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ELECTRON - PHONON INTERACTION IN A
STRONGLY CORRELATED LOW
DIMENSIONAL SYSTEM
: A SLAVE BOSON APPROACH
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The electron - phonon interaction and the ensuing transition to the charge density
wave (CDW) state is studied for a low dimensional strongly correlated metal. It was
shown that in general the electron correlation tends to suppress the CDW state. This
has been established by calculating the variation with electronic correlation of the
Peierl’s instability, the phase diagram, the CDW order parameter and the spectral
dcasity function of the collective modes.
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1 Introduction.

The discovery of high temperature superconductivity (SC) in different systems such
as the cuprates, the bismathate ,and the alkali|doped fullerenes has raised the is-
sue regarding the mechanism of pairing. Whilelin the cuprates the high transition
temperatures (T;) and the associated anomalous behaviour of their normal state prop-
erties has focussed attention on the study of strongly correlated systems [1}, still the
role of electron-phonon (EP) interaction in the pairing mechanism is under debate
{2). The bismntﬁatcs on the other hand (also have relatively large superconducting
transition temperature (7)), exhibit strong EP interaction which is believed [3] to be
responsible for the SC. In the third category there are systems like the alkali doped
fullercnes [4L and the organic superconductors {5] which exhibit properties indicat-
ing that both electron correlation and EP interaction are responsible for SC in these
systems. Therefore a detailed analysis of the interplay between electron correlations
and EP interaction is essential for a proper understanding of the phenomenon of
high temperature superconductivity. There had been several attempts at such an
"~ analysis showing conflicting results ; Ziclinski et al, (6] following a strong coupling
theory arrived at the conclusion that there is an enhancement of T, (EP coupling
constant) around quarter filling of the band due to the presence of strong correlation.
On the other hand Kim et al, [7] argue that the EP interaction strength decreases
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with Coulomb correlation, due to the suppression of charge fluctuation as cne ap-
proaches the \Metal-Insulator transition. More recently Kulic and Zeyher 8] carried
out a more detailed calculation and find that the EP coupling constant is echanced
for small wave vectors and suppressed at large wave vectors in the limit of low dopant
concentration (§). While these studies focussed on how the EP coupling constant
and hence T is effected by strong correlation, there have been others (Deez et al,
[9]), which primarily looked at the resulting phase diagram of the system due to the:
interplay between the strong correlation and the EP interaction. These later suthors
used Slave Boson method (and its generalization to the case of two sublattices) to
treat the strong correlation effects and examine the stability of different magnetic
phases vis-a-vis the charge density wave (CDV) state.

It is well known that a low dimensional paramagnetic metal undergoes a trznsition
to the CD\V state in the presenceof EP interaction. The so called Peierl’s instz3ility is
brought about by the softening of the phonon with the wave vector (Q ) corresponding
to the nesting of the Fermi surface. The aim of the present paper is to investigzte how
this transition gets effected in the presence of electron-electron interaction. \While it
is expected that at half filling the strong correlation will tend to drive the system
towards the Mott-Hubbard insulator, the EP interaction will tend to stabilise the
Peierl's transition. Thereforeit is interesting to investigate the nature of the irzerplay
of the two interactions on these instabilities when there is a deviation from ha’f filling
of the band. In an attempt to answer this question we treat the correlation problem
using the Slave Boson method within the saddle point approximation {10] and deduce
an effective EP interaction in sec. 2. The phonon softening and the Peierl's ins:ability
in the presence of correlation as well as a detailed study of the effect of ¢.ectron
correlation on the CDWV order parameter are also discussed. \Ve conclude i sec. 3
by comparing our results with those of the earlier calculations.

2 The Slave Boson approach to electron-phonon
interaction in a Correlated system :

The problem of strong electron correlation is best discussed in terras of the single
band Hubbard model fll] described by the Hamiltonian

H= Z l,',‘t‘}“,c,'_, + (.Zﬂ.‘]n.’j -t Z Nig (l)

iJ.e [

where the first term is the usual tight binding Hamiltonian with the hoppirz inte-
gral ¢;, the second term denotes the intratomic Coulomb repulsion ({7} between two
electrons with opposite spin occupying the same site and the third term denc:es the
chemical potential (¢t} which can take into account the deviation from half flling.

In its ground state the system will tend to minimize the number of doubly occupied

sites.

