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AM. Jayannavar
Institute of Physics
Sachivalaya Marg
Bhubaneswar 751005
INDIA

Abstract:

We have calculated the ratio of conductivities along the chains and perpendicular to
the chains in highly anisotropic quasi-one-dimensional systems. The electronic motion
along the transverse direction is viewed as a coherent inter-chain tunnelling between
neighbouring chains blocked by repeated intra-chain incoherent scatterings. Qur results
predict intrinsically the same temperature dependence for both conductivities. 1t also
predicts a linear dependence of the anisotropy ratio on the carrier concentration, which

is absent in the earlier treatments of the same problem.
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The conduction in highly anisotropic systems exhibit some unusual striking features.
In the recently discovered high T, layered oxides the transport propertiﬁ are different
in different directions; metallic transport in the ab plane and non metallic {or metallic)
transport along the c-axis {1-3]. Especially the c-axis resiativity of Y BayCusCr_s is
known to be metallic {4} with {dp/dT) > 0. This is some what unusual given the
fact that the resistivities of the samples are much larger than the Mott's maximum
metallic resistance {or even Mooij value [5])and yet they show the metallic be‘hayiom".
The observed value of the c-axis resistivity is much larger than {10 to 100 times) the -
Ioffe-Regel-Mott limit which provides a ¢riterion for metads _inv:i -éonVeniion'al«.Bolilnié.nn
type of band transport. Generally in disordered systems it is well established t'hat, when .
the value of the resistance is larger than; the Mott’s maximum reeisiance,(;» 'lwpﬂc'r’n),.
the incipient localization sets in. In this regime one expects the negatiQe -tempé'rature
coeflicient for resistance (TCR) arising dhe to sappreasion of the quantum mterfe;ence by o
the inelastic phonon scattering. The negative TCR may also arise due the breakdown ol |
the adiabatic approximation in the metilhc phase leading to pbonon-ass:sted tunnelhng . )
[5). However, the high-T. compound qﬁenhoned above shows completely the opposlte"j .3
trend for TCR compared to alf other dxsordered systems. In such pure amsotropxc systems ,
effect of localization seems to be less lmportanl It should be noted that the Iocallzaﬁon
being purely quantum mechanical colierent back scattering phenomena that mqmrea
electron to retain its local coherence in a1l directions. Thus it is not possible to have states
localized in one-direction oply. Simil
systems {6|. For instance, in tetrathiaffilvalene-tetracysnoquinodimethane (TTF-TCNQ)

problem seems to arise in quasi one-dimensional

crystals. In these systems band width anisotropy between a direction {between the
chains) and b direction (along the chains) is roughtly of the order of L3/t ~ 0.01. In ‘

these syatéms conduction is metallic/in both directions. The resistivity is a few mQ}cm



along the chains and several {1 cm between the chains at room temperature. Even
though the mean free path perpendicular to the chains is much shorter:than the lattice
constant, dp,/dT > 0. This behaviour calls for a new mechanism for transport other
than the simple Boitsmann type band transport for highly anisotropic systems. Soda et
al [6] have explained this in a simple pictare, supposing coherent on-chain and incoherent
inter-chain couplings. In the following based on the same picture we derive an expression
for ratio of the conductivities (resistivities) along longitudinal and transverse direction.
However, our final result differs from the earlier one with an additional factor arising due

to the effective number of carriers involved in the motion along the transverse directions.

We proceed here along the same lines as our recent treatment on the c-axis resis-
tivity in layered compounds [7]. We generalize our treatment to quasi-one dimensional
anisotropic systems. For simplicity we consider first the two dimensional anisotropic
conductor. In this case we have one-dimensional chains along the b directions {or ||
direction) and they are weakly coupled;along the a direction {or L directions). In our
treatment intra~chain electron transport is characterized by a Boltzmann-like mean free
path. The intrachain resistivity comes entirely from the mean free lifetime 7, and is
given by the Drude relation gy = mi/ne’r. where mj is the in-chain electron effective

~mass. The intra-chain inelastic scatterings characterized by 7 interrupt and therefore,

block the coherent tunnelling of the electrons to the neighbouring chains-under the in-
fluence of tunnelling matrix element 1} . 'i‘his blocking of coherent motion modifies {3 1o
t17/h for 11 7)h << 1. The latter inequality simply assumes that the large number of
intra-chain scattering takes place before 4n inter-chain tunnelling occurs. This is equiv-
alent to having large anisotropy, g1 /pg >> 1, which will be assumed throughout. With
these conditions successive inter-chain tunnelling events are incoherent (or uncorrelated)

and therefore it is sufficient to consider tunnelling between just two peighbouring chains,
a
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lebeled 1 and 2 aay.
The Hamiltonian in our model is given in obvious notation, H = Hg + H’, with

