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The electron - phonon interaction and the ensuing transition to the charge density
 
wave (COW) state is studied for a low dimensional strongly correlated metal. It was
 
shown that in general the electron correlation tends to suppress the COW state. This
 
has been established by calculating the variation with electronic correlation of the
 
Peicrl's instability, the phase diagram, the CDW order parameter and the spectral
 
density function of the collective modes.
 

PACS Nos. 63.20 Kr, 71.45 Lr, 71.30 + h 

Introduction. 
The discovery of high temperature superconductivity (SC) in different systems such
 
as the cupratcs, the bismathate ,and the alkali Idoped fullerenes has raised the is

sue regarding the mechanism of pairing. Whilel in the cuprates the high transition
 
temperatures (Te) and the associated anomalous behaviour of their normal state prop

erties has focussed attention on the study of strongly correlated systems [1), still the
 
role of electron·phonon (EP) interaction in the pairing mechanism is under debate
 
[21. The bismathll.tes on the other hand (also have relatively large luperconducting
 
transi tion temperature (Te )), exhibi t strong EP interaction wh ich is believed (3) to be
 
responsible for the SC. In the third category there are systems like the alkali doped
 
fullerenes [41 and the organic superconductors (5J which exhibit properties indicat

ing that both electron correlation and EP interaction are responsible for SC in these
 
systems. Therefore a detailed analysis of the interplay between electron correlations
 
and EP interaction is essential for a proper understanding of the phenomenon of
 
high temperature superconductivity. There had been several attempts at such an
 

--- analysis showing conflicting results i Zielinski et ai, (61 following a strong coupling 
theory arrived at .the conclusion that there is an enhancement of Tc (EP coupling 
constant) around quarter filling of the band 'due to the presence of strong correlation. 
On the other hand Kim et ai, [71 argue that the EP interaction strength decreases 
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with Coulomb correlation, due to the suppression of charge fluctuation as vne ap
proaches the ~Ietal-lnsulator transition. ~Iore recently Kulic and Zeyher [8] carried 
out a more detailed calculation and find that the EP coupling constant is ecilanced 
for small wave \'ectors and suppressed at large wave \'ectors in the limit of low dopant 
concentration (6). "nile these studies focussed on how the EP coupling constant 
and hence Tc is effected by strong correlation, there ha\'e been others (DeE1 et ai, 
[9]), which primarily looked at the resulting phase diagram of the system due to the
interplay between the strong correlation and the EP interaction. These later ~uthors 
used Slave Boson method (and its generalization to the case of two sublatt:ces) to 
treat the strong correlation effects and examine the stability of different magnetic 
phases vis-a-vis the cbarge density wave (CDW) state. 

It is well known that a low dimensional paramagnetic metal undergoes a tre-Dsition 
to the CDW state in the presence of EP interaction. The so called Peierl's instc:,ility is 
brought about by the softening of the phonon with the wa\"e \'ector (Q-) corresfl.;,nding 
to the nesting of the Fermi surface. The aim of the present paper is to investigue how 
this transition gets effected in the presence of electron-electron interaction. While it 
is expected that at hal~ filling the strong correlation will tend to drive the ~ystem 
towards the ~lott·Hubtiard insulator, the EP interaction will tend to stabiJse the 
Peierl's tr.ansition. Therefore it is interesting to in\'estigate the nature of the i~,erplay 
of the two interactions on these instabilities when there is a de\'iation from hal filling 
of the band. In an attempt to answer this question we treat the correlation problem 
using the Sla\'e Boson method within the saddle point approximation [ID} and deduce 
an effective EP interaction in sec. :1. The phonon softening and the Peierl's im:ability 
in the presence of correlation as wen as a detailed study of the effect of t:ectron 
correlation on the CDW order parameter are also discussed. We conclude in sec. 3 
by comparing our results with those of the earlier calculations. 

2 The Slave Boson approach to electron-phonon 
interaction in a Correlated system: 

The problem of strons electron correlation is best discussed in terms of the single 
band Hubbard modell11f described by the Hamiltonian 1 

H == L lil CL,Cj.f1 +C"L"'I"d -I' L n,~ (1) 
iJ.f1 i ." 

where the first term is the usual tight binding Hamiltonian with the hoppiq inte
gral lij, the second term denotes the intratomic Coulomb repulsion (C) bet\\'~n two 
electrons with opposite spin occupying tbe same site and the third term den(j~es the 
chemical potential (,,) which can take into account the de\"iation from hali filling. 
In its ground state the system will tend to minimize the number of doubly occupied 
sites. 