2.1 Slave Boson Formulation of the Correlated Problem :

One of the main obstacles encountered in obtaining a solution to the Hubbar¢ model
is keeping track of the occupancy of a site. It was shown by Kotliar and Ruckznstein
{30} that by introducing four different auxiiliary Boson fields corresponding 1o a site

eing empty. singly occepied with a up or down spin electron. or doubly occuoied ;
one can overcome this dimculiyv to some extent. QOicourse tiese Boson fields zze not
completely independent but are.constrained by the requirements that (i) the total
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probability of occupation of a site being unity must be conserved and (ii) the local
charge at a site is also conserved. Thus the original fermion annihilation (creation)
operator ¢;, (c!,) of equation (1) can be expressed in terms of these Slave Boson
operators and the constraints are introduced into the problem through Lagrange
multipliers. The prescription for the transformation of equation (1) in terms of the
Boson operators, is given below

,[n.l — d d

Nig — Ny

t t ot =
chJ’ - zwclacjazlﬂ

where

s = (1 = &y = i) (el 4L, 8)(1 = et~ Hupioa) ™ (2 -

the auxilliary Boson field operators e, p! and d! respecti\ely creat an empty, singly
occupied (with spin o) and doubly occupied site ; and &, is the modified Fermion
creation operator. The form of zj, is so chosen as to reproduce the correct band
structurein the absence of correlation. Furthermore the constraints mentioned above
are given by

elei + Zp!,,p;., +dld; =1 {3)

and ' '
PicPio + d;di = ;s )

The values of the Boson field operators and the Lagrange multipliers are determined
by minimizing the free energy of the system in the saddle point approximation. where
all these operators are replaced by c-numbers. In this approximation the Hamilto-
nian of the system takes the simple form of an effective tight binding model with
a modified hopping integral of the form t;; — gt;;, where the correlation effects are
built-in through the multiplicative factor § = z'z. It was shown [10] that i the weak
correlation limit § = (1 — u?}, (where u = (U/U.), U. being the critical value of U
where the system undergoes the Metal-Insulator transition) and the Brinkman-Rice
result is reproduced. The generalization of this result to the case of strong correlation
U > U, when there is deviation from haif filling (dopant concentration ¢ = 0) is due to
Lavagna [10]. who showed that for small values of §, § = 26/¢, where £ = (1 —u?)'/2.
The weak and the strong correlation limits are also called the metallic and the doped
regimes. due to the realization of the fact that in the later limit the conduction (in
the Mott-Hubbard insulator) takes place oaly on doping. However in generalqis ex-
pressed in terms of the dopant concentration (§) and the double occupancy parameter
z-= (e 4 d), and is given by

(2r? - £t - 6%)

.- (5
1=T0-9 3)

where r is determined by the equation
Sl =) -1]-ub(1-6)=0 i6)

In the tight binding picture the EP interaction arises from the dependence of ihe
hopping integral (t;;) on the separation between the sites (R;;). In the presence of

small displacements of (&;) of the atom at the site i , t;; can be expanded ia a Taylor
series and the leading term in the displacement will give rise to the EP iateraction
Hamiltonian.

However, it was argued earlier that in the presence of electron correlaticn which is
treated within the Slave Boson - saddle point approximation the eflective Hamiltonian
involves a modified hopping integral with a multiplicative factor (gti;). Thezefore the
corresponding EP interaction Hamiltonian will be of the form

Heep =93y &, &, As (7)

kdo

where A; = (b; + b'_'.) is the ¢-th Fourier component of the atomic displacement
#; ; with bg(b:.) denoting the phonon annihilation(creation) operator ; ard g is the
coupling constant. It is clear from equation (7) that within this approximation scheme
the entire effect of electron correlation is to modify the EP coupling constant by the
multiplicative factor §. In the weak correlation limit, ¢ tends to zero as the iatratomic
correlation U approaches the critical value (U;) for the Brinkman-Rice iransition.
Therefor¢ the EP coupling will gradually decrease and vanish at the Meta!-Insulator
transition ; a result in agreement with Kim et al (7). On the other hand in strong
correlation limit or the doped regime, it follows from the approximate form of ¢ for
small § that asymptotically as u — oo , ¢ — 26. This again amounts 0 a large
reduction in the effective EP coupling constant due to strong correlation. However,
for large dopant concentrations ¢ has to be calculated from equations (3) 2zd (6) and
the conclusions drawn above do not hold good as will be shown later.

