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The electronic and magnetic properties of mcsoscopic systems have recently received

much attention in the light of several novel experimental obscrvations [1-4]. In meso-

PERSISTENT CURRENTS AND

“scopic systetns typically of nm sizes, the effective distance the clectrons travel between

CONDUCTANCE OF A I\/IETAL LOOP : inelastic collisions at low ternperatures (typically millikelvin) can exceed the sample di-

mension. In such a situation clectron maintains the coherence of single particle wave

CONNECTED TO ELECTRON RESEI{\[OIRS function across the entire sample. Mesoscopic systems thus can be modeled as phase co-

herent elastic scatterers. For systems of size larger than the inclastic mcan free path, in-

A. M. Ja.yannavar’ and P. Singha Dco % 0 elastic collisions disrupt the phase coherence of electron wave evolution. This effectively

break the system into different uncorrelated regions. These phase breaking scattering
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processes can be included via averaging arguciments. In these mesoscopic systems, novel
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quantum interference phenomena(l-5) observed and predicted include the normal state

Aharanov- Bolim resistance oscillations and persistent carrents in metallic loops picreed
Abstract
by a magnetic ficld, universal conductance fluctnations, sample specific nonself averaging

We have calculated the persistent current and the conductance of'a normal ) . . ) . L. .
fluctuations in conductance as the magnetic ficld or chemical potential is varied, nonlocal

metal loop connccted to two clectron reservoirs in the presence of magnetic flux.
current voltage relations, violations of Onsager relationships, Coulomb blockade effect

The geometry considered here facilitates simultancous measureinent of the persis-
. ’ in microtunnel junctions and several other eflects. The gniding theme for mesoscopic
tent current and the conductance. We show that in general the magnitude of the

. . ) systems is quantum coherence along the whole sample.
persistent current in a loop depends on the direction of the direct current flow .

. . . Persistent currents in mesoscopic normal metal rings have recently recieved much at-
from one rescrvoir to another, a feature that can be experimentally verified.

tention in the light of the experimental observations of this phenomena[6-8]. There have
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been continued several theoretical altempts to explain the discrepancy between mcasured

current amplitude and the results based on the non-interacting electron models{1,9-14].

' - ) . Prior to the experimental observations Biittiker. hury and Landaner in their pioncering
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work suggested the existence of persistent current in an ordered one-dimensional ring
threaded by a magnetic flux. Persistent current has an amplitude of evy/L (where vy is

the Fermni velocity and { is the circumference of the ring) and is periodic in' magnetic flux.

General quantum mechanical principles require that the wave functions, cigenvalues and

hence all observables be periodic with a flux ¢ threaded by the loop with a period ¢,
¢o = hc/e, being the elementary flux quantum. This current is an equilibrium property
of the ring and is given by the flux derivative of the total encrgy of the ring. These
currents can also be attributed to the sensitivity of the eigenstates to the boundary con-
ditions along the ring (the magnetic ficld tunlc;s the boundary condition). The magnetic
field destroys the time reversal syminetry and as a consequence the degeneracy of the
states, carrying current clockwise and anticlockwise, is lilted. Depending on the position
of the Fermi lcvei, uncomp'r‘nsalcd current flows in cither of the directions. For an i(lP;\l
isolated ring without impuritics and at zero temperature the nature of the persistent
current depends on the total number ¥V of the clcc‘trons and Lhe persistent current ex-
hibits a saw tooth type behavior as a function of the magnelic flux ¢. For N even, the
jump discontinuties occur from the value —(2¢v;/L) to (2cvs/L) at ¢ = 0, Lo, £2¢0
etc, and at ¢ = £¢o/2,2330/2 ctc for N odd. Studies have been cx!cx.lded to include
multi-channel rings, disordcr,‘spin-orbit conpling[16] and clcctron-electron‘illntcract.ion

effects[1,9-16]. For the multi-channel quasi one dimensional ring, the average amplitude

decreascs as a function of strength of the disorder. In the presence of strong disorder:

