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Abstract

The temperature dependence of the Raman spectrum of copper oxide super-
conductors is calculated assuming that the normal state of these systems is a
correlated metal and that the superconductivity arises due to the correlation bag
mechanism as proposed earlier [3] (here after referred to as I). The correlated
metallic state is characterised by the presence of a strong interaction between the
doped charge carriers and the quanta of fluctuations of the resonating \'aience
bonds present in the normal st.nte. It is shown that the pl;CSCnCC of such an inter-
action gives rise to the marginal Fermi liquid behaviour, associated with the pair
polarisability function. The model therelore, successfully explains the constant in-
tensity backgronnd observed in the an#n spectrum due to the scattering by the
charge carriers. In order to understand the observed temperature dependent shift
and change in width of the phonons, their spectral density functions are calculvatcd.
Two different kinds of interaction between the charge carriers and phonons were
dcrivcd in I. One corresponding to the usual electron-phonon interaction where
a phonon decays by exciting an electron-hole pair and the other where the decay
process involves a quasi particle pair. It was postulated that the localised phonons
couple to the charge carriers by the later process where as the propagating ones
interact by the former. The temperature dependence of the phonon self energies
due to the two brocesses is calculated and the spectral density functions are com-
puted. The calculated temperature dependent shift and change in width of the

plionons show qualitative agreement with the observed result.
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1 Introduction

Raman scattering in the cuprate superconductors [1] has shown several unusual fea- .
tures in the normal state as well as in the superco}\ducting state. In the normal state,'
a rather large but constant background intensity has been observed at all frequencies
up to the highest measured frequency which has been aLtributed to the scattering by
the charge carriers (2] in the system. Three prominent phonon peaks having frequencies
of 116em™", 340cm ™! and 50lem™"! ride over the constant background intensity out of
which some show Fano line shape indicating a strong coupling to the charge carriers in
the system. On lowering the temperature helow the superconducting transition tem-
perature (7)), the constant background intensity is suppressed at low frcqucnciés which
may be taken -as a signature of the opening of a superconducting gap in the system.
Furthermore, there appears a broad peaking of the intensity at a higher frequency, with
the indications that this peak may also be a normal state feature. Moreover, some of
the phonons show anomalous softening while others harden on lowering the temperature
below T., accompanicd by a broadening or narrowing of their linewidths. A detailed
summary of these results has already been presented in an earlier paper [3] (here after
referred as 1). However, more recently the results of some measurements have appeared
in the literature which focus the attention (i) on the shift and width of phonons as a
function of the charge carrier concentration [4] and (ii) on the temperature and carrie;
concentration dependence of the Raman scattering constant intensity background [5, 6].

A more careful analysis of the Raman data indicated that the temperature dependence
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of some of the Raman active phonons in the cuprates are very much sensitive to the

oxygen content as shown recently by Altendorf et al [4] from their measurem;ent on
Y Ba;Cu30;. They studied the temperature dépendence of the 340cm~! and 440cm™?,
500cm ™! phonon in different crystals of Y Ba,Cu;05 (6.7 < § < 7.0). The samples
which they used are denoted as A, B,C,D,E,F and G with the corresponding oxy-
gen concentrations 7.0,6.99,6.93,6.90,6.86,6.81 and 6.6S and er;nsition temperatures
89.7,92.8,93.7,92.0,91.1,87.7, and 39.2 K res;;ecti\’ely. A brief summary of the nAlam
features in their experiments are as follows: On reducing the temperature through T, the
310cm ™! phonon show softening in all the crystals, the largest being in the oxvgeneted
sample A and the degree of softening reduces as the oxygen concentration decreases.
vanishing in the cryst‘al o \\'l)il(- its linewidth narrows in C. 0. F and £ but broadens
in A and B. On the otherhand, the 440crn™! and 500cm ™' phonons harden in all the
crystals except G below T.. The degree of hardening decreases as the oxygen concentra-
tion decreases being largest in the crystal A but the frequency of the 440cm ™! phonon
softens marginally in the deoxygeneted sample GG. Morcover. the 500cm™"' phonon show
softening in the sample G, at a temperature of approximately $0 K which is well above
the T, of that sample. This may be a signature of the appearence of a gap in the normal
state. Moreover, the linewidth broadens in the crystals A, B acd C and it becomes di-
minished in the samples D, E and F but narrows ciown in G below T.. In the case of the
340cm~! phonon, the phonon peaks become more symmetric on decreasing the oxygen