2.2 Peierl’s Transition in a Correlated system :

The lattice instability in low dimensional metals is usually driven by the softening

of the phonon with wave vector é ; which in turn is intimately connected with the
nesting property of the Fermi surface : given by ¢, 5 = —¢; . In order to see how

the Peierl’s transition is effected by the electron correlation, the phonon self energy
arising from the EP interaction has to be calculated, which is given by

M(q,«) = 477(99)x(¢:w) (8)

where the density response function x(q,:) has to be evaluated using the Slave Bo-
son effective Hamiltonian. In the saddle point approximation the densit+ response
function is just the modified Lindhard function given by

q£k+q ek')
z:[c..—q(e — €5y R (9

The renormalised frequency of the phonon with wave vector Q is determized by the
static response functioa and is given by

| kgl + (4707 fwg)x Q)2
g = { £Q~,[l - ,\q'ln((i/ff')?]/z (10)

where \ = (493,\'(0)/;5) is the dimensionless coupling constant. N(0) :eing the
density of states at the Fermi energy, ws is the phonon frequency in the =5:ence of



the EP interaction and the effective temperature T = (kT /1.13¢g). €5 beinz some
cut-off energy. It is evident from equation (10) that the effect of electron corzelation
modifies the EP coupling constant as well as the Peierl’s transition temperature (T},).
The transition takes place at the temperature at which the soft mode frequency
vanishes, i.e, 15 = 0, so that

T, = jexpl-1/q (1)

Since § is a function of u and §, equation (11) essentially gives the phase diagram
for the CDW state in the (u ~ T) and (§ ~ T) planes. Equation (10) gives the
temperature dependence of the frequency of the phonon with wave vector Q. But
to trace the behaviour of the giant Kohn-anomaly as a function of the correlction or
the dopant concentration it is necessary to obtain the temperature dependence of the
phonons around the wave vector §. This can be achieved by substitutingQ_-—v 0+ q
in equation (10) for | § |<| @ |. Thus Q15,7 can be calculated by expanding the
electron energy Gigeq and the Fermi function f(‘[+d+q') in a Taylor series for small
q ; for the evaluation of the density response function. Following this proceedure the
dispersion around the giant Kohn anomaly pholnon (Rgq) is given by

|

|

Dgpe i/1.13T N 9,2
()1 - ,\q{f drtanh(z/2)(z + qjr?/T)™" - 9—2_—}1"’ (12)
x...-'d 0 ir Tl

where the variable r = ¢/Q and the parameter ¢ = (2¢¢/1.13¢g). The u and §
dependence of the results of these calculations will be presented in sec.3.

2.3 Effect of Correlation on the CDW State :

So far, our main concern was to see how the electron correlation effects :ke EP
interaction as well as the ensuing lattice instability of the system in the metallicstate.
However, it is possible that the system under consideration being at low tempezatures
(T < T,)is already in the CD\V state driven by the EP interaction ; then it is relevant
to enquire how the electron correlation efiects the CD\V state ? The CDW «:ate or
the accompanying periodic lattice distortion is characterised by the non-vaaishing
expectation value of the phonon amplitude corresponding to the particular velue of
the wave vector § = Q. i.e. < A5 ># 0. Therefore the EP interaction Hami:ionian

within the mean field approximation corresponding to the CD\V state can be =Titten
as
- t
Ho-zquC;+o-uCE, < 4d> (13)
" ke

In analysing the problem of electron correlation for the CDW state within thke Slave
Boson approximation. it is convenient 1o define the two component Nambu operators

W= (b b ) in terms of which the free energy of the system can be cast in
ko ko k+Qo A

a form analogous to that in the metallic state. On minimizing the iree enerzy the
quasi particle energy of the CDW state turns out to be

Ee=gld+9° < Ag >+ )\ (14)

where Ay is the Lagrange_ multiplier associated with the constraint responsible for
the local' charge conservation which acts as the chemical potential. This is expected
’li_ehcausg in _the CD\}’ state the energy spectrum develops a gap at the Fermi.energy

e minimization of the free energy also relates the gap paramet t |
charge density of the system as . g e e to the modulated

- ’ _ 29251 t -
9<Ad >= —E.‘VEE<\D;"T1\I’F°> oo (15)

where 7; (i = 1,2,3) is the Pauli matrix Furthermore, in th

ere . . . e CDW state ¢t
B.rmlxman-Rfce parameter U., at which the metal is driven,into the insulating s:a}i
differs from its value in the paramagnetic state, and is given by 7

1 1

= §[—— to.

