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Abstract: 

We have calculated the ratio of conductivities along the chains and perpendicular to 

the chains in highly anisotropic: quasi-one-dimensional systems. The electronic motion 

along the transverse direction is viewed as a cohe~nt inter-<:haintunnelling b~tween 

neighboaring chains blocked by ~peatOO intra--chain incohe~nt scatterings. Our results 

predid intrinsk,ally the same temperature dependen~ for both conductivities. It a.~ 1 
predicts a linear dependence of the anisotropy ratio on the carrier concentra.tioD~ which 

is absent in the earlier treatments of the same problem. 

PACS No: 72.10, 72.l0.d, 12.IS.E. 

The conduction in highly anisotropic systems exhibit some o.nusuaJ striking featul'e8. 

In the recently discovered high Te layered oxides the transport properl~ are different 

in different directions; metallic transport in the ab plane and non metallic (or metallic) 

transport along the c-axi!J 11-3). &pedaUy 'he (-axis resistivity of ~BQ2CU3C,-1 is 

knowD to be metallic (4) with (dPeldT) > O. This is some what unusual given the 

fact that the resistivities of the samples are much larger than .the MoU's maximum 

metallic resista.nce (or even Mooij value (SHand )'et they show the metallic be.haviour. 

The obBerved value of the c-axis resistivity is much larger than· .(1010 100 ',it0e9) the . . 
Ioffe-Regel-MoU limit which provides a ~riterion for metals .in 3OODven'ionaJ. BoUznlann 

type of band tl'3.DBporl. Generally in disordered systems It. is well established that, ft'he~.. 

the value of the resistance is iarger th~ the Mou's maxhnum reeistanoo.(",joopOeml., 

the incipient localization sets in. In th" regime one expects the negativejemperatnre 
I ..... " 

coefficient for reeistance (TCR) arising dtie to Suppression of the quantu~.inJe~eten~e·by 
. ";' ".-­

the ineJa.'Jtic phonon scattering. The neg:dive TCR may also an3e due the b~~~oWD' ot' 

the adiabatic approximation in the metJ,rnc ph33e leading to phoDoD-~tedt~elliD~ '" 

[5). However, lhe high·T, compound 1enlioned above shows complelely \h~:O;~\<': 
trend for TeR compared to all other disordered sys~ms. In such pure anisotropic systems ' 

I ••~ .~rj • 

rfTN:t or lOf'::\Iir.ation seemR to he less intporbnt. It should be noted that the localization 

bdng purely quantum mcch30ical cotierent back scattering phenomena that requil'C9 

electron to retain its local coherence in ndirections. ThuB it is not poB6ible to have states 

localized in one-direction only. Simil problem seems to arise in quasi onMimensionaJ 

B}'Btems fBI. For instance, in tetrathiaf lvalene-tetracyanoquinodimethane fITF-TCNQ) 

crystals. In these systems band w' th anisotropy between 3 direction (between the 

chains) and b' direction (along the c aiOB) is roughtly of the order of la/t. '" 0.01. In 

these S)'stcfIlB conduction is metallic in both directions. The resistivity is a few mOcm 
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alDal the chains aad eeveral 0 em behreeo the chaiu at room temperature. Even 

though the meaa free path perpeodicular to the chains is much shorter·than the lattice 

constant, dp./iT > O. This behaviour caDs for a DeW mechanism for transport other 

tbaa the simple Boltlmann type band transport for highly anisotropic systems. Soda et 

aI(6) haw explained this in a simple picture, supposing coheren& on-ehain and incoherent 

t' inter-ehain coupling!. In the following based on the same picture we deriYe an expression 
,,{' lor ratio 01 the conductivities (resistivities) along longitudinal and transverse direction. 

However, our ftJlaJ result differs from tbe earlier ODe witb an additional factor arising due 

&0 the effectm number 01 carriers involved in the motion along the tJ'aD8'Vel'8e directions, 

We proceed here along the same lines as our recent treatment on the c-axis resis­

tivity in layered compoUDds (7). We generalize our treatment to quasi-one dimensional 

anisotropic systems. For simplicity we conaider first the two dimensional anisotropic 

conductor. In this case we have one-dimensional chama along the b directions (or II 
direction) and they are weakly coupledlaloog the a directioo (or.l directions). In our 

treatment intra-chain electron transport is characterized by a Boltzmann-like mean free 

patb. The intrachain resistivity comes entirely from the mean free lifetime T, and is 

given by the Drude relation P\I = rni/nilT, where rni is the in-chain electron effective 

. mass. The intra-chain inelastic scaUerilg3 charaderizoo by T interrupt and therefore, 

block the coherent tunnelling of the eleqtrons to &lie neighbouring chains-under the in­

8uence of tUDIlelliDg matrix element t.1.. thia blocking of coherent motion modifies 1.1. to 

'l1'/A for 'J.1/A « 1. The laUer inequlility simply assumes that the large number of 

intra-dlain scaUering takes place before ~ inter-<hain tunnelling occtm. This is equiv­

alent to having large anisotropy, PJ./PI >~ 1, which will be assumed throughout. With 

these conditions successive iniel'-ChaiD tunnelling events are incoherent (or uncorrelated) 

and therefore it is sufficient to consider tu,nelling ootwoon just two neighbouring chains, 
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The Hamiltonian in our model is given in obvious notation, H =Ho+H', with
 

Ho = yo' EK et.K~CJ,K"+yo' Ek Ci.K~(h,K"
fG ~ 

+11 ~)Ci.K"Ct,K" + he), (1) 

where H' is the unspeciBed inlra-cbain inela:dic scattering term leading to &he finite 

liIetime l' for the transpon along the chains. The energy dispersion relation along the 

1-<1 chains is given by EK= -211t0.9Kb, where b is the laUice spacing along ihe chains. 