concentration suggesting that there may be a rednction in the strength of interaction

\

of the 340cm™! phonon with the charge carriers in the deoxygeneted sampies. In con
trast, in the case of 440cm ™! and 500cm ™! phonons, the peaks are symmetric in crystals
A, B,C,D, E and F while asymmetric in G which implies that the interaction of the
phonons to the charge carriers becomes strong in the deoxygeneted samples comparec
to the oxygeneted ones. From the above data, it is obvious that these two different sets
of plionons show quite opposite behaviour to each other and hence may be concludec
that the 10cm™" and the 500cm=" plionons interact with a different set of electron:
than does the 310cm=! phonon. While the above measurenients focus on the scatter.
ing by phonons, the experiment of Maksimov et al [5] and that of Sugai et al [6] dealr
with the Raman seattering by the charge carriers. .~\Q,ﬂin the later measurements were
carried out on different samples of Y BCO with varying oxyvgen content using polarise
light. The note worthy features of these measurements are (i) the observation of a gay
anisotropy in the superconducting state and (ii) the appearence of a constant intensit
backgronnd in the normal state even in the insulating samples. It was inferred that the
later behaviour is different from the intensity duc to the charge carrier scattering in th
metallic state. This led to the conclusion that the Raman scattering in the metalli
and insulating samples are caused by different charge carriers. Similar results on th
La,;_.Sr.Cu0y samples have been reported by Sugai et al [6].

It is worth wl-lile to analyse the new results in terms of the model for Raman scatterin;
proposed by us in L. Besides, in [ we confined our selves only to a zero temperatur

calendation of the Raman intensities arising from the scattering by phounons alone. i
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this paper we generalise the work (i) By including the scattering by the éharge carriers
and (ii) by performing a finite temperature calculation. A brief. summary of the model
of the normal and the superconducting states proposed in [ is given below:

A model for the normal state as well as the superconducting state was proposed
by us in I to fecilitate the calculation of the phonon spectral density functions needed
to explain the phonon anomalies observed in the Raman scattering experiments. The
model evolves from the fact that the long range antiferromagnetic ordering of the basic
insulating material gets suppressed on doping the system, resulting in a disordered.
magnetic, insulating ground state which is taken to be the insulal’ing RV'B state. On
further increasing the doping concentration, it was argued that because of the presence
of excess hales in the system (when the doping concentration exceads a critical ;';;lm,- sucil
that one crossses the iﬂsulaton-mctal boundary) the RVB metallic state is lormed. where

" the elementary excitations are the regular fermions carrying both spin and charge. Unlike
l the BZA [7] picture, we further assume that this metallic state is characterised by the
opening of a finite gap over the regions of the Fermi surface due to the presence of some
singlet bonds in the system. However, simultaneously the presence of a relatively large
number of holes will result in strong fluctuations in the singlet bonds and hence in the
amplitude and the phase of the gap, the quanta of these fluctuations being the collective
modes of the system. Due to the very nature of theiAr origin these amplitﬁde and the phase
modes will interact rather strongly with the quasi particles of the RV'B metallic state.