Uc=§ N -E €& < ‘I’E’TJWEG > +§I;wq < AQ< >z] (16)
ko

Thg extra contribution to U. comes essentially from the elastic energy due to th

periodic lattice distortion accompanying the CDW formation. Apart from t'heco d'fe
ferences all the other quantities such as the mean field valves of the Bose o eﬁt o
and the dependence of the band renormalization factor 4 on the double occpu ra oy
parameter z remains the same as in the paramagnetic metallic state. To <§e r:]?
dependence of thg CDW order parameter on the electronic correlation it is ne-cessa e'
to evaluate the right hand side of equation (15) explicitly from the effective s dd‘i!
point Hamiltonian, which in the weak coupling limit gives saddie

82g< Ag>= % expl-1/M] (7

where A is the dimensionless coupling constant in the \Y i
off frequency which determines the ragngc of energy arou?g l\h:t;;:;n‘idie:rselt}l;i\-cu:
which the nesting property is destroved. It is worth mentioning that the CD\V 6:?
parameter depends on (', through g while [’ depends on the order parameter as cacr
be seen from equation (16) ; which calls for a self-consistent solution. However thn
qualitative dependence of the order parameter on correlation follows from equati .
(17). i, as U — U, in the metallic regime the order arameter vanishes thi %
physically understandable in the sense that if the Mott-Hubbard insulati;lz hs .
sets in lhpre will be localization of the electrons which tvill inhibit the form;zi% as?’
the CDV state. On the other band in the doped regime the CD\V order paramel:r?
expected to grow on increasing the dopant concentration ; which clearly follows f; X
the dependence of § on & in the limit of small 6. ’ sem
The robustness of the ordered ground state is usually tested by lookin at th
response of the system to small fluctuations. In the case of the CD\V state lgt is w l‘l:
known [12] that Buctuations of the phase and the amplitude of the order paramete
results in the appearence of the collective modes of the system. \While the phase moder
is the Goldstone mode arising from the breaking of the symmetry- the amplitude m de
1s a measure of the CDW order parameter (\), which has a fré(';ueucv p A= -‘-_\o f
zero wave vector. Theselore. it is worthwhile to investigate ihe eﬂ'ect.o?:ﬁ!e el-;ctrc?
correlation on the CDW-amplitude mode. The frequency of the amplitude mode a 3
1ts spectral density fuznction can be calculated from the'amplitude response func('n
(\?(d. =) calculated {13} within the random phase approximation (R}E-\). o

T Y = v t e i .
VI = L <L AT e WO AVO), . (1)
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x%¢,«)
=0/ (19)

where x°(¢,w) is the response function in the CD\V-state in the presence of electron
correlation which at zero temperature is given by

Xrpalfiw) =

2

%0,5) = _.‘3}:_‘?6—&_ “(20)
X Ahw)=-2 — Ei(w? — 4E,7) -

While the frequency of the amplitude mode is given by the pole of x3p,(0,w),
the imaginary part of x}p4(0,w) gives its spectral density function. The frequency
of the amplitude mode turns out to be

\ WAy = Zq-A : (21)

Since the band renormalization factor (§) decreases with increasing value of the in-
tratomic Coulomb repulsion (U) the CDW-amplitude mode frequency will also de-
crease with increasing u. The spectral density function is expected to show a peaked
structure’around w,yr; but the nature of this peak will change (as will be shown in the
next section) with increasing u in a manner such that it will indicate the suppression
of the CD state.

3 Results and Disscussion :

In the theory presented in sec.2. we analysed the effect of electron correlation (u)
on various facets of EP interaction such as the coupling constant (1), the on set
of Peierl's instability, the (u ~ T) phase diagram, the CDW order parameter and
the collective modes of the CDVV state. The electron correlation has been dealt
with in the Slave Boson approach within the saddle point approximation. It was
shown that predominantly the correlation effect enters the calculation through the
band renormalization factor §. which also depends on the dopant concentration §.
This dependenceof § on u and é in the limit of small dopant concentrations has been
discussed in sec.2.1 for both the metallic and doped regimes. However for any value of
8 between 0 < § < 1, the general dependence of g on u and ¢ is governed by equations
(3) and (6) and the behaviour is shown in figures 1 and 2 respectively. It can be seen
from fig.1. that ¢ drops rapidly from its value of unity at vanishing correlation to a
small value at large u for small dopant concentrations. However, with increasing 4,
the value of § at large u takes higher values. On the other hand at a given value of
u, § increases with increzsing 6 and becomes ¢ = 1, at § = 1 which corresponds to an
empty band in the case of hole doping and a full band in the case of electron doping.
This obviously is an artifact of the saddle point approximation, and hence this results
make sense only for more than half filling of the lower Hubbard band, for the case of
hole doping. This bebaviour of § will be reflected in all the other quantities that are
going to be calculated. For example in the presence of correlation the EP coupling
constant gets multiplied by §. o that in general the effective strength of interaction
will be reduced. Moreover due to the depedence of § on u and §, the strength of the
interaction will decrease with increasing u. bul increase with increasing §.

