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Abstract

We study one dimensional harmonic chains in which clusters of two or three defect
atoms are embedded randomly. The disorder in the systems appear in the masses
of the atoms. Reflectionless modes are obtained by studying different kinds of cor-
relations among the masses. The localization behavior of the modes around these
special frequencies is examined analytically as well as numerically. To discern the
nature of the modes at and around those frequencies density of states, bandwidths
scaling and site Green func-tions are studied. If the special frequencies lie within
the common band of the constituent atoms and at zero the modes are extended
at and around it. However, the modes are critical when it appears at the upper
band edge of the host system. The number of nonscattered modes is estimated

for all cases. It is ~ /N for dimer problem. For trimer problem with degenerate

" resonances appearing inside the constituent band it is ~ N34, If the degenerate

resonances of trimer appear at zero frequency the number of nonscattered modes

is ~ N3/8,
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1 Introduction

In one dimensional disordered electronic systems almost all states are exponentially
localized [1-3]. Therefore, in this context the study of one dimensional correlated
disordered systems [4-22] is of immense interest both from the theoretical as well
as experimental point of view {23]. In the tight binding representation if the
site energlles {5-11] or off diagonal interactions (14, 17] or both [4, 12, 13, 15] are
correlated in binary disosdered chains, it can be shown th.al the systems sustain a
set of nonscattered states. The number of such nonscattered states in this set is
~ VIV, where N is the length of the chain. The basic requirement for obtaining

such nonscattered states is the vanishing of reflection cocflicient at a particular

energy. This is called resonance energy or special energy. The position of this’

energy depends on the nature of correlation. For example in the random dimer
modecl (RDNM) (5, 6, 9] the dimer energy is the special energy. Furthermore, this
resonance enrgy must belongs to the common band of the constituent atoms. Due
to the presence of such states the mean square displacement (msd) of a initially
localized particle grows like ~ t¥/? (i.e. superdiffusive in nature) [4-6, 14, 13].
This is true only when the resonance energy appears inside the common band
of constituent atoms. DBut when the resonance is at the host band edges the
motion appears to be diffusive. The nonscattered states are also observed in one
dimensional disordered systems with random periods [24, 25]. Since the disordered

systems with special energy show anamolous transport beliavior, the recent trend

is, thereflore, to increase the number of such nonscattered states {18-22]. This can

be achieved by increasing the correlation length. Instead of taking two.sites of
equal strength if we consider n-sites with equal strength we obtain (n — 1) number
of resonance energies where reflection coefficient vanishes [1S, 19]. Since each
resonance energy contains a set of ~ VN number of nonscattered states, [18] the
number of such states, therefore, increases the prefactor of the number of states.

Consequently, the exponents of msd will not change. In our recent work [20, 21] we

have shown a way to increase the number of such states at the exponent level. In
RTMDR, [20-22] where two resonance energies merge at a particular energy inside
the constituent band the number of nonscattered states is ~ N¥/*. Furthermore,
the mad is found to grow as ~ "7 (21].

One dimensional harmonic chain can be mapped to a tight binding model
(TBM) of an electronic system. Hence, almost all normal modes are localized in
one dimensional disordered harmonic chain. This was originally. shown by Dean
[26]. However, there is one important difference between the disordered one di-
mensional harmonic chain and that of electronic system in TB)M. [t can be shown
by using the transfer matrix method that the one dimensional disordered harmonic
chain behaves like a perfect system at the frequency w =0 (27, 28]. Mutsuda and
Ishii [27] analytically showed that in such systems ~ VN number of low frcqucncy.
modes are not localized. They also showed the behavior of thermal conductivity
due to presence of such low frequency modes for different boundary conditions.
Recently, a model of one dimensional correlated disordered harmonic chain has
been studied [29]. All masses in this system have been considered to be equal.
The spring coustants are assumed to take two values. Furthermore, one of them

appears in pair while the otlier one appears randomly. The presence of delocalized

modes of vibration in this particular model arc shown by means of multifractal

analysis. However, the number of such modes are not shown clearly. The pur-
pose of this paper is to show the nonscattered modes in various one dimensional
correlated disordered harmonic chains. In all systems we have taken the disorder

in the masses of atoms. Moreover, different kinds of correlations among masses

-are considered. As the basic criteria for obtaining the nonscattered states in one

dimensional correlated disordered electronic systems is the vanishing of reflection
coefficient, we study here the relection property of the harmonic chains after trans-
forming the systems to the equivalent tight binding models. In each case we show

the existence of a reflectionless mode at frequency wg. We also show that even in




the correlated disordered one dimensional harmonic chains degenerate resonances
can be obtained.