(i.e., when the localisation leugth of clectronic cigenfunctions is smaller than the ring
size L) the persistent current decreases exponentialy with L. The root mean square

amplitude of the current is calculated to be of the same order as the amplitude of the

current. In the case of weak disorder, i.e., when the elastic mean frce path of an electron
is less than than L, the persistent current decreases algebracally (i.e., as 1/L). In this
regime the main effect of the disorder is to open a gap at cach crossing point of encrgy
levels and thus reducing the slopes of the curves £(¢). For the multichannel systems
there is no correlation on the average between different chalnllgl&, in the absence of dis-
order. Consequently the total current is /i times the one channel cu'rrcnt-, where m is
the number of channels. Ilowever, thé result dillers in the dillusive regime due to the
compensation between currents in different chauncls. The inclastic scatterings do not
destroy the effect. At finite temperatiire T, for [ less than the phasc coherence length
Lg, the main effect arises due to the mixing of contributions of the levels in an cnergy
interval kg 7. This mechanism reduces the current, since adjascent levels give opposite
contribution to the current. In the case L > L4, the current vanishes exponentialy with
L/ Ls. 'The typical magnitude of the persistent current at 'T'+==0 for £ between 1-3 pgm
and for Fermi wave vector Ay hetween 10'%m =Y (metallic ving) to 10%n =1 (semiconductor
ring) varies between 1-5 nA{l].

Most of the theorc.tical treatments to date have heen done on isolated systems. In an
isolated system the numb_cr of electrons is fixed and the statistical mechanical treatment
must be based on the canonical ensemble. It was Bittiker who first gave a treatment[17]
of a small normal metal loop coupled to an electron reservoir(open system). The reservoir
acls as a source and sink for clectrons and is characterized by a well defined chemical
potential g, and by definition there is no phase relationship between the absorbed and
emilted electrons. Thus the reservoir acts as an inelastic scatterer and as a source of
energy dissipation. Since the reservoir keeps the chemical potential in the loop fixed. the

i



statistical mechanical description for this system corresponds to a different ensemble,

namely the grand canonical ensemble. This implies that the open and closed loop

systems belong to different statistical treatments. The exact description of the system
is important, as the (:;cpcndcncc of the current on flux has a different behaviour if thé
chemical potential is held fixed or if the number of electrons is fixed to an odd or even
aumber(16]. In our recent treatment [18] we have extended Bittikers formalism to a
case whercin electrons frém the reservoir enter and leave the ring in a subl)arriér regime
characterizad by evanescent imodes throughout the circumference of the loop. In such a
situation the persistent current arises due to two nonclassical effects namely, Aharonov-
Bohim eflect and quantum tunneling. In particular we have shown that unlike the case
for the electron motion above the barrier, the persistent current in the under barrier
regime doces not oscillate as a function of the Fermi energy. The sign of the persistent
current is same as that of the current carried by the ground state of an isolated ring.
The dependence of the cureent on the length of the ring is similar to that arising due to
states localized by a static disorder.

In our present treatment we cousider a one-dimensional metal loop of length L cou-
pled to two clectron reservoirs as shown in fig. 1. This idealization to oue-dimension
corresponds experimentally to a network of high-mobility quantum wires with narrow
width such that only the lower subband is filled. Our caleulations are for noninteracting
system of electrons. [n such a geometry Alaronov-Bolim effect manifests itself not only
in a transport phenomenon such as two terminal condnctance but also in a persistent

current. The left and the right reservoirs are characterized by chemical potentials iy and

iz respectively. We consider here a free electron network and we have introduced a delta

function impurity at a length I, to the right of the junction Ji (shown as X in fig.1). If
i1 > iz the net current flows from the lelt to the right ( along R, J) R;) and vice versa if
i < pz. At the junction J; an ideal wire of length [, is connected to the metallic loop.
Except at the delta function impurity of strength V' the potential is taken to be zero
(free clectron nctwork)l The scattering of electronic wave function occurs at the junc-
tions Jy, J2 and at the impurity site. The metallic loop is isolated from the direct current
flow. However in general it is not essential. Such a geometry facilitates to measure the
persistent current in a loop and the conductance of an entire network simultancously. In
our model we have complete spatial S(‘[‘)(‘('«'\‘,i()ll between elastic processes in the loop and
the inelastic processes in the reservoirs. These inclastic proccséns in the reservoir are
essential to obtain a finite condnctance. Now consider a situation wherein steady flux
of clectrons with an energy I is injected from the reservoir 1. These electrons moving
to the right, are first scattered at the junction Jy and subsequently at J, and I (along
with multiple reflections at Jy..J; and I). The electrons emitted by the reservior 2, are
first scattered at [ and subscquently at Jy and Jy. Consequently for these two different
cases the electon wave functions will have ditferent complex amplitudes at the junction
oo This effectively correspornds to adifferent boundary condition at the junction point
gy Az already stated before, the persistent enrrent in ainetallic loop is sensitive to the
boundary condition and hence, we obsérve that the magnitude of the persistent current
depends on the direction of the eurrent flow. Obviously the conductance of an entire
network (calenlated via (]ll:llltl’llll transmission coeflicient) does not depend on the direc-
tion of the cortent flow. This suggests that there is no simple scaling relation between

the persistent currents and the conductance of the entive network. In see.ll we present
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the theoretical treatment and sec.Ill is devoted to results and conclusions.
II. THEORETICAL TREATMENT
. |}