This interaction of the quasi particles with the collective modes is the most important

feature which characterisesthe normal state of the system, we call the correlated metallic

state. As a result of this interaction, the quasi particles acquire a self energy whose N

imaginary part gives a life time in accordence with the requirements of the marginal
Fermi liquid theory. Hence this model for the normal state is capable of explaining the
observed linear temperature dependence of the resistivity in the cuprates over a wide
temperature range. The phase diagram of the cuprates in general and Las_.Sr.CuO,
in particular shows that the range of dopant concentrations where supcr:ondﬁcti\'ity
appears is also the range where ;he normal state is a bad metal. On increasing the

dopant concentration beyond this range the material becomes a good Fermi iiquid like

metal, but does not become a superconductor on lowering the temperatuze even upto

the lowest possible temperature available, This is in keeping with the gezeral thumb |

rule that bad metals are good superconductors. Hence whatever is the meszaaism that
causes the high resistance in the normal state is also responsible for supercarductivity.

In the present model under consideration the resistance in the normal stzze is due to

the scattering of the quasi particles by the collective modes. Hence superconductivity

in these system must also be due to the pairing of the quasi particles braught about

by an attractive interaction mediated by these collective modes. This is the so called

correlation bag mechanism proposed by us in I in analogy with the spin bag model of

Schrieffer et al (8]. While the later works in the weak correlation limit. the former arises

when the correlations are strong.

As is well known, Raman scattering proceeds by polarising the medizm. hence in
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the metallic state the incident ele-cl.ro-magnetic radiation creates an electr.on-hole pair
which recombine to give the scattered radiation. However, sinc‘e the present model of
the correlated metal consists of singlet bonds as well as the charge carriers, there will be
an additional contribution to the polarisation coming from the possibility of breaking
the bonds, as well. This polarisability will essentially be given by the pair polarisability
function. Besides, the electron or hole can emit or absorb a phonon giving rise to
inclastic scattering of the radiation because of the electro;l-phonon interaction inherent
in the medium. Therefore, in order to calculate the Raman scattering amplitude, it
is nccessary to evaluate the plionon response of the system which will depend on the
coupling of the phonons to the clementary excitations in the ground state. However, in
the correlated metallic state that we proposed, there can extst two different mechanisims
for the coupling of the phonons with the charge carriers as discussed in I. The first is the
usual electron-phonon interaction mechanism arising from the mod.ulalion of the hopping
integral (1;;) due to the displacement ;;f the ions frowm their equilibrium positions whereas
the second could be due to the modulation of the exchange integral (.J;;) due to phonons.
This later mechanism amounts to a coupling of the phonons to the charge carrier pairs
in the correlated metallic state. These two different interaction m«fghanisnxg will modify
the phonon spectrum in different ways. Because of the interaction of phonbns with the
charge carrier pairs, the pair amplitude mode is expected to show up in the Raman
spectrum. Similarly due to the charged nature of the superconducting state. the density

response function is expected to couple to the collective modes of the superconducting

state, therefore Raman spectrum is expected to show the signatures of these modes a:
well.

The rest of the paper is organised as follows: In section 2 we discuss the essentia
processes for the calculation of the Raman intensities. The polarisabilities in the norma
and the superconducting state are calculated in section 3 and 4 respectively. In sectior
5, the basic charge carrier-phonon interactions in the strongly correlated metallic state
are presented and the corresponding phonon Green’s functions and their spectral densit;
functions are obtained at finite temperatures. The results and their comparision witl
the experimental Raman data are presented in section 6. Finally, the main results o

the paper are sumimarized in the coneluding section 7.

2 Raman Intensity

The scattering of light in normal metals [11] proceeds as follows: The inciden
photon excites an electron-hole pair, either of which emits or absorbs a phonon due t
the electron-phonon interaction in the system. Finally, the electron and hole recombin
giving rise to the scattered photons. Therefore, in such a process the scattered intensit
of the photon will be proportional to the sum of the imaginary part of the particle
hole polarisability (density response function} and the spectral density function for th
phonons. But as discussed in the introduction. in the case oi the cuprate superconductor
the normal state differs from that of the usual metals. Therefore, the light scatterin

process has to be modified. Due to the presence of the quasi particle pairs in the