In absence of H', if we coDBider a situaiton where at time t =0 the eJedron with a 

quasi-momentum K is on the chain 1, then at later time t _he probability of electron to . 

persist on the same plane PH is given by PH =coBJ(t.ll/h). With the introduction of' 

H~ this coherence between the chains is Ioet. Consequently the survival probability Pit 

for the electron to persist in the chain 1 is given by 

2t~TP11 = ezpI-
1& 

tJ (2) 

For the details of the evaluation of p•• see ,re~7,8J. Here T i3 the mean free lifetime of the 

electron in tbe chain. From the equation (2) one can easily get tbe inter chain transition 

rate W(or the hopping probability) as W = (211 T/fi'J). Soda et aJ (6) have also obtained 

Ihe same expression for the hopping probability beiween ihe chains. However, to caJcu]ate 

the transverse conductivity they 385lIl1le Einstein relation between the conductivity and 

diffusion coefficient (D). In their calculation tJ1UlSVerse diffllBion consjant D is given at 

once by D = a:JW, where a is a lattice constani along the transverse direction. It should 

be no~ that this procedure subsumes that the number of electrons involved in -ranspoJi 

along the longitudinal direction are same as thooe involved in _he transverse direction, 

which is not true. It has recently been shown [flj explicitly using the anisotropic tight 
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binding Ilamiltonian that the deDBity of mobile carriers along the transyerse diredion is 

mom less than that along the longitudinal direction. In an anisotropk system when the 

deDBity of electron increases. the electrons can no longer be described b)' plane waves 

in traDBVer8e direction due to the Bragg reflection. This i! because the Fermi surface 

will touch the Brillouin zone boundary along K.1 = ±~ ft.r8t. Hence only the fraction 

of electron of the order of (Il/'gl" can contribute to the electrical conductivity in the 

tl'3.MVeF'Se direction, To calculate the transvel"5e conductivity we p~ aJon~ the line 

DOW wen known in the theory of quantum transport in ~pic 8Y~teIm. Let an 

electric fJeJd E be ~pplied perpendicular to the pair of chain.! seperated by the dj~tance 

a. Thi3 will generate a chemical potential difference l:1p = eaE between the hm chain~. 

Naturally this wiD expoee nomber of 6PUId of llDoccupied states per unit k>ngth into 

which the electrons are free to make the inter-chain t~i&iolL'J. Here g'd b the I-f.1 

density of stales per nnit length. Now the inter-chain current density will Ix> gi\,('n by 

j = e(6pgld)W. Thus the transverse resistivity is given by P.1 := (Elj}l ~lJbstilutjng 

the value for Wwe get 

Pl. = (h:l I~agltlti r) (3) 

This is our final result for the tra.M\'eTSe resisth·jty ror the two dimen,gional anLotropic 

quasi-one--dimensionaJ system. A! mentioned earlier the longitudinal ~isti"ity :3 gin>n 

by tbe Drnde relation p; =rna/nilT. One can easily generalize the relati~n (3) to 3­

dimensional anisotropic quasi-one-dimenSK>DaJ conductors, where the Pl. (d =3) is given 

by Pl.(tI = 3) = (~:Z/'~gld/lT). For the further calculation of ratio of relistiyitics 

we make some simple approximations. First the energy dispersion relation E (H} = 
-21. cos Kb giv~ a V3lu('6 for the efTecth:e m:\.~ rni to be rni = (h2/21ab'J). ~inr(' th(' 

band width of J·d chain is given by ~tl we take the value for V1d to be an aVrf:lRNJ 

value 114 = J/2/Ah, including the spin. With these values one can i.m.mOOiat~ly get tbe 

S 

anisotropic ~tio of resistivities, fune1y 

(ot) 

Thig J'{lhtion is independent of t .dimensionality and 6 is the number of transport charge 

c3.rri~~ per site in the chain . en by {nab} and (na2 b) {or two and ~hree dimensional 

ql1~'3i-{)ne-dimen5ional conduct re8pectively. 

Our r~llit (1) dirre~ fff) that of Soda et al 161 by an extra fa:ctor Of S.· .For the 

thr~ dimensional anisotropic ayered compounds 171 factor 4 appears iiuttead of.2m ." 
right band side of equation ( . Interestingly our result predicts a linear depeD~ence. of 

the n.niootropic r?~i on the rrier concentration 6. which should be. expe.timentally a 

verifiable f~ature. he t~m~ ture dependence of Pl. is similar to that of PI, as the factor. 
I 

r ~nteN in the Ran, wa.y in t e eXpreAAiOllfl for both cases. The additional temp~rature. 

rlcpcndencc in Pl. nay arise ( e to the renormalization of the tunnelling matrix element. 

t.t due to ?.diaba k phonoDs. '!iQr the discussion on thi.~ phonon renormalization of t.l 

:"Ind ~he rote of ~()rder on p\llnd P.l we refer to our earlier work (1} for the details. 

At prC5-ent we exploring to ~tend our work to other transport properties of highly. 

such M Hal coefficient and electronic thennal conduction. 
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