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An Evaluation of the Binding Energy of a System of FERM‘[ Af- 1. Introduction
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It was first pointed out by Chandrasekher and Landau [1] that a many-body system \ <
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Institute of Physics,Sachivalaya Marg, Bhubaneswar-751005 VinR s f b a gravitational collapse. Because of this, the importance of deriving the ground state

Fermilab Tlorary energy of such a many-body system in the limit N — oo, has been recongnised for a long

"‘I“"Illllll“lIllllllml time. In this context, there was some interesting work done by Fisher and Ruelle [2] who
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same as obtained by Levy-Leblond before for a system of self gravitating fermions, follow- were established. Leblond’s result disproves the numerical result obtained by Ruffin and

5 it ; ; _ B zola [5] earlier, based on a non-relativistic Newtonian approximation and without
ing a non-relativistic quantum mechanical calculation. As an application of the present onnaz [5] earlier, base ; = withou

formula, a brief discussion concerning the formation of the univegse has l;ecn made. going:iale: the'eqn. of shate appronch. I & sruck miore recent Work, Basdewant clal [
proposed a new method to obtain a lower bound to the ground state energy of a system
of self-gravitating non-relativisticv particles, which is found to be quite different from
those known before. From the work by these authors, it is seen that for la_rgé N, their
result for the upper bound of the ground state energy differs by within less than 14%

from that obtained for the lower bound of the ground state energy, whereas for small N,

the discrepancy becomes much larger.

In the present work, wg have developed a new method for calculating the ground
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state energy of the infinite system of self-gravitating particles. We have succceeded in
calculating the ground state energies of system composed of particles upto N = 4, vari-
ationaly using hydrogenic basis. The resulting expression for energy is then generalized
for any N, and the values of relevant parameters one comes across are determined after
comparing it with the expression for the ground state energy of a nonrelativistic free
electron gas at T = 0K. This is discussed in Sec.2 of the paper. In the last section, we

have made a brief discussion of our result.

I1. Calculation of the Binding Energy
Consider a system of N identical particles of mass m interacting through gravitational

interactions. The Hamiltonian of the system (in the unit of & = 1) is written as
N V? 1 N N - -
H=—i=l5;+§i§;,§=:lv<lxi—kjl), (1)
where v(| Xi - ):;j ) = l)?_.-E:T-I’ with ¢? = Gm?, G being the wellknown gravitational
constant. Confining to the case of N = 2, the ground state energy of the system is given
to be A !
Eo(N =2) = ~()G"m" 2)
This is the energy corresponding to a positronium atom in the ground state with g?
replaced by e?.
Now considering the case of a 3-body system ( N = 3) the Hamiltonian (1) has the

form:
Ha Wi 93 % ¢ 8 &
2Zm 2m 2m X\ -X,| |Xi-X| |X2-X5l

The above Hamiltonian, when transformed to the centre of mass and relative co-

(3

ordinates, assumes the form, in the centre mass frame of the three-particle system, as

Het__n 8 __ 9 _ __ ¢ (4)

2m

where p = 2, u' = 4 are the reduced masses one comes across. Using (4), we eval-
uate the ground state energy of the system following standard variational procedure by

Vcboosing a trial wavefunction of the kind
Y(F 7o) = e—{(Air+rare) (5)

As one can notice from above, the trial wavefunction (5) is of a product type involving
hydrogenic basis. It is to be mentioned here that nowhere spin is explicitely taken into
consideration in our calc;ulation. Both A, and A; denote the variational parameters whose
values are determined by minimizing the average value of H over the state ¥. Thus, we

obtain the value of the ground state energy of the system as
Eo(N =3) = (-0..96708)G?m®, (6)

corresponding to Ay =~ 0.78639 and A; =~ 0.91147. Before we go to calculate the binding
energy for the ground state of the system of particle having N = 4, which is obviously
going to be a very cumbersome task, we try to re-do our calculation for the binding energy
of the system for N = 3 from a diffcrent angle. For that, we recast the Hamiltonian (4)
as

H =Hy + Hy, m
when

2 g2 2 n?
Ho=vr-Yo L L (8)

H = ﬂgz(% + %) ' o (9)

The value of 3 is determined by taking the average of H) and the expression on the

right side of (9) over the unperturbed eigenfunction ¥, for ground state of the system,
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which is written as