Ho = €x G;:K,CI,Kv + ; €x qkacz,l{p
0

K-

H1 Y (ChkoCrio + o), | )

where H' is the unspecified intra~chain inelastic scattering term leading to the finite
lifetime  for the transport along the chains. The energy dispersion relatibn along the
1-d chains is given by €x= —2tycos Kb, where b is the lattice spacing along the chains.
In absence of H', if we consider a sitnaiton where at time t = 0 the electron with a
quasi-momentum K is on the chain 1, then at later time t the probability of electron to .
persist on the same plane Py, is given by Py, = cos3(ty t/h). With the introduction of °
Hy this coherence between the chains is lost. Consequently the survival probability P;;
for the electron to persist in the chain 1 is given by

Pyy = ezp|- 2—?51‘] » (2)

For the details of the evaluation of Py, see wef{7,8]. Here 7 is the mean free lifetime of the
electron in the chain. From the equation {2) one can easily get the inter chain transition
rate W {or the hopping probability) as W = (2t] 7/A%). Soda et al {6} have also obtained
the same expression for the hopping probability between the chains, However, to calcnlate
the transverse conductivity they assume Einstein relation between the conductivity and
diffusion coefficient (D). In their calculation transverse diffosion constant D is given at
once by D = aW, where a is a lattice constant along the transverse direction. It should
be noted that this procedure subsumes that the number of electrons involved in transport
along the longitudinal direction are same as those involved in the transverse direction,

which is not true. It has recently been shown [9) explicitly using the anisotropic tight
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binding Hamiltonian that the density of mobile carriers along the transverse direction is
much less than that along the longitudinal direction. In an anbotmpié system when the
density of electron increases, the electrons can no longer be described by plane waves

 in transverse direction due to the Bragg reRlection. This is because the Fermi surface

will touch the Brilloﬁin zone boundary along Ky = %x first. Hence only the fraction
of electron of the order of (£1 /lyjn can contribute to the electrical conductivity in the
transverse direction. To calculate the transverse conductivity we proceed along the line
now well known in the theory of quantum transport in mesoscopic systems. let an
electric field E be applied perpendicular to the pair of chains seperated by the distance
a. This will generate a chemical potential difference Ay = eaE between the two chains.
Naturally this will expoee number of Apgi4 of unoccupied states per unit length into
which the elecirons are free to make the inter-chain transitions. Here g;4 is the 14
density of states per unit length. Now the inter-chain current density will be given by
7 = e{Apg1a)WW. Thus the transverse resistivity is given by p: = (EF/j), smbstituting
the value for W we get

o1 = (R /2Fagyatlr) (3)

This ts our final result for the transverse resistivity for the two dimensional ani:otropic
quasi-one-dimensional system. As mentioned earlier the longitudinal resistivity is given
by the Drude relation pp = mi/ne’r. One can easily generalize the relation (3) to 3-
dimensional anisotropic quasi-one-dimensional conductors, where the p; {d = 3} is given
by pi{d = 3) = (A*/23g4117). For the further calculation of ratio of resistivities
we make some simple approximations. First the energy dispersion relation € (K) =
—2y cos Kb gives a values for the effective mass mj to be mj = (A?/214b%). Since the
band width of 1-d chain is given by 41y we take the value for g4 to be an averaged
value g1¢ = 1/21gb, including the spin. With these values one can immediately get the
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anisotropic tatio of resistivities, +mrely

| oy = 2{b/a)? 1y /22)76 —

»

This relation is independent of ti dimensionality and & is the number of transport charge
carriers per site in the chain gien by (nab) and (na?b) for two and three dimensional
quasi-one-dimensional conduct respectively. ‘

Our resnlt (1) differs frorf that of Soda et al [6] by an extra factor of §: For the -
thres dimensional anisotropicfayered compounds {7} factor 4 appears instead of ‘1 in -

right hand side of equation (4. Interestingly our result predicts a linear dependence of

the anisotropic ratip on the qrrier concentration 6, which should be expenmentnlly 3
verifiable feature. éxe tempenture dependence of py issimilar to that of py, as the factor .
1 onters in the same way in tle expressions for both cases. The addmonal temporature .

dependence in py fnay arise dpe to the renormalization of the tunnelling matrix element. |

¢, due to adiabafic phonons. or the discussion on this phonon renormalization of {1

and the role of disorder on pyand py we refer to our earlier work {7} for the details.

At present we arg exploring to xxtend our work to other transport properties of highly

anisotropic systems such as Hal coefficient and electronic thermal conduction. -
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