normal state, the incident photon besides exciting the particle-hole pairs, ¢an also brc“:k
the local pairs which gives rise to the anomalous polarisability.‘ Moreover, this process
will also couple to the localised phonons in the system as discussed in I. Thus in the
correlated metallic state, the Raman intensity will acquire an additional contribution
coming from the sum of the imaginary part of the pair polarisability function and the
spectral density function for the localised phonons. The expression for the Rarzan

intensity [(w) therefore, is given as

I(«) = (1# n(w)){~Imy*~(0,0) — Imy\*~*(0,w) + 3 5'(0.)] V5

i=lp

where n(w) is the Bose factor, \»~PP=R(0,w) being the polarisabilities in the particie-
particle (particle-hole) channel, $(0,) is the phonon spectral density function for e
propagatin.g (p) and the localised (1) phonons. The polarisabilities and the spectral
density functions for the plionons have to be calculated in both the normal si.\.u,' as well

as the superconducting state to compute the Raman intensity.

3 The Response Functions in the Correlated
Metallic State

The insulating RVB state resulting from the single band Hubbard model [9], as

outlined in 1) is described by the hamiltonian

10

Hrvg = =6t Y (chejo+he) =T Y bhb; @ -

<i,i>e <ig>

where 't and 'J’ are the nearest neighbour hopping and the superexchange integrals - .‘;3

respectively with J = 2t3/U, ‘U’ being the Coulomb correlation and < ..... > denotes
the nearest neighbours. The projection operators in the hopping integral are being
approximated by the dopant concentration §. b,-'j = 7‘-,;(6}'0;1 - cf‘c;,), is the valence
bond singlet oprator and c.-,,(cf.,)_ is the usual fermion annihilation (creation) operator
with spin ‘o’ at the site ‘i'.

The original BZA mean field (MT) theory (7] is almost identical to the BCS theory of
superconductivity inits mathematical structure except for a k-dependence of the BZA
mean field order parameter. ‘This is a natural consequence of the fact that the BZA
MF gronnd state consists of a collection of nearest neighbour singlet pairs in real space.
Therefore. it has been presumed 7] that as soon as one allows for the coherent motion
of the singlet pairs by doping holes into the BZA MF ground state, superconductivity
will follow. However, it was argued in I that since the RVD state is a spin disorderd
state which appears on suppressing the Neel ordered state, it will tend to modify the
nature of the electronic states of the system. Because of the disorder, the electronic
states parlir:ula‘rly at the band edges will tend to be localized. As a result for small
dopant concentration upto the critical value §,, the motion of the singlet pairs will not
be favoured and hence it can not give rise to superconductivity. On further increasing

the dopant concentration (6 > &) because of the cliarge on holes one goes over to

11
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v wutiCiaLed etallic state where the elementary excitations become reguudr fermions.

As mentioned in the introduction besides these quasi particles,\there would also be the
fluctuations over the BZA MF state which can be visualised as the pair collective modes.
The quanta of these modes are expected to have bosonic character. Therelore, in the
correlated metallic state which is a model for the normal state of the high T, materials,
the interaction of the quasi particles with the high frequency pair collective modes plays
the most dominant role. Morcover its energy spectrum has a constant gap over parts
of the Fermi surface, while in other regions it vanishes. The corrélated metallic state
as proposed here provides a microscopic basis for the local pair models [10]. Therefore.
the hamiltonian for the correlated metallic state can be written in terms of the Nambu

operators [11] v} = (c{,l c-i) and the Pauli matrices ‘g’ as

Hens = U + 11 1
where
He =" Ul(ex = w)do + An(k) )i (4)
k
and
1 2 '
H = W;; 1k, )L [ Xigdilie (3)

with ¢ = —té5(k), v(k) = Zie":“;, Ap(k) = JA5(k), being the BZA M order pa-
rameter, A =< b; > and g is the chemical potential. Ay = —(J/2) T, < Clovhur, >
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(i = 1,2), corresponds respectively to the amplitude and phase fluctuations of the BZA
MF order parameter. However, the quantities which describe the magnitude of the cor-
responding deformations of the order parameter can be treated as dynamical variables.