2.1 Slave Boson FOrIllUlation of the Correlated Probleln : 
Ooe of the main obstac!t>5 encount~red in obtainin!!: a solution to the Hubbarc model 
is \.;~ping track of the occupancy of a site. It was ;bown by I\:otliar and Ruck~nstein 
(10) that by introduci::tg four dir.ert>nt au:diliary BO'::O£1 fielcs corre.::ponding t,) a site 
being empty. .::ingly oc("~pied \\ilh (\ lip or down $pin eleclrvn. or doubly occ::?ied ; 
one can OH'rcome thi.:: cimcult\" to .::ome t>xtenl. Oicour.::e th~e Bo.::on fields 2.:e not 
com?ll?tely il1l~l'pen2t'::! hilt "'~t>.c(\;15tr~ir.t'\! by tnt' iequiil':nents that (i) 11:::> total 
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probability of occupation of a site being unity must be conserved and (ii) the local 
charge at a site is also conser\'ed. Thus the driginal fermion annihilation (creation) 
operator £:1,,, (cL,) of equation (l) can be expressed in terms of these Sla\'e Boson 
operators and the constraints 'are introduced into the problem through Lagrange 
multipliers. The prescription for the transformation of equation (1) in terms or the 
Boson operators. is g1\'en below: 
• ni'"il--+ dtdi 

nj" --+ ni" 

t' t -t -
Ci"Cj" --+ Zi"Ci"Cj"Zj"

where I 
Zj" =(1- dtVi - pt"pi"rl/'l(e!pi" +pL"di)(l- ejtei - pL"Pi-~rl/'l (2) 

the auxillia.ry Boson field operators el. pI" and d! respectively creat an empty, singly 
occupied (with spin u) and doubly occupied site; and ct is the modified Fermion 
creation operator. The form of =i. is so chosen as to reproduce the correct band 
structure'in the absence of correlation. Furthermore the constraints mentioned abo\'e 
are gi \'en by 

e!e''':'' 'pt p' +dtd' - 1III ~ i(1l<1 i ,- (3) 

" 
and 

pt"Pi" +d!di = ni" (4) 

The \'alues of the Boson field operators and the Lagrange multipliers are determined 
by minimizing the free energy of the system in the saddle point approximation. ~bere 
all these operators are replaced by c-numbers. In this approximation tbe Hamilto
nian of the system takes the simple form of an effecti\'e tight binding model with 
a modified hopping integral of the form iij -+ qtijt where the correlation effects are 
built-in through the multiplicative ractor q=ztz. It was shown [10] that in the weak 

2correlation limit q= (1 - u ), (where u = (U/Uc ). Uc being the critical \'a]ue or U 
where the system undergoes the ~retal-Insulator transition) and the Brinkman-Rice 
result is reproduced. The generalization of this result to the case of strong correlation 
U > C: when there is de\;ation from hall filling (dopant concentration t F 0) is due to 
La\'agna [10]. who sho\\ed that lor small \'alues of 6, q= 26/{. \.here ~ = (1- U-1)1/'l, 
The weak and the strong correlation limits are also called the metallic and the doped 
regimes. due to the realization of the fact that in the later limit the conduction (in 
the ~[ott-Hubbardinsulator) takes place only on doping. Ho\\ever in generalfis ex
pre~5ed in terms of the dopant concentration (0) and the double occupancy parameter 
z-= (l 4- d), and is gi\'en by 

. (2r' - z" - cP) 
(5)q = (1 - 62) 

where r is determined by the equation 

:~ ~ r~[lIl1 - 62
) -1]- u6 2(1 - 62

) =0 (6) 

In the tight binding picture the EP interaction ari~es from the dependence of ,he 
hopping integral (iij) on the s<'paration bl,tween the sites (R,j). In the pr~en('~ of 

smaU displacements of (iii) of the atom at the site i I iij can be expanded i:l a Taylor 
series and the leading term in the displacement will give rise to the EP interaction 
Hamiltonian, 

