 

1HiSn v 2.18 2.49 
1('" 0.10 2.01 
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