On quantising these bosonic variables, the interaction hamiltonian becomes

2
Hi= 5 3 Y Ikl oubld + ) (6)
kq i=l
where J(k.q) = Jy(k.q), '_.\.,, = J(r[‘ +d, ) = Ii; d;(d‘_v') being :he bosonic
annihilation (creation) operators for the ¢** quantum of the amplitude acd the phase
modes corresponding to i=1.2 respectively. Of course, the above hamiltonizn describes

the interaction of the high frequency busons with the charge carriers of the svstem, while

the free boson hamiltonian is given by

2
= it 7
=35 o' (7)
q i=1 )

where 4 is the frequency of the bosons corresponding to the collective moces. In order
to make this theory for the normal state self consistent it is necessary to see how the
interaction of eqn. (6) renormalises both the boson energies as well as the quasi particles
of the RVB metallic state. This finally provides a proper description of tke correlatec
metallic state. The calcalation of the self energies involved in this process will require 2

knowledge of the pair polarisability function defined as

Vg = Y <<l (080d(); B, (0)6184:(0) > >, 8)

k&’

13



~

Furthermore, the calculation of the Raman intensities from the scattering by the charge
carrie.rs as well as the phonon self energies will also depend on the pair polarisability
function in the limit of q=0 as will be discussed in a later section. Since in this paper
we are mainly concerned with the calculation of Raman intensities, it suffices to obtain
Xx""P(q,w) for q=0. The expression for this has ben derived in I (see eqn. (36) of I),

which is given by

. (e — p)? BE,, 1 1
PP w) = A D o ]2 ———
XPP(0,w) ; £ tanh = [w_u,k w”&] 9)

where

Ei = [(ex — ) + A}V (10)

Equation (9) can be explicitly evaluated by replacing the summation over k by an inte-

gration over (ex — p) = & so that

} NO)Ag [*  (z2=1)  BApr, 1 - :
pP=p — e Y s - .
X (0w) =5 _/ de e o e T aage ()
where the upper limit of the integraiion is given by
z? = (1 + (we/AR)Y] (12)

N(0) is the density of states at the Fermi level and w. an arbitrary cut-off frequency. In

writing eqn. (11) the following substitutions are made.

14
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§ =Aptand i (13)

and

z =secl (14)

It is obvious that eqn. (11) will allow for two different regions of z namely z? > land < 1.
The real and imaginary parts of Y?~?(0,w) are obtained by making w complex so tha{
eqn. (11) splits into the following equations depending the value of z:

Case I: £7 > 1 in which case (2% —~ 1)'/? is real and the upper limit of the intcgralio.n

{
takes the value 4. so that
‘__.‘,\I()A T 2 _y2 ;
Im\"""0.2) = £ () ) “/ III(I . ) tanh H_‘\)"I[&(.u—2Am:)—6(..:+2AR:j]
2 1 = K
(15) -
and
—N(0)- zc 2 __ 1\1/2 ; <
Oy L LA R W
2 \ z 2 'w+2Apt  w=2Agz g
(18 ..

Case Il: z* < 1 in which case (z? = 1)"/? = i(1 — z?)"/? is imaginary and the upper limsit -
takes the value —z. so that the expressions for the real and the imaginary parts just

get interchanged as compared to those of equs. (15) and (16). The imaginary part of

s

15
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xPP(0,w) in case I and the real part in case II involves delta functions in the integrands

as in eqn. (15) so that the integrations can be easily carried out to give

-aN(0 1 1 w -
%m[(‘-}/'—mﬂ)2 -1 t«'mh(%) (17)