In this section we derive an expression for the persistent current and the transmission
coefficient by solving a scattering problem. Except for the point I (where we have
introduced a delta function potential) clectronic potential is assumed to be identically
zero throughout the sample. We do not assume any particular form for the scattering
matrix for junctions J) andJy, but rather we derive themn from the first principles using
the quantum waveguide theory on networks{19]. Since the two reservoirs are mutualy
phase incoherent, we have to solve the problem seperately for the electrons emitted
from the left and the right reservoirs. First we consider the case wherein electrons are
emitted from the left reservior. The reservoirs emit carriers with the Fermi distribution
J(E) = (exp[(E = 1)/ kpT]+1)7". This results in a current Hlowing from the left to the

right. The appropriate wave function in the absence of magnetic field in the ideal lead

and in the region 12y Jy is given by
'»’l'(J'l) - clkr; + Rﬂ_ikr', (1)

This wave function represents the carriers injected from the reservoir 1 and reflected
towards the same reservoir. Here kis a wave veetor aud the energy of the injected
particle is given by £ = h*k?/2m. Throughout our calculations, we have set units of k;

e and m to be unity. Wave functions in other regions can be written down explicitly as

() = Ee™ 4 Femikn, (2)

Ya(r)) = Getsr, (3)

1[14(1'1) = Ak + Be‘“"”, . (4)
s(x3) = Ce*™ + De™=3, (5

where equations (2-5) are for the regions J, 1, IRy, JyJ; and for the loop, respectively.
The coordinates for the regions Ry.J, I Ry, JyJ, and the loop arery, z; and z; respectively.
We will assume the origin of the coordinates z; and z; to be at the junction point J; and
for x5 to be at the junction point Jp. AL.Jy, 1, takes a value I and 3 takes values 0 ;'md {
the circumference of the loop. We have to use the Grilfith l)Ollll(iﬂl‘)’ conditions[20] at the
junctions. These boundary condit innﬁ are due to the single valuedness of wave unctions
and the conservation of the current (Kircholf Law). For example at the junction J; we

have[19]

I (0) = w(0) = ,(0), (6)
ane
S difdes =0, o '
Heve ol the denvatives are either ontward or inward from the junction. ‘lv,’sli'ng the
Grithith boundary conditions one can castlv varilv that the jpuction scntl(:ri'né 111atri;( is

riven by

—1/3 23 2/3

”
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Ui =13 23
-2/4:3 23 =1/3



The boundary conditions at the point 1 due to the delta function potential of strength

V, are given by )
Ya(l2) = ¥a(la), (8)
dipa(l, (1,
/(‘,i ah_ "(;i =gy ()

In the presence of a magnetic field in the loop we can choose a gauge for the vector
potential in wllicl.l the field does not appear explicitly in the Hamiltonian. The magnetic
field manifests itsclfl only in the boundary condition. The boundary conditions (6)
and (7) for junction J; do not change, however, the electrons propagating from the
junction point J; and back Lo the same point along thc ring pick up an additional phase
a = 2xd/do for a clockwise and a phase —a for au anticlockwise motion{19]. ere ¢
and ¢o are the magnetic flux and the Hux quantum (hefe) respectively. Using all the

boundary conditions mentioned above and using cqns.(1-5) we get

l+R=A+B=E+F (10)
I—R=-A+B-E+F=0 (1)

Ae‘“' + Be"“‘ =C+ De™'® = Ccna+ikl+ De‘”" | (]2)
Ae™ — Be=* - € 4 CetH - DM 4 Dem = 0 (13)
Ee™ 4 Fe~*h = Ge'*" (14)

ikGe™ — ik Fe 4 ikFe~* = 217 Ge™h (15)

o

Here [ is the length of the loop and /), I; are the lengths of the segments J,J; and JiI
respectively. Using equations (10 - 15), we can solve for the coefficients C, D and G.

gy

These solutions have been obtained analytically using mathematica.