The organization of this paper is as follows. In section 2 we study the reflection
properties for different systems. The localization behavior around the frequency
wy is also studied here analytically as well as numerically. In section 3 we study the
density of states, bandwidths scaling and Green function analysis to characterize
the nature of modes around wyq. The_number of nonscattered modes around wy for

different cases is estimated in section 4. We end this article by summerizing of our

main results.

2 Special frequencies and localization behavior

2.1 Reflection coefficient

The equation of motion for a one dimensional array of masses {m,} coupicd by

harmonic springs is
(Boor + i3, = wmuy = Joyresy + Bty (n

Here 3, is the spring constant of the ith spring that couples the two masses m, and
m."“. w is the frequency of the harmonic chain and u, is the Fourier transform of
the amplitude of vibration of the ith mass, m;. We consider the case where all 3,'s
have the same valie and without any loss of generality this value can be taken to
be unity. So, the disorder in the harmonic chain arises due to the randomly placed

atoms of different masses. The transler matrix equation is -

u; u;
*an™ (2)
u; Uiy
where the transfer matrix
2 -mw? ~1
T. = e : (3)
i 0
4

Note also that T; is a unimodular matrix. The problem of lattice vibration is,
however, mathematically equivalent to the TBM of electron. The equivalence

between the two systems can be obtained through the following mapping,
2-muw' » E
(mi =mp)® = & 4)
-V

Since our motivation in this present paper is to study the resonance properties
of disordered binary systems, m, and m; here denote the mass of the host and
impurity atoms respectively. In the transformed tight binding model E is the
electronic energy and the site energics of the host and impurity sites are 0 and ¢;
respectively. The nearest neighbor interactions are V' which is considered to be
unity.

To study the resonance property of the correlated disordered systems, it is
essential to examine the resonance property of a perfect system with a single
correlated impurity unit [4, 30]. So, we consider first a one dimensional monoatomic
harmonic chain which contains a pair of dclect atoms with mass m,. For the host
monoatomic chain, we assume that the mass of each atom my is unity. Inasmuch
as this system is equivalent to a single dimer in a perfect host system in TBM,
[5] in the lattice vibration model we call this pair of defect atoms a *dimer’. By
using the mapping (1) it can be shown that the mode of frequency wo = \/'.Z/—m. is
reflectionless, provided this special frequency belongs to the common band of the
constituent atoms. Note that the band of monoatomic lattice lies between 0 and ¢
while for the other constituent atom of mass m, we have 0 < w? < 4/m,. Hence,
the restriction on the defect mass for obtaining the reflectionless mode is that
m, > 0.5. This fcature is also obtained in the lattice vibration where the nearest
neighbor coupling hetween atoms appears in pair but otherwise it is random [29)].
Instead of taking a cluster of two equal masses one can also consider a cluster of

‘n’ atoms of equal mass. By equating the transfer matrix of the cluster to the
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unit matrix, it can be shown that the system iias {n — 1) reflectionless modes.
The frequency of these modes can be obtained from the zeros of nth Chebysev
polynomial of second kind. The argument of the polynomial is the half of the
trace of the constituent transfer matrix [31).

In the hierarchy the next system of interest is a syminetric cluster of 3 defect
atoms embedded in a perfect chain. The mass of the atoms in the host lattice,
m, is again assumed to be unity. The mass of the central atom in the cluster is
mg while the other mass is m,. Again all spring constants are considered to be
unity. The system is equivalent to a trimer [20] in a perfect chain in TBM. If the

site energies of the trimer can be denoted as ¢,, ¢ and ¢, and all nearest neighbor

intcractions are unity, the transformations (4) can be written as -
2-w' = E
(mo — 1)w? = ¢ (5)

(m, = 1)t —e,.