Uo(F,Fo) = Ae~lirtirel, ' (10)

N .
where A is the proper normalization constant. This kind of technique has been already
tested by us for the case of helium atom in the ground state (7], in which case, the
interpé.rticle potential is approximated to have the form as shown in (9). In the case of
helium atom, th? value of B happens to be §/16. With this 8, one reproduces the value for
the effective nuclear charge Z. sy = (2 - ) = 12_;’ whicb is exactly the same as obtained
variationally. In the present case, it is found that g assumes a value § = —0.27886.
With this 8, the grourd state energy of the gravitating system, consisting of 3 particles
is obtained as
Eo(N = 3) = (—0.95403)G*m® (1)
Thus, we find that the two result are in very close agreement with each other. This
justifies the reliability of the new procedurce to be followed by us hereafter for the
calculation of the binding energy of a system.
We now proceed to calculate the ground state energy of the system consisting of N
= 4 particles using the new method as cited above. For this case, the total Hamiltonian

of the system in the centre of mass frame of the four particles, is written as

2 2u 2" fo T
2 2 2 2
9 g g9 [
NeafaBl (-faihl Isafi-B) 1s_7_% (12)
15+ 5+ 183-5+31 |5+3-%1 |5-7-%2]|
it3 it3 i~ 3 177

As before, we break up the above Hamiltonian into the unperturbed part plus the

interaction part which in the present case is given as

(13)

Now as before, we approximate H| by writing

LR : (14)

1
1 27 - -
Hy =By (s + r T o
Taking the average value of the operator on both sides of (14) with respect to the unper-

turbed eigenfunction corresponding to the ground state of the four particle system, we

find §' = —0.48400. With this A’, we obtain the ground state energy of the system as
Ey(N = 4) =~ —(2.20226)G*m?® (15)

A calculation of the binding energy of this system has also been made by us using the
variational procedure, which though very complicated, is trackable. This gives rise to a
binding energy.

Eg(N =4) = (—2.82177)G*m® (16)

It has also been found by us that an improvement of the technique used by us in
the present calculation through the introduction of a parameter 3 can produce a better
result for E.'u‘ which is found to be closer to the variational result. Anyway, it is to be
rioted here that the variational result gives a value which is always lower than the value
obtained by the method approximating the interaction part H,. An evaluation of the
binding energy of the system of particles with N = 5 using variational technique is almost
impossible. However, one can do the calculation using the new technique broposed by
us. This gives rise to a §° = —0.71286 and the binding energy corresponding to this is
found to be

Ej(V = 5) = (~4.10743)G*m® (17)

Following earlier discussions. the variational result is expected to be lower than this. It
is to be further noticed that. our calculated result should constitute good upper bounds

for the binding energy for the ground state energies for all N up to N = 5. This is mainly
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due to our choice of trial wavefunctions using hydrogenic basis. For V >3, we have not
done any calculation of the binding energy. The tt:ppcr bounds for the binding energies
given by Basdevant et al [6] do not yield satisfactory result for small N, although for
large N, they may be accepted to be reliable.

In order to obtain a compact expression for the ground state energy of the system
for any N, we take into account the fact that for a system of N particles, the number
of possible pairs that be formed out of N is given as N(N-1)/2. Let us now assume
that the ground state energy spectrum of a system of N self gravitating particles is
similar to that of a system of degenerate free electron gas. This amounts to considering
the gravitating particles as fermions without explicitly taking the spin into consideration.
The characteristic difference between a system of N gravitating particles and a N-electron
system is that for the gravitating system of particles, the interparticle potential is always
attractive, where as it is repulsive for the elec(ro_n gas. Because of this attractiveness of
the gravitational potential, energy spectrum of a self-gravitatiug systemn becomes bound.
One may therefore, write the ground state energy of a system of N-gravitating fermions

as

N ~1)[2.2 .
E, < _N(19 1) [_1 + 09163]G2ms (18)

r2 T,

where an overall negative sign refers to the fact that the total energy of the system
is negative. The sign of the second term within the bracket in the above equation is
supposed to be of opposite to that one encounters for a free electron gas. This is because.
here, we have the interparticle potential which is attractive and the very terms account
for the first order corrections. In the above equation the quantity (G?m?®) represents the
value of energy in an unit equivalent to the atomic unit. From analogy with a system
of frece electron gas, the expression in the right hand side (rhs) of (18) can be considered

to represent the value of its ground state energy evaluated within the Hartree Fock