III. RESULTS AND DISCUSSIONS

The persistent current in the loop in the encrgy interval dE aronnd F is given by[17}

djr=k(IC P =D}, (16)
H (N [—d 172 912 4 g2 (O LY — AV kool L
dinn /b = 16 sin(a) sin(k{)[-4 : 2k -; 1V? cos(2k1) —4V ksin(2k 1)]’ (17)

where,

Qo { LIV R 8TA - (20 V120D cos[2h 1) = (66 V2 42T Ky cos[ 1k 1] =27 V2 cos(6 & ]

—(32VE 4 24k cos[2k l cos[2a] + 16V k sin[2 k1] cos[2 a)
—24 V2 cosfd k) cos[2 a) = (176 V2 4 136 k?) cosk 1] cos[a]
+(104 V2 4 7287 cos[3 k1] cosfa] + T2 82 cos[5 k 1] cos[a]
H(56 V2 + 40 k2 cos[2a] + ATV ksin[2h1] + 18V ksin[1 k)
2TV ksin[6 k] + 21V ksin[Lkl] cos[2a] = 48V k sin[k ]} cos{a]
~56V k sin[3 k1) cos[a] = T2V k sin[5 k [] cos[a]} (17.a)

For the simplicity we have taken [y = [, = I, the equations are too complicated to
reproduce here otherwise. As expected the current varies cyclically with the flux, with

the period given by ¢g and is antisymmetric in the flux ¢. It also has components of
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higher harmonics. The current also oscillates hetween the positive and negative values
a3 a function of the energy. i

The expression for the transmission probability t = GG* is given by

L= 8 k2[4 sin(k 1) cos(a) — 3 sin(2k {))?
B 0 '

(18)
where 1 is given in eqn.(17.a). The quantum mechanical transmission probability is
related to the two probe conductance G of the network {21] by the Landauer formula
G=(c?/h)t or the dimensionless conductance g is given by G/(c?/k). The Landauer
formula expresses the conductance in terins of scattering praperties at the Fermi energy.
The conductance also oscill_;wtcs with a period ¢g and is symmetric in the flux .

We have also set up a problem \;’II(‘I‘(‘iIl electrons enter the lead from the right reservoir

(this results in a direct current flow from the right to the left). Following the earlier

procedure, the persistent current in this case is given by

—12k? sin(a) sin(k!)
9]

dipp/k = : (19)

with 2 as in eqn. (17.a). The expression for ¢ remains unchanged (eqn. 19). One can
casily notice fromeqns. (17) and (19) that the magnitude of the persistent current carried
by an electron with energy £ depends on the direction of the direct current flow. Only
in the special case, where we put the strength of l‘he delta Mnction potential V =0 we
get identical persistent current (independent of the direction of the direct current flow).
This is because we restore the symmetry between the left and the right with respect

to the loop. The magnitude of the persistent current vanishes for ¢ = 0 as it should.

10

At temperature T=0 the total persistent current is obtained by adding all contributions
from levels with energies less than the chemical potential. Hence, if y1y > p13, we have

the tolal persistent current J, = fo"’ n(E)(djon + dipp)dE + f“‘;' n(E)djLrdE, and for

. 1 < pz we have the total current J = 0‘" n(E)(fULR-f-den)dE-!-f‘:’n(E)djanE. Here

n(E)is the density of states in one dimension[17]. Thus by keeping | j1; — p17 | fixed (i.e.,
fixed applied voltage) we get a different persistent current depending on the direction

of current flow. The same arguement can be extended to the finite temperatures by

including the Fermi functions.

In figs (2) and (3) we have plotted the dimensionless persistent enrrents rij/k and the
dimensionless conductance g as a function of kL, for a fixed \'E\‘lllL‘ of magnetic flux to
flux quantum ratios o = 2x3/6,=0.7 and 1" = 10.0 'r(-s:p(,-rl.i\-«rl_\.'. In figs (1) and (5) we
have plotted the persistent currents and conductance respectively for fixed k= 7.0 and
V1 = 10.0 as a function of «v. Persistent currents and the conductance are flux periodic.
The clectrical cot!ductan('c exhibits resonances as a function of ki, i.e., the transmission
probability t exhibits a peak transmission (t=1) for certain values of kI, This occurs
whenever the incident election energy coincide with one of the cigenenergies of the ring
attached to an additional stub Jy.7,. The deviations from the values of the exact ‘él'\crgy
states of the closed ring follow from the fact that the coupling to the reservoir via Jy and
Jy canses additional scatlerings (or perturbations) and shifts the encrgy levels. It is the
flux dependence of these resonances which give rise to strong oscillatory behavior in g
(for the details see ref[22,23]). The Aharonov-Bolim oscillations in magnetoconductance
(or resistance) have been observed expérimentally[4]. The actually observed magne-
toresistance exhibited irregular oscillations as a function of the magnetic field. These