Since m,, is the reference mass, the site energics of the host lattice in the trans-
formed TBM is zero. To obtain the reflectionless modes of vibration or the special
frequencies we set the numerator of the reflection cocfficient |R|? for 3 sites corre-

lation in TBM to zero. Conscquently, we obtain [20]
[E* = (o + €,) E + €oe, = 2 ¢, + €0 = 0. (6)

Using the transformations (3) in (6) we obtain a thicd order algebraic equation in

w?. The solutions of this equation are

1 1 + 1 1 1 1-mg

mg - om, md " m? mem, 1 -m,

o‘:ﬂ
[
l
+
l
I

). (7)

The criteria to obtain these reflectionless modes are that the frequency. o skould

be real, positive and inside the common band of the constituent atoms.

. g

Two special frequencies will coincide at wp = m—'. + ;,‘Lo (see figure 1(a)) pro-
vided
mg = m,(1 £ vdm, — 3)/2. (8)

Since my is a real and positive quantity, m, cannot be less than 3/4. This is the
lower bound of m,. Furthermore to ensure that my is real for all values of m,, we
should choose the positive sign in (8). When m, = 3/4, the special frequency wp is
obtained at the upper band edge of the host as shown in figure 1(h). This type of
behavior is also obtained in RTMDR {20, 21]. The number of nonscattered states
in the RTMDR has been shown to increase as ~ N*', where N is the length
of the sample. So, in relation to the nonscattered modes we should expect the
same behavior in this case. In this vibrational system we find that the degenerate
frequency moves towards w = 0 with increasing the valuc of m, as well as mg. But
the degenerate solution does not superimpose on w = 0 for any finite value of m,.
However, w = 0 will be a second solution of equation (6) if the relation,

mg = 3 - 2"1, (9)

L]
is obeyed (see fignre 1(c)). Inasmuch as mg is a rcal and positive quantity we must
have 0 < m, < 3/2. These are the major results in this paper. [t should be noted
that in all constraints for 3 atoms correlated systems the mass of the host lattice
is also connccted with mg and m,. So, arbitrary host systems cannot be taken to

observe the merging of the solutions of equation (6).

2.2 Localization behavior

So far we have considered systems with a single cluster of defect atoms. Now we
consider a disordered harmonic chain where dimers or trimers are randomly dis-
tributed in an otherwise perfect chain of mass m,. The reflection coefficient of this
type of correlated disordered chains also vanishes at the special frequencies. The

case of the trimer with degencrate resonances is shown in figure 2 as an example,
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The vanishing of the reflection coefficient at the special frequencies happens due
to the commutation of the cluster transfer matrix with the perfect site transfer

matrix at that frequency [15, 20]. For example, in the dimer case, the dimer trans-

- fer matrix reduces to the unit matrix at w, = 1/2/m,. For trimer problem with

degenerate special frequency it can be shown that the transfer matrix commutes
with the perfect site transfer matrix. Due to the vanishing of the reflection coeffi-
cient at the special frequencies a neighborhood characterized by vanishingly small
reflection is obtained. Hence, the inverse localization length or Lyapunov exponent

(7) of the modes in this neighborhood can be approximately written as {5, 9, 32|
7~ R (10)

|R|? in (10) is the reflection coefficient of a host system containing only one ‘dimer
or trimer. Since | R)? contains in it the information about the scattering of incedent
wave by impurities, this is a reasonable approximation of .

We now study the localization behavior of modes around wp = \/.’/_m, for
the dimer problem. The leading order term in the Taylor series expansion of |R[?
is ~ (w—wp)? when wy < 2 and ~ (w — wp) for wp = 2. So, the localization
length (77') shows (w — wo)~? and (w —wy)~! type singular behavior depending
on whether wy is less than or equal to 2. The similar procedure can be used to
obtain the localization behavior of the modes for trimer problem with degenerate
special frequencics. The reflection coefficicnt of this case in the neighborhood of wy
behaves like ~ (w—wp)?, (w—wo)® and (w—wg)® when wy is inside the common band
of constituent atoms, 2 and 0 respectively. Consequently, the localization length
shows the singular behavior like (w—wg)™, (w~wp)~? and (w —wyo) =" for the cases
discussed above. This type of behavior of || hence of v, can be analyzed very
easily. Since |R|? is a positive semidefinite function, the curve will show a minimum
at wj = 2/m, for the dimer pr\ohlcm. Inasmuch as the minimum value of |R|? is
zero, the first derivative of it with respect to w? vanishes at the special frequency.