However, it \~as argued earlier that in the presence of electron correlation which is 
treated within the Sla\-e Boson - saddle point approximation the effective Hamiltonian 
in\"oh-es a modified hopping in~egral with a multiplicative factor (q1ij). The:cfore the 
corresp.onding EP interaction Hamiltonian will be of the form 

ctHc-p = -" k+qu lUIgq L.J c- Aq (7) 
kq" 

where Aq = (bf + b~9) is the q-th Fourier component of the atomic di~?laccment 

iii ; with bq{b~) denoting the phonon annihilation(creation) operator; and 9 is the 
coupling constant. It is clear from equation (7) that within this approximation scheme 
the entire effect of electron correlation is to modify the EP coupling constant by the 
multiplicati\'e factor q, In the weak correlation limit, q tends to zero as the intratomic 
correlation U approaches the critical value (Uc ) for the Brinkman-Rice aansition, 
Therefore:! the EP coupling will gradually decrease and \'anish at the ~leta1·Insulator 
transition; a result in agreement with Kim et al [I]. On the other hand in strong 
correlation limit or the doped regime, it follows from the approximate for:n of q- for 
small 0 that asymptotically as u --+ 00 • q --+ 20, This again amounts w a large 
reduction in the effective EP coupling constant due to strong correlation_ However, 
for large dopant concentrations qhas to be calculated from equations (.j) a::d (6) and 
the conclusions drawn abo\'e do not hold good as will be shown later, 

2.2 Peierl's Transition in a Correlated system: 

The lattice instability in low dimensional metals is usually driven by the softening 
of the phonon with wa\'e \'ector Q; which in turn is intimately connectee with the 
nesting property of the Fermi surface: given by If+O = -lr. In order to see how 
the Peierl's transition is effected by the electron correlation: the phonon ~elI energy 
arising from the EP interaction has to be calculated. which is gi\'en by 

Il(q,:.:) = 4;;-2(gq)2 X(q:w) (8) 

where the density respODse function X(q:~) has to be evaluated using the Sla\'e Bo
son enecti\'e Hamiltonian, In the saddle point approximation the densit:.- response 
[unction is just the modified Lindhard function gi\'en by 

x(q,,,;) = L !(qlk~q~) - !(ql.) (9)
k ["-' - q(lk - lkH)] 

The renormali~ed frequency of the phonon with wa\-e \'ector Q is determi::~d by the 
static response function and is gh'en by 

_ { ~'0{1 +(4;:-g~q'l/woh(Q)P/2 
(10)n~ - (,;,.'011 - ,\qin(q/T)jI/2 

where ,\ = Hg~S(O)/-'':;) is the dimell5ionless coupling comtant . .\"(0) ':~ing the 
den~ity of states at the Fermi energy, ;';"Q is the phonon frl"fl1\ency in the ~:"pn((' of 

"
 
<L..,",,--..., 

..-~. 0 .•;'\'0 - . 
w 



the EP interaction and the effective temperature t = (kBTjl.l3t:B), fB being SOme 
cut-off energy. It is e\"ident from equation (10) that the effect of electron correlation 
modifies the EP coupling constant as well as the Peierl's transition temperature cf,,). 
The transition takes place at the temperature at which the soft mode frequency 
vanishes, i.e, nQ = 0, so that 

Tp = qexp[-lj Aq1 (ll) 

Since q is a function of u and 6, equation (11) essentially gives the phase diagram 
for the CDW state in the (u '" T) and (6 '" T) planes. Equation (10) gins the 
temperature dependence of the frequency of the phonon with wa\'e vector Q~ But 
to trace the behaviour of the giant Kohn-anomaly as a function of the correlc..tion or 
the Jopallt concentration it is necessary to obtain the temperature dependence of the 
phonons around the wa\"e vector Q. This can be achieved by substitutingQ -. Q+ q 
ill equation (10) for I q \<t::1 Q I. Thus nQH can be calculated by expanding the 
electron energy t: k+QH and the Fermi function f( ff+<J+q·} in a Taylor series for small 
Ii; for the evaluation of the density response function. Following this proceedure the 
dispersion around the giant Kohn anomaly phoron (nQ ) is g1,'en by 

I 
I 
I 

2no - ['/1.\3t • 'J r
---.:t.! = (1 +r)(l- ,\q{ dItanh(x/2)(x +ajr2 jTr l 

_ -;-ll\/2 (12)
'-'Q 0 2r + 1 

where the variable r = q/Q and the parameter c = (2fFjl.I3t:B), The u and 6 
dependence of the results of these calculations will be presented in sec.3. 