I
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reproducible oscillations varies froin sample to sample and are not time dependent and
are also called magneto-finger prints. The irregnlar behavior of these oscillations are

1}
associated with multichannel case in conjunction with the disorder.

One can also natice from the figs (2) and (1) the differcnce between the values of
the persistent current carried by electron ‘emitted by the left reservoir (solid line) and
emitted by the right reservior (dashed lines). This shows clearly that persistent currents
in a metal loop conneccted to two reservoirs depend on the direction of direct current
flow from oue reservoir to the other. Electrons emitted by the reservoir enter the loop
via junctions Jy and Jy. These electrons in the loop will eventnally reach the reservoirs
via junctions after some thue delay. Thus, coupling of the loop to the reservoirs gives
risc to the finite lifetime broadening of the clectron states in the loop. Consequently the
persistent eurrent shows a broadened feature as a function of kI compared to that for
asisolated ring. In fig. (6) we have plotted the persistent currents djpa and djpr as a
function of dimensionless imipnrity potential V1, for a fixed value of k{=7.0 and a=0.7.
The magnitude of djpn decreases monotonically to zero as V1 goes to co. This follows
from the fact that, in this limit electrons emitted from the right reservoir do not enter
the loop. The absolute magnitude of djry increases monotonically to an asymptotic
value. This asymptotic value corresponds to the geometry truncated at the point 1 and
effectively the metallic loop is connected to a single reservoir. When the metallic loop is
connected Lo two rescrvoirs the electrons emitted by a single.reservoir partially enter the
loop and partially get transmitted directly to the other reservoir. Whereas for a metallic

loop conunected Lo a single reservoir all the electrons emitted by it will enter and leave

the loop. This manifests itself as an increase in persistent current for a loop connected

1

to a single reservoir as compared to that of a loop connected to multiple reservoirs.
In conclusion we have shown that the magnitude of the persistent current in a normal
metal loop connected to two rescrvoirs depend on the direction ol the direct current

flow, which should be an experimentally a varifiable feature. There is no simple scaling .
|
\

relation between the persistent currents and the conductance of the entire network.

'1‘h?s follows from the fact that unlike the pcrsislenl currents the conductance does not
depend on the direction of the direct current low. Ilowever, for a closed ring there exists
|
a relation hetween the persistent current carried by an eigenstate and the conductance
(transmission amplitude) of the loop[4]. Il(ju'c the transmission amplitude for a ring is
to be caleulated by cutting a ring at any point and connecting the two end points to an
ideal wire. Such a unique relation does not exist for the open system considered here.
The difference between the magnitudes of lh!(.' the persistent currents (on the direction
of the current flow) can be made sipnificant by adjusting the impurity potential. This
can be achieved experimentally by having a gate in one of the leads connected to the
reservoirs and by appropriately varying the gate voltage. Such an experiment can also be

useful for seperating the persistent currents from all other parasital currents (or signals)

associated with measurementsf2 1}, ‘
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FIGURE CAPTION

Fig. 1. An open metallic loop coupled to two electron reservior via an ideal conductor.

Fig. 2. Persistent current versus k! for a fixed value of lux a=0.7 and VI1=10.0. The

dashed curve represents djra/k and the solid curve represents djpp/k.
Fig. 3. Conductance g versus k! for a fixed value of flux &=0.7 and VI=10.0.

Fig. 4. Persistent current:versus flux a for a fixed value of kI=7.0 and VI=10.0. The

dashed curve represents djgn/k and the solid curve represents djpr/k.
Fig. 5. Conductance g versus flux « for a fixed value of kI=7.0 and V1=10.0.

Fig. 6. Persistent current versus impurity potential VI for a fixed value of a=0.7 and

k1=7.0. The dashed curve represents djpr/k and the solid curve represents dj p/k.
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