This, of course, requires the special frequency to be inside the constituent band.

8

Therefore, the series starts with (w? — «g)*. Hence, the quoted result follows. In
the case of special frequency appearing at any one of the band edges, |R|* = 0
is no longer the minimum of the curve of |R|?. This can be shown by analytical
continuation of |R|’. Hence, the leading order term in the Taylor series expansion
of |R|? will be (w? —w?). Since, at the lower band edge, wo = 0, the series starts
with w?. For w] = 4, the leading order term is first order in (w—wy). In the trimer
problem with doubly degenerate special frequency one maximum and two minima
merge at the special frequency. So, first and second derivative of | |? with respect
to w? along with the function vanishes. Furthcrmore,vu,‘,’is inside the common band
of constitucnt atoms. Consequently, |R|? should be symmctric around wo. Hence,
the third derivative also vanishes. Thus the series starts with (w? —u)'. However,
at the spectral boundarics, previous arguments also hold good here. IHence, the
scries expansion of [R]? starts with (w? —wd)® around wd = 0 and u? = 4. Ve then
obtain y(w) ~ w® around wy = 0 and 7 ~ (2 —w)® aroumd wy = 2. We will study
next the localization behavior numerically to substantiate our analytical result,
The displacement of Mth atom with frequency w, uy(w) in the vibrational
system can be caleulatad by using the transfer matrix method. For given values of

uy and wo, (u? + ud # 0) it is given by [27)

. c
) =T ) (11)
uy g
The Lyapunov exponent. vy is [16]
.1 .
B 7= Jim —ReKy(w), (12)

where Ky(w?) is the logarithm of the eigeavalue of Qy(w?) whose modulus is

greater than unity. Here, Qv(w?) is defined as

N
Q) = [[ Tiw?). (13)

=1



In figure 3 we have plotted the average localization length around the special
frequency as a function of |w — wo| for dimer system and trimer with degenerate
frequencies. "For dimer we consider the case where wy is inside the common band
of constituent atoms. For the trimer we consider the cases where the degenerate
frequency appears inside the constituent band as well as at wg = 0. The observed
scaling behavior is given in the corresponding figures (see figure 3). The average
is taken over twenty different realizations of the systems. The maximum length of
the system considered is 10°. Our numerical results show a good agreement with

the analytical results obtained above.

3 Nature of normal modes at and around the

special frequencies

3.1 Density of states

The nature of states in the systems can be anticipated from the hehavior of the
density of states (DOS). The fluctuations in DOS corresponds to the localized
modcs and the smoothuess of it around a frequency indicates the possible presence
of nonscattered modes there [17]. We study the DOS numerically using Dean's
method, [33] which is based on the negative cigenvalue theorem. The negative

eigenvalue theorem states that the number of eigenstates with eigenvalues less

" than or equal to w? is the number of negative values of A, (i = 1.2,---, N) where

h; is determined by

By =A, =t =BYh; i=12,--- N —1 (14)
and
M T — (15)
10

Here,
A; =2/m;
B; = 1/ (16)
and

hi = —=

' m;uy
The definition of h; by equation (15) implies that the mass of the atom at i =0 is
infinite. Hence, ug is zero. The negative eigenvalue theorem gives the integrated
density of states (IDOS). So, the DOS can be obtained by differentiating the IDOS
with respect to w?. The DOS as a function of w? for different cases are shown in
figure (1). When wy is inside the band of constituent atoms the DOS shows the
smooth behavior around it. But when wy is at the spectral boundaries the DOS
shows the divergence behavior like a perfect system.  So, the study of density
of states suggest the possible presence of delocalized modes around the special
frequencies in corrclated disordered harmonic chains. We study next the scaling
behavior of bandwidths for further chiaracterization of the modes around the special

frequency.