2,3 Effect of Correlation on the CDW State: 

So far, our main concern was to see bow the electron correlation effects .he EP 
interaction as well as the ensuing lattice instability of the system in the metallic state. 
However, it is possible that the system under consideration being at lo\\" tempe:atures 
(T < Tp ) is already in the CDW state driven by the EP interaction; then it is relevant 
to enquire how the electron correlation effects the CDW state? The CDW s~ate or 
the accompanying periodic lattice distortion is characteri~ed by the non-\G.:li5hing 
expectation \Glue of the phonon amplitude corresponding to the particular \clue of 
the wa\-e vector q= Q, i.e, < AQ ># O. Therefore the EP interaction Hami~lOnian 
within the mean field approximation corre~ponding to the COW state can be "litten 
as 

HQ ;::: gqL cLo"ckt1 < AQ > (13) 
k" 

In analysing the problem of electron corrdatiQn for the CD\\" state within tht? Slave 
Bo~on appro:-;:imation. it is cOll\"enient to define the two component :\3mbu operator~ 

IV L== (c1., cLoa) in terms of which the free energy of the system can be cast in 

a form analogous to that in the metallic state. On minimizing the iree ene~· the 
qUa.3i pi\rticle energy of the CD\\" ~tate turn,:; out to be 

E," :=; l![(; -1- 9" < ,\~ >~lln + '\1 (1·1) 

where A\ is the Lagrange multiplier associated with the constraint responsible for 
the local charge conservation which acts as the chemical potential. This is expected 
because in the COW state the energy spectrum develops a gap at the Fermi energy, 
The minimization of the free energy also relates the gap parameter to the modulated
charge density of the system as 

. ; 2g2q 1 Lt. 
g< AQ >= ---,T < \lf r T1\lff" >

lJ.,'Q ~ _ ",a (15) 
1.:6 

where Tj (i = 1,2,3) is the Pauli matrix. Furthermore, in the COW state the 
Brinkman-Rice parameter Ue , at which the metal is driven into the insulatin!! state 
differs from its value in the paramagnetic state, and is gi\'en by ~ 

Ue = S[-~ ~ fl: < \lIL+3\lfft1 > +2~WQ < AQ >2] (16) 
kt1 

The extra contribution to Ue comes essentially from the elastic en erg)-' due to the 
periodic lattice distortion accompanying the CD\\' formation. Apart (rom these dif
ferences all the other quantities such as the mean field values of the Bose operators 
and the dependence of the band renormalization factor q- on the double Occupancy 
parameter x remains the same as in the paramagnetic metallic state. To see the 
dependence of the CO\\" order parameter on the electronic correlation it is necessarv 
to e\'aluate the right hand side of equation (15) explicitly from the effective ~addl~ 
point Hamiltonian, which in the weak coupling limit gives 

u == 9 < A" >= ~'c: exp[-lj,\q1 (17) , 

where A is the dimensionlc;s coupling constant in the CD\\' state, We is the cut
off frequency which delermin('s the range of energy around the Fermi level beyond 
which the nesting property is destroyed. It is worth mentioning that the CD'" order 
parameter dep(mds on C through qwhile Ce depends on the order parameter as can 
be seen from equation (16) i which calls for a self-consistent solution. Howe\"er, the 
qualitati\'e dependence of the order parameter on correlation follows from equation 
(1 i). i.e, as U -+ Ue in the metallic regime the order parameter \Gnishes, Tbis is 
physically understandable in the sense that if the ~Io~t-Hubbard insulating phase 
sets in there will be localization of the ele-ctrons which \vill inhibit the formation of 
the COW state. On the other band in the doped regime the COW order parameter is 
expected to grow on increasing the dopant concentrat ion; \\"oich clearly follows from 
the dependence of qon Cin the limit of small 6. 