; .

approximation. Now in the rhs of (18) let us introduce a parameter v by writing

2.21
( 2 ) =V, (19)

Ts

where the value of v is determined by comparing the first term with the binding energy of
a pair of gravitating particles each of mass m. This is equivalent to that of a polsitronium

atom if g is replaced by e%. For N = 2, we find that v = (;‘) Thus, we write

_Mu 4 1.23275a n]G?m®, (20)

E, < 8

wr.cre an extra factor ay has been multiplical with second term which has been done so
to account for the variation with N. The value of ay for various N are determined by
comparing (20) with our calculated binding energies for ¥ < 4. Using all these values,
of ay upto N < 4, we arrive at a generalized expression for ay which is to be valid for
any N. It is to be noted here that for N = 2 we set az = 0 and for .V > 3, ay have finite
vaites.

For N = 3, we have found that Eo(N = 3) = (~0.96708)G?*m5, the value variation-
aily obtained by us. Comparing this with the expression on the rhs of (20), we arrive at
ay = 0.23471. Similarly, taking Eo(N = 4) = (—-2.82177)g%m?®, the variational result for
N = 4, we obtain a; = 0.71493. Using these two values of & we now try to express ay
by writing it as

N-1
ay = 3as(l +(T)‘] for N> 4 (21)
l

when a; = 0.23471. Out of very many choices, the above,‘ form of ay seems to be the
best one. The exponent § is determined by comparing the value from the rhs of (21) for
N = 4 with that of a; quoted earlier. It is found that § assumes a value of § = 14.5. In
order to check how good the formula (21) for ay, we consider the case of N = 5. This

gives rize to as = 0.73183. Using this value, from (20) we obtain the ground state energy
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of the system as Eo(N = 5) = (—4.7554)G?m?. This compares reasonably well with the
variational result for N = 5 which is supposed to be lower than Ey < (—4.10743)G?m?.
Furthermore, one can see that the very result obtained through the use of the parameter
B is found to be close to the value Ey = (—4.3360)G?m? that follows from the generalized
expression for the upper bound of E, given by Basdevant et al. Applying the formulae
(21) and (20) to N = 6, we find ag = 0.75419 and the binding energy of the system
corresponding to this becomes Eq(N = 6) = (—7.23650)G?m®. The corresponding value
of Eq for N = 6 obtained by Basdevant et al l_)ecomes Eo(N = 6) = (—8.13Q)G’m
which is lower than r:ur present result. It is therefore apparent that as N increases
beyond N 2> 6, the dliscripancies between our result and that of Basdevant et al will
be increasing gradually. Anyway from all the discussions made above, it looks that our
calculated values for the binding energy are quite resonable and hence this justifies the
correctness of our choices of the formulae (21) and (20) for any and E¢(.\') respectively.
For N <4, we claim that our result should be considered to be more reliable than those
of Basdevant et al [6] since we have used hydrogenic basis in our calculations.

Using our calculated values for the binding energy of the system consisting of par-

ticles N < 4, we have also tried to fit these numbers with a formula of the kind.

Eo(N) < AN(N -1)**G*m (22)

The value of the constant A in the above equation is fixed by comparing the ground state

energy with that of a positronium atom having e? replaced by g> = Gm?. which gives
A = (}). Using this, the final expression for Eo(N') becomes
_1)4/3
Eo(M) < (FE =D j s (23)

with the help of equation (23), we have calculated Eys for N < 5, which is given in table
1. From the table one finds that the values of Eq obtained from (23) are consistently

g
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higher then our previous set of numbers upto a certain N, beyon Wh;ch they lie below
those given by (20). Besides we also notice that these new results not very far off our -
earlier results. This shows that the formula for Eo(/N) given in (23) is a rezsonably good

one. From this, it follows that for N — oo,

Eo(N) < (%N”’)G’m (24)

This N7/3 dependence of Eo(V) for large N is also being exhibited from the work given
by Levy-Leblend based on a derivation of the ground state energy of a non-relativistic
quantum mechanical system of N gravitating particles treated as fermions Levy-Leblonds
expression for large N differs from that shown in (24) with respect to the coeZcient factor
only.