3.2 Bandwidth scaling analysis

The bandwidth scaling method has been used successfully to discern the nature
of states in one dimensional quasiperiodic electronic systems [34] and determinis-
tically aperiodic systems {35]. Recently we (10, 21] applied this method with some
modification to the one dimensional correlated disordered electronic systems. This
method nicely exhibits the accumulation of extended states around the resonance
energies of RDM {10} and RTMDR [21]. So, we apply this method here to charac-
terize the nature of the vibrational modes in the neighborhood of special frequen-

cies. Since Qv(w?) is a unimodular matrix the bands in w?-space arc characterized
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by |TrQa{w?)] < 2. If A, defines the width of the ith band, then the extended
modes of vibration are characterized by A, o« N~'. For algebraically localized
modes, A; @x N™°, o > 1 and for strongly localized modes, A, x exp(-8:N)
where f; is a constant. In the neighborhood of Van-hove singularities, bands ex-

hibit A; ox ¥=% [31] . The method of individual bandwidth scaling is described

- elaborately in [10, 21]. The basic idea in this scaling analysis is that there exists a

band at the special frequencies and this can be used as the reference band (num-
bered as 0) to analyze the scaling behavior of various bands around it. The bands
appearing to the right of the reference band will be denoted as 1R, 2R, 3R ctc and
similarly for other side the bands are unmbered as 1L, 2L, 3L ctc. Ilere, we show
the scaling behavior of the bands for the trimer system with a doubly degencrate
special frequency. First we consider the case where the degenerate frequency ap-
pears inside the common. band of constituent atoms. The scaling behavior of the
bands 0, 5R and 3L are presented in figure 5(a). The bandwidth with index i, A;

for large value of N is fdtmd to vbey
Iy, =lng, -a,InN (17)

where ¢, is the index dependent constaut. The values of ¢ and d arc presented in
table 1 for differemt region of N. The bands do not partition in a systematic way
duc to disorder for small value of N. Ience, equation (17) is not strictly obeyed
in that region. But for large values of ¥ they show good scaling behavior with
the exponent, a ~ 1, conflirming the presence of extended modes of vibration. of
course, the value of N i)c)'ond which a band shows good scaling behavior increases
with the band index i. This further implies that the number of extended modes
increases with increasing the system size V. As the system is a disordered vi-
brational chain it is obvious that all bands do not show a ~ 1 for finite value of
N. This can be explained by il:\'oking the concept of special spectral zone (SSZ)
{10, 21]. The scattering effect due to the defect atoms is negligibly small in the

SSZ. The band which is outside the SSZ is not partitioned in a systemetic way.
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This is because of scattering cflect. But with increasing the value of N the band
enters inside the SSZ and the scattering effect becomes negligibly small. Then the
band shows good scaling behavior. In figure 5(b) we have shown the scaling be-
havior of the bands 0, 5R and 10R for the case where degenerate special frequency
is at wg = 0. Equation (17) is also obeyed by these bands but with the scaling
exponent a ~ 2. This is due to the presence of Van-hove singularity in DOS of this
system a\w = 0. All bands show nice scaling behavior for comparatively small
values of V. This implies that the number of extended states is large compared to
the previous case. The scaling exponent a ~ 2 is also obtained for the case where
degenerate frequency wy = 2. The scaling behavior of bands 0 and 5L is shown
in figure 3(c). So, the bandwidth scaling analysis shows that the modes at and
around the special frequencies are extended in nature when the special frequencies
appear iuside the constituent band and at zero. \We next show that the modes in
the neighborhood of wy = 2 are not truly extended. This is done by analyzing the
pole behavior of site Green function [36). The scaling behavior of the bands around
special frequencics for the random dimer .clmin is similar to what is obscrved in

the trimer system. This is not discussed here.