The robust ness of the ordered ground state is usually tested by looking at the 
response of the system to small fluctuations. In the case of the CDW state it is well 
known [121 tbat fluctuations of the phase and the ampUtude of the order parameter 
results in the appearenceof the collecti\'e modes of the system. While the pha..c:e mode 
is the Goldstone mode arising from the breaking of the symmetry, the amplitude mode 
is a measure of the CD\\' order parameter (~), which has a frequency ;';"AM =;?j at 
zero wa\"e \·ecror. The:e:ore. it i,:; worthwhile to im'Qtigate lhe effect of the electron 
correlation on the CD\\'-amplitudt? mode. The frequency of the amplitude mode and 
its spe-ctral density fUuction can bt> calculated from the amplitude response function 
h'~(q.-,)) calculated [13] within the rando~ phase approximation (RP.\), 

\'(q._') = )"' «~(t)LTI\lI(t)kH";\V(O)f'H,,/I'1t(O),;,,:>." (IS)
;.;'.:r ..,.1 
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, (- ) XO(q, t,,:) (19) 
XRPA q,"'" = [1- (>.q'"1/N(O))XO(q~t..')l 

where XO(q,w) is the response function in the COW-state in the presence of electron 
correlation which at zero temperature is given by 

4 q'lf! 
. (20)XO(O,~·) =-; ~ EJc(w'2 -"4EJc2) 

1c 

While the frequency of the amplitude mode is given by the pole of xRp,~{O:w), 

the imaginary part of X'hP,4{O, c...;) gi\'es its spectral density function. The frequency 
of the amplitude mode ,turns out to be 

I 
W ,,",( = 2qti (21)

\ 

Since the band renonnaJization factor (q) decreases with increasing \'alue of the in
tratomic Coulomb repulsion (U) the COW-amplitude mode frequency will also de
crease with increasing u. The spectral density function is expected to show a peaked 
structure'around :.&lA,"; but the nature of this peak will change (as will be shown in the 
next section) with increasing tl in a manner such that it will indicate the suppre5sion 
of the CDW state. 

Results and Disscussion : 

In the thcory presente-d in sec.:!. we analysed the effect of electron correlation (u) 
on various facets of EP interaction such as the coupling constant ("), the on set 
of Peierl's instability, the (u - T) phase diagram, the COW order parameter and 
the collective modes of the COW state. The electron correlation has been dealt 
with in the Slave Boron approach within the saddle point approximation. It "'as 
shown that predominantly the correlation effect enters the calculation through the 
band renormalization factor q. which also depends on the dopant concentration 6. 
This dependenceo£ qon u and h in the limit of small dopant concentrations has been 
discussed in sec.2.1 for both the metallic and doped regimes. Howe\'er for any \Cllue of 
6 between 0 < 0 < 1, the general dependence of qon u and f is governed by equations 
(5) and (6) and the beha\iour is shown in figures 1 and 2 r~peeth·ely. It can be reen 
from fig.I. that qdrop:: rapidly from its value of unity at vanishing correlation to a 
small value at large u for small dopant concentrations. Howe\"er, with increasing 6, 
the value of qat large u takes higher values. On the other hand at a given value of 
u, q increases with increasing cand becomes cj == 1, at 6 == 1 which corresponds to an 
empty band in the ca..~ of hole doping and a full band in the case of electron doping. 
This ob\'iously is an artifact of the saddle point approxirhation, and hence this results 
make sense only Jor more tban half filling of the lower Hubbard band, for the ca..<:e of 
hole doping. This beba\iour of ij will be I'i'Hected in all the other quantities that are 
going to be calculated, for example in the presence of correlation the EP coupling 
constant gets multipli~ ~y q. ~u that in general the dfecti\'e strength of interaction 
will be reduced. ~[or{"O\'er due to the dept'dence of qon u and 6, the strength of the 
interact ion will decrea.s<> ...it h increasing u. but increase with increasing ~. 

The Peierl's instabili.y of the !=ystem i~ determined by the giant hohn anomaly, 
whose \"ariation with tr:t> dectron correliltion 1/ and the dopant concentration 6 are 
shown in figs. 3 and .1. In the ab~('nce of correlation there is a·softening of the Qth 
phonon at a particular tt"!i1peralllrt' for a given villue of the EP coupling constant. On 