While calculating Eo(N) for N < 4, using variational procedure we kave chosen
product type of trial wave functions for averaging. Since this does not satisi antisym-
metric property, one may not correspond to a system of fermions. Since witx our choice
of a product type of trial wave functions, our calculated values for Eq(V) ft reasonably
well with a formyla having a N7/* dependence which is the same as that follows from
the calculation given by Levy-Leblend using an antisymmetric state type of wavefunc-

tion, one may therefore say that a N7/3-dependence in perhaps realizable irrespective of

whether the system of particles are bosons or fermions. Leaving aside the fact that the

expression for Eq(IN) given by Levy-Leblond as N'/3(N — 1)? for finite N, since the co-

efficient associated with his Eq(/N) does not reproduce the correct binding energy of the
system for N = 2 (which corresponds to two fermions of equal mass interacting through
an attractive gravitational potential), the formula (23) may be considered to be a better
choice for Eq(N) than ﬁile one obtained by Levy-Leblond. This can be furtker seen from
the calculated values of Eq(iV) for N < 4. Comparing the present formula (23) with the

one given by us in (20), we feel that (20) is no doubt better because this is established
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by an exact fit with the results obtained variationally.
III. Discussion of Results

The expression for the ground state energy of the system of N self-gravitating par-
ticles as given by us in (20) denotes the sum of energies of all possible pairs that caz be
chosen out of N and those arising out the interactions between the pairs. Therefore, even
if one starts with a system of fermions, the composite objects that one has to ultimately
deal with constitute an assembly of bosons. Using our result, a crude estimate of the
critical mass of the boson star can be made by equating the expression for Eo(N) with -
Nmc?, where m denotes the mass of the elementary fermion. Thus, in the limit N —
(20) becomes

Eo(N) = —[(0.342)N?|G*m®, (25)
following which we obtain

N ~(1.9G*m™* (26a)
intheunith=c=1. This is further written as

A[plank)

> 2.9(——— (265)

where Mpjank denotes the well-known planck mass (8] whose value is ~ 2.2 x 10%g. Using

(26b), we obtain the critical mass of the system as
M.=Nm=2. 9(—&1") ' (26¢)

A refinement of the above result is made by using the semirelativistic Hamiltonian
of the N-particle system and the procedure followed by A. Martin [9). With this, the
mass of the ground state of the N-particle system (because ¢ = 1) is given by

1 N(N

My < N(— +3H)- 1)[1 +0.86802{1 +( )]G’m u (27)

1’

where u is an arbitrary positive parameter minizing the above expression with respect
to u, we obtain for N — oo, LIN = —oo if N >~ 1.5G"2m™*; that is the collapse of
the system occurs if

. ‘ N >~ 1.5(

}uplank 4
—rert 2
Hent) (28)

Using m to be equal to 10 GeV, which corresponds to the mass of the photino (a fermion
having spin 1/2), we have (ﬂ"nL"‘) = 10'8. This gives rise to the limiting value for
N > (~ 1.5 x 107?), for which My = —co. We now consider the situation when N < (~

1.5(ﬂ’%)‘). In this case, we have for N — o0,
My{(-0.684N?)G?m*}'/? (20)
Minizing this expression, with respect to N , we obtain

Mmas <[~ (O.GG_zm—“)m] = 0.6( Mptane
m

) (30)

This is the semi-relativistic result for the ma.\'im\;m value of the boson star, which
can be madestable. Looking at our expression for AM;,4,, we find that it is proportional to
(ﬂ’%)‘m, a behaviour which is qualitatively different from that of the result obtained
by Ruffin and Bonnazzola (5) based on a relativistic calculation. Foram = 10 GeV, M4,
assumes a value of M,z = 1.2 x 10%%¢. This is the maximum mass of the bosonic system
(star) that can be formed out of a large number of photinos (N, ~ 1.5 x 107?), beyond
which the system is unstable. The photino which is considered to be the supersymmetric
partner of a photon has been spe;:ulated to be a possible candidate for the presence of
dark matter in the universe. An object or a star having Mma: ~ 1.2 x 10'%g, could
most probably refer to ‘the mass of a super cluster of galaxies or a massive black hole
etc. One of the popular views on the constituents of todays universe is the existence of