3.3 Green function analysis

Tlie site Green functions are calculated for the system containing only one trimer.
For this calculation transformations (5) together with the well known renormalized
perturbative cxpansion (RPE) [36] method have been used. It is well known that
the pole of the Green function at a particular energy corresponds to a localized
mode at that frequency. Site Green function for the system under study shows a
pole at w? = 4 when the resonance frequency appears at wo = 2. This is shown in
figure 6(a). This indicateg that the particular mode is localized. On the other hand
the reflection coefficient wjmishes at wp = 2 and DOS diverges like that of a perfect

system around that frequency. Because of this peculiarity we argue that the mode
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is neither truly extended nor truly localized. Hence, the modes in the neighborhood
of wp = 2 are algebraically localized. Similar behavior is also observed in the dimer
system. But when wg = 0 we do not observe any pole in the site Green function at
that frequency as shown in figure 6(b). The Green function analysis clearly shows
the difference between the two spectral boundaries in one dimensional harmonic
chain. Note that in electronic systems the site Green function shows the same
behavior at both the spectral boundaries. The origin of this difference is due to
the fact that localization for disordered harmonic chain starts from the upper band
edge. The localization fromi the lower band edge is strictly forbidden due to the
positiveness of w?. On the other hand the localization starts from both the band

edges in electronic systemis.

4 Number of nonscattered modes of vibration

If the nonscattered modes are defined as the mmics whose localization length (y7')
is superior to the sample size () then ~ ViV number of such states are obtained
in the complete disordered vibrational systems around the zero frequency [27).
Since in the correlated disorder chain other reflectionless modes apart from the
mode at zcro frequency are present there will be more nonscattered modes than
in completely disordered systems. In the previous section we have shown the
presence of a set of nonscattered modes of vibration around the special frequencies
in correlated disordered chains. The number of such modes can be estimated from
the scaling behavior of the total bandwidth [10]. We, however, estimate the number
such modes using the result of localization behavior and the bandwidth scaling
analysis. We define the frequency width around wy where these nonscattered modes
are observed by Aw. Then the width of the nonscattered modes decays like Aw ~
N-P, This is obtained from t;e localization behavior of the modes around wy.
Again from the bandwidth scaling method we find that the modes decay like ~ 1/NV

around wp. If we assume that the nonscattered modes whose localization length

14

is of the order of sample length follow ~ 1/N type scaling behavior in bandwidth

analysis then the number of nonscattered modes An within the region Aw is
An~ N'"P, {18)

The above expression isitrue only when wyp inside the constituent band. Since,
for random dimer vibrational system p = 1/2, the number of nonscattered modes
around wg is ~ VN. For random trimer vibrational systems with degencrate
special frequency (except wo = 0and 2) p = 1/4, and the number of nonscattered
modes is ~ N Although for we = 0 the bandwidths decay as ~ 1/N? around

wo the modes can be shown to decay like ~ 1/N in w-space. So, the number of

nonscattered modes can be obtained from equation (18). Since in this case p=6,

we have An ~ N®/6. Thus using the short range correlation among the masses
we have nereased the number of nonscattered modes. 1lowever, all the results
discussed above are true only when wy is inside the common band of the constitute

atoms or at zevo.

5 Sumnary

We have studied one dimensional disordered harmonic chains with different cor-
relations among the masses. The correlation produces a special frequency (wo)
mode where reflection coefficient vanishes if wo belongs to the band of constituent
atoms. This special property of the system gives rise to the presence of a set
of nonscattered modes around these particular frequencics. We have also shown
here that by introducing appropriate corrclation among the masses in the trimeric
cluster two special frequencies can be overlapped. The localization behavior of the
systems around wp is discussed analytically as well as numerically. The study of
density of states suggests the possible presencé of delocalized modes around wy.
The bandwidth scaling analysis together with the Green function analysis confirms