The Peierl’s instabilizy of the system is determined by the giant Kohn anomaly,
whose variation with tke electron correlation u and the dopant concentration & are
shown in figs. 3 and 4. In the absence of correlation there is a'softening of the Qth
phonon at a particular temperature for a given value of the EP coupling constant. On

increasing the value of u, the Kohn anomaly is suppressed as can be seen from fig.3.,
indicating that correlation effect suppresses the Peierl’s instability in the metallic
regime. On the other band in doped regime, the 'Kobn anorpaly which is present at a
given dopant concentration is again suppressed with decreasing & ; as can be scen from
fig.4. Thisis again an indication of the fact that while the system can not undergo t'he
CDW transition in the Mott-Hubbard insulating state, as it is metalhsed'by increasing
§ it becomes again prone to the Peierl’s instability. Similarly the _phase diagram of the
system can be studied ffom equation (11), which is shown in fig-5 for different dopaat
concentrations. It can be seen from the figure that at low dopant concentrations the
CD\ phase appears for u < 1, i.e, only in the metallic regime. But with increasing §
the CDWV state persists even at much higher values of u, indicating that there can be
a Peierl's instability even in the doped regime although the corresponding transition
temperatures are much lower. Fig.6 shows the variation of the CDW-gap parameter
with the electronic correlation for different values of é. The gap decreases .rapxdl_vv in
the begining with increasing value of u, but then it slow!y vanishes with increasing
u. With increasing 8. the critical value of u (below which the CDW state exists)
increases. But for a given value of & the variation of the gap with u is continuous.
These results are in contradiction with that of Deeg et al, [9] where they obtained
a first order discontinuous transition with increasing u, and also a decrease in order
parameter with increasing §. However their calculation differs from lh;e present report
in the sense that beside the transition to the CDW state they also incorporate the
possibility of transition from the paramagnetic meta_l to an antl.fe‘n:omagnetxc state
with increasing u. Furthermore in the present calculation the possibility of a reduction
in the nesting of the Fermi surface with increasing & has not been accounted for.
These differences could be the cause for the discrepancies in the results of the two
calculations. Finally the variation of the spectral density function for the CDW-
amplitude mode on increasing the electron correlation in the metallic regime is shown
in fig.7. It can be seen from the figure that for vanishing u the spectral density function
bas a well defined peak corresponding to the CDW-amplitude mode at a [requency
slightly less than 2A followed by a broad asymmetrical hump. On increasing u this
peak shifts to lower frequency while its width decreases, while the hump becomes more
prominant with increasing strength. For even larger values of u the peak vanishes and
the hump further gains in strength ; as the system approaches the Metal-Insulator
transition. This clearly signifies the suppression of the CDV state as the system
is driven towards the Mott-Hubbard insulator due to electronic correlation. On the
other hand in the doped regime a similar behaviour of the spectral density function
results on lowering the dopant concentration 6. At larger values of § a well defined
peak corresponding to the CDW-amplitude mode exists. which vanishes on going
to smaller values of & This again is an indication of the fact that the QD\\ state
is suppressed in the low dopant concentrations in the doped regime. This reséult is
physically understandable in the sense that in the doped regime (i.e,u>1)foré=0.
the svstemn is a Mott insulator, hence there is no possibility for a transition to the
CDW-state. .
In concluding we summarize the main results of the present paper : The efiect
of electron correlation oa EP interaction and the ensuing transition to the CDW
state has been studied in detail. It was shown that in general electron correlaiion
tends to suppress the CDW state. In doing so the correlation problem has bm}
treated using the Slave Boson formalism within the saddle point approximation. It
has been shown that iis effect on the EP interaction and the phenomenon of the
CDW formation is precominantly determined by the band renormalization facrorag:
This has been establissed by calculating explicitly the variation with the electronic
correlation. of the Peie:i's instability, the phase diagram. the CD\V order paramcicr




and the spectral density function of the collective modes. However, it has to be
realised that these results are within the mean field approximation, and are likely to
be altered on including the effects of fluctuation. These effects are presently uader
investigation and will be reported elsewhere.
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FIGURE CAPTIONS

Fig.1. Variation of § with u for different values of §.
Fig.2. Variation of § with § for different values of u.

Fig.3. The dispersion of the giant Kohn a i
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diffotent e aspersic gl omaly phonon in the metallic regime for
Fig4. The dispersion of the giant Kohn anomaly
different values of the dopant concentration 6.

0

phonon in the doped regirme for

Fig.5. The phase diagram for ) = 0.9.
Fig.6. The variation of the CDW gap with electron correlation for ) = 0.2,

Fig.7. Spectral density function for the CDW - ampl;
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