super clusters, cluster of galexics, galaxies and the other light emitting system, which are
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directly related to the presence of dark matter in the universe. Substituting the value
of (‘—'%"*) ~ 10'8, Ruffin and Bonnazzola’s calculation gives rise the maximum value of
the mass of the boson star as Mumar ~ 1.3 x 10'3g which is much smaller than the solar
mass Mg(~ 2 x 10'3). It is well known that if there was a boson star or a blackkole of
rwess M < 10'%g present in the early universe, this would have by now radiated away
all its mass by the Hawking process. Therefore primodial black holes with M > 10'%g
are most likely to exist in today’s universe. The value of A4, to be an order of 10%°g,
which we have reported here, is certainly a very high number since it is almost 10! times
tr.e solar mass M. Such a heavy mass could be mostly associated with the forination of
a supercluster of galaxies in the universe Abell and Vaucoulers {10] have even predicted
superclusters of masses 10'® ~ 10'7 Mg and from their studies it has been estimated that
90% of the galaxics belong to clusters and supercluster. Assuming soime of the galaxies
to be spiral in structure, there have been calculations of the masses of such galaxies
using virial theorem and the measured data on their rotational velocities. From those
cziculations, masses of the order of 10 ~ 10'? Af5 have been reported. The famous
Azdromida galaxy, known as M31, has been found to have a mass of ~ 10" Mz, A small
guadrupole anisotropy- that has been recently observed in the cosmic microwave back
ground radiation [11] is expected to be due to the existence of cluster of galaxies in the

universe.

Using our calculated values for the mass of the supercluster which gives M ~ 0.6 x
10'8 M5 and assuming that it is globular in structure, we have estimated the density pg of
tz2 cluster by choosing the radius R of the cluster to be roughly equal to 20 mpe (1 mpc
= 3.086x10%*cm). This gives pg ~ 1.015x1072%g/cm?. This may be considered to be the
izean density of the universe, if one assumes that the cosmic matter is mainly constituted

of the so the called globular superclusters which refer to the dark matter. An estimation
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of the critical density [12] p. has been made using the formula p. = H(4)G], choosing
the best value of the Hubble constant known at present Ho = 130/(Sec x 107light year),
one finds that p, ~ 3 x 1073%g/cm3. Since from the present calculation we find p. > pg,
from this one may infer that the universe is finite, closed and eventually collapsing.
However, this seems to be contrading the mostly common belief that the universe is
infinite, open and ever expanding.

Finally, we want to see whether there is any possibility of formation of a massive
black hole by the collapse of an object having M, ~ 1.2 x 10*°g. From General Theory
of relativity, it follows that if a massive star has to form a black hole its Schwarzchild
radius Rs {11] has to be Rs =~ 1.8 x 10! cm. The question now arises, can one think of
such a radius ? In order to answer this, let us consider the Bohr radius aq of a pair of

gravitating particles of mass m, which is given as ap = &5 = 8.4 x 10%%¢cm. Assuming

He

that one has a system consisting of a large number of particles (V = 1.5 x 1072} at T =
OK, one can write, in analogy with a system of electron gas, the interparticle separation
ro between a pair of particles as rg = agr,, where r, is a dimensionless parameter which

can be thought of to be propertional to [number density]™'/ of the particles in the

system. The Schwarzchild radius can be calculated using the relation

47Rs*  4m N

where rg is the average interparticlé separation within the medium and the factor of 2
comes because of pairing.
From this we obtain

Rs = ro(g)l/l (315)

Taking N ~ 1.5 x 10°?, one finds

R, ~ 1.8 x 10%

14
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forare ~2x 1073

Corresponding to this r,, the value of r, becomes r, ~ 0.24 x 1023, which is obviously
much less than unity. Therefore, in analogy with a system of free electron gas this could
refer to a very high.dense system of self gravitating fermions. All these discussions made

in this section are seen to strictly follow from our expression for the binding energy of a

system of N gravitating fermions given in (20) which for N — oo, behaves as N2.
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TABLE 1

(From(23)"

Edjrom(?OM

-0.25
-0.94494
-2.16337
-3.96850
-23.40094

-0.25
-0.96708
-2.82171
-4.10743

-11.25001
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