the extended nature of the modes around wo for wy is either inside the constituent
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band or at zero. But when wy is at the upper band edge the modes are critical like.
If we consider that the modes whose localization length is larger than the sample
size show ~ 1/N type scaling behavior in bandwidth analysis then the random
dimer harmonic chain contains ~ VN number of nonscattered modes. Here, N
is the length of the chain. The same behavior is also obtained around w = 0 in
disordered harmonic chain. So, 'due to presence of pair correlation in disordered
chain the number of nonscattered modes increases in amplitude. In random trimer
chain we obtain ~ N¥* number of nonscattered modes when the doubly degen-
erate special frequency appears inside the constituent band.  When the doubly
degenerate frequency appears at ot = 0, ~ N3€ pumber of nonscattered modes are
obtained. The concentration and mass dependence of defect atoms on the number
of nonscattered sodes are not discussed here. [lowever, the increase in the number
of nonscattered modes in the exponent level for the case of degencerate special fre-
quency in random trimer chain should be reflected in the low temperature thermal

conductivity. This work is in progress.
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Figures

Figure 1. Plot of reflection cocfficient as a function of w? for a single trimer
in the perfect harmonic chain. (a) Here m, = 3 for all cases. The big dashed
curve corresponds to mg = 2.5; the dot-dashed curve for my = 4; the solid curve
corresponds to mg = 6, where two resonances merge. The small dashed curve
for mg = 7. (b) Same as (a) but m, = 0.75, my = 0.8, 0.5. 0.37;’) (in this case
two resonances merge) and 0.1 respectively. (c) same as (a) but m, = 0.5, mg =
0.3, 1, 2, {in this case two resonances merge) and 3 respectively.

Figure 2. Plot of reflection cocfficient as a function of «? for a random segment of
lengthol N = 10" where trimer clusters with concentration p = 0.25 are distributed
randomly. Herem, =3 and my = 6.

Figure 3. Log - Log plot of localization length (y7') with |or — wo| for different
cases. (a) The dimer clusters of mass my = 2 are distributed randomly with
concentration p= 0.33 in an otherwise perfect chain. (b) The trimer clusters of
masses m, = 3 and mg = 6 are distributed randomly with rt;nccntralion p=0.25
in an otherwise perfect chain. (¢) Same as (b) but here m, = 0.5 and mg = 2.
Figure 4. Plot of the density of states (DOS) as a function of w? for different
cascs. The léngth of the segment here is 10% for all cases. (a) The dimer clusters
of mass m, = 2 are distributed randomly with concentration p = 0.33 in an
otherwise perfect chain. The smooth behavior is obtained around w? = 1. (b)
The trimer clusters of mas’rcs m, = 3 and mg = 6 are distributed randomly with
concentration p = 0.25 in an otherwise perfect chain. The smoothness is observed
around w? = 0.5. (c) Same as (b) but here m, = 0.5 and mq = 2. The DOS curve
diverges like that of a perfect one dimensional chain around «2 = 0. (d) Same as
(b) but m, = 0.75 and mg = 0.375. The DOS curve also diverges like that of a

perfect chain around w? = 4.
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Figure 5. Log - Log plot of bandwidth (A,} with N for different cases. In all cases
the trimer clusters are randomly distributed with concentration p = 0.25 in an
otherwise perfect chain. constant factor T is added to the ordinate for clarity. (a)
Here m, = 3 and mg = 6. The scaling behavior is shown in two regions of .
The scaling exponents fot different regions are given in table 1. The values of £
are taken from top as 2, 1 and 0. (b) Same as (a) but m, = 0.5 and mg = 2. All
figures are shown here in oue region of N and I takes the value zero here. (¢)
Same as (b) but m, = 0.75 and my = 0.375.

Figure 6. The thick solid line corresponds to the real part of the Green function
(G) with defect atoms of mass 1, and niy caleulated at the other nearest neighbor
of my as a function of w2 " The thin solid line corresponds t;') G = m (a)
Here my, = 0.75 and my = 0.475. One of the poles is observed at w? = 4. (b) Here

m, = 0.5 and my = 2. No pole is observed at w? = 0.

Table I: The value of ¢ and bandwidth scaling index {a) of different bands in

different range of V. llere m, = 3, my = 6 and concentration, p = 0.25.

Range of N 10? - 10? - 10° - 10
Band index (1)~ ¢ a c a
0 1.638  0.957 2,341 1.013
.
3R 0.556  0.794 2241 1.008
5L 0.765 0.511 2,289 1.010
21
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Green funclion
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