increasing the \-alue of u, the Kohn anomaly is suppressed as can be seen from fig,3" 
indicating that correlation effect suppresses the Peierl's instability in the metallic 
regime. On the other band in doped regime, the Kohn anomaly which is present at a 
given dopant concentration is again suppressed with decreasing 0 i as can be seen from 
fig.4. This is again an indication of the fact that while the system can not undergo the 
COW transition in the ~[ott.Hubbard insulating state, as it is metallised by increasing 
6 it becomes again prone to the Peierl's instability. Similarly the phase diagram of the 
system can be studied lIom equation (11), which is shown in fig.5 for different dopant 
concentrations. It can be seen from the figure that at low dopant concentrations the 
COW phase appears for u < 1, i.e, only in the metalUc regime. But with increasing 5 
the COW state persists even at much higher values of u, indicating that there can be 
a Peierl's instability e\'en in the doped regime although the corresponding transition 
temperatures are much lower. Fig.6 shows the variation of the CDW-gap parameter 
with the electronic correlation for different values of 0. The gap decreases rapidly in 
the begi.ning with increasing value of ll, but then it slowly vanishes with increa~ing 
u, With increasing 6. the critical value of u (below which the CDW state exists) 
increases. But for a g1ven value of {) the variation of the gap with u is continuous, 
TheEe results are in contradiction with that of Deeg et ai, [91 where they obtained 
a first order discontinuous transition with increasing u, and also a decrease in order 
parameter wilh increasing 6. However their calculation dilTers from the present report 
in the sense that beside the transition to the COW state they also incorporate the 
possibility of transition from the paramagnetic metal to an antiferromagnetic state 
with increasing u. Furthermore in the present calculation the possibility of a reduction 
in the nesting of the fermi surface with increasing 6 has not been accounted for, 
These dilTerences could be the cause for the discrepancies in the results of the two 
calculations. finally the variation of the spectral density function for the CDW. 
amplitude mode on increasing t~e electron correlation in the metallic regime is shown 
in fig.i. It can be seen from the figure that for vanishing u the spectral density function 
has a well defined peak correspbnding to the COW-amplitude mode at a frequency 
slightly less than 2~ followed by a. broad asymmetrical hump. On increasing u this 
peak shifts to lo\\'cr frequenc)' while its width decreases, while the hump becomes more 
prominant with increasing strength. For even larger \'alues of u the peak vanishes and 
the bump further gains in strength; as the system approaches the ~[etal-lns\llator 
transition. Tbis clearly signifies the suppression of the COW state as the system 
is driven towards the ~fott·Hubbard insulator due to electronic correlation, On the 
other hand in the doped regime a similar behaviour of the spectral density function 
results on lowering the dopant concentration 8. At larger \alues of 0 a well defined 
peak corresponding to the CD\\'-amplitude mode exists. which vanishes on ~oin~ 
to smaller \'alues of t. This again is an indication of the fact that the CO'\' state 
is suppressed in the 10..... dopant concentrations in the doped regime. This re::ult is 
physically understandable in the sense that in the doped regime (i.e, u > 1) for 0 == o. 
the system is a ~[ott insulator, hence there is no possibility for a transition to the 
CD\\'-state. 

In concluding we summarize the main results of the prC5ent paper: The effect 
of electron correlation on EP interaction and the ensuin2: transition to the CD\\' 
state has been Hudied in detail. It was shown that in 2:c-neral electron corrda,iolJ 
tends to suppre5S the COW state. In doing so the co~~('lat ion problem has !.>I."ll 
treated using the Sian' Boson formalism \\;thin the saddle point approximation, It 
has been shown that ii~ effect on the EP interaction and the phenomenon of the 
CD\\" formation is preeominalltly determined by the band renormalizatiou factor/]: 
This bas been ~tabli~:N by calculating explicitly the \'ari"tion with the elecl ronir 
correlation. of the Peje:r.~ instability, the phase diagram. the CD\\" order [1,ITi\lI1c:('r 
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and the spectral density function of the collective modes. However, it bas to be 
realised that these results are within the mean field approximation, and are likely to 
be altered on including the effects of fluctuation. These effects are presently under 
im'estigation and will be reported elsewhere. 
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FIGURE CAPTIONS 

Fig.I. Variation of ij with u for different values of 8,
 

Fig,2. Variation of qwith 8 for different yalues of u.
 

Fig.3. The dispersion of the giant Kohn anomaly phonon in the metallic regime for
 
different. values of u.
 

Fig.:!. The dispersion of the giant Kohn anomaly phonon in the doped rcgi;;-,c for
 
different \·alues of the dopant concentration 5. 

Fig..j. The phase diagram for A :=: 0.2. 

Fig.6. The \'ariation of the CDW gap with electron correlation for A = 0.2. 

Fig.i. Spectral density function for the CDW - amplitude mode as a function of 
reduced frequency (w/~) for'\ = 0.94 and for different \'alues of u. 
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