ImyP?(0,w) =
In case II the real part i.e; Rex”~?(0,w) will have the same expression with the square
root term replaced by [l — (w/’lAR)7]l/2. On the other hand, the real part in case |
(eqn. (16)) and the imaginary part in case [I in;'olvcs principal value integrals which are
rather difficult to carry out. Therefore, instead of calculating t}u;sc quantities dircctly
from their expression like eqn. (16), we take recourse to determine them by. making
use of the Kramers-Kronig analysis and the corvesponding dispersion relations [12]. In
doing so. the tanh "T"’) function involving the temperature. has been approximated for

high and low temperatures as follows:

2)[1 - 1/3(2)?), EER S
mh(gf)z (L = 1/3(3)7) < |

sgn(1 = 2exp (=21 () D] 3> 1

With this eqn. (17) becomes

: (1. w<iT
ImyP?(0, ) = —(xL)__L H

1 m\,/(w/'hn)2 -1 (19)

1, w > 4T

16

Furthermore, the symmetry properties of the Imx?~?(0,w) and Rex?~?(0,w) for w — —
in the high and low temperature regions has been utilised to rewrite the dispersio
relations in the region of only positive w. This simplifies the evaluation of the integra
(16) upto the leading order terms in (3w). Thus the real part of the pair polarisabilit

function for the case (w/2Ag)? > 1 is given by

Revr=2(0,0) = =) (/23 2
(.
_ VO3 = 1) = ()2 (5#), =<iT
+\,’((u/'3-\/z)-—l)|lll(\/fi_—_,A"),_,—:) ‘/:j”) E (20
((=/22r) = 1)+ (w/2Ap) . > AT

—i
(=/23p)
In obtaining the result of eqn. (20) the integrations in in the dispersion relations ar
carried out in the region 1 to > so that the condition {w/22 )2 > 1 is satisfied. Similarl
Tor the case IT corresponding to (w/2Ag)? < 1, the real part of the pair polarisabilit

function is given by

r =), iT
R s ) SRR
1 (of23n)
1, w>A4T

The imaginary part which is calculated from eqn. (21) using the Kramers-Kronig relatic

becomes

17



Imx*™?(0,w) = (N(O)

[W(u/?AR)

T A -1 | G, e <t
+/(1 = (@/228)) In| \/'W-H)” ‘ .

(w/23R)?

(22)

As expected eqns. (21) differs from eqns. (19) only in reversing the sign of the quantity
within the square root. But there is a marked difference in the expressions of eqns.
(20) and (22) both of which arc obtained from a Kramers-Kronig analysis because in
obtaining eqn. (22) the integrals are evaluated within the limit 0 to 1 so as to satisfy the
condition (w/2AR)? < 1. This completes the analysis of the pair [)O'Iiu'ia‘ﬂbi“l}' function.
It can be casily seen that in the limit of (w/234)% >> 1 which amounts to vanishingly

small gap in the normal state (i.e; Ag — 0), eqn. (19) reduces to

N(O I (.'""f)v w < A1
( v (; )) ‘

This is just the polarisability proposed by Varma and co-workers (2] in the pLenomeno-

[my\P77(0,w) |ag—0=

(23)

logical marginal Fermi liquid theory. The same result also follows from the nmicasured
Raman intensities [6]. Thus the correlated metallic state has the essential features of
the marginal Fermi liquid theory in the high frequency region. However, there will be
some essential difference in the low frequency region as given by eqn. (22).

In the correlated metallic state, the intensity of Raman scattering from the charge
carriers will also pick up contributions from the pafticle-hole pol:;risability besides the

18

contributions coming from the particle-particle one. The particle-hole polarisability -

which is given by the density response function will also contribute to the phonon self

energy as discussed in section 2. This polarisability function which is defined as

M g,w) = Z << Bl (0asdhi(t); BL_ (0)530:(0) >>,, (24)

k!
can be evaluated in the correlated metallic state characterised by the pseudo.-gap (AR)
using the hamiltonian of eqn. (-l).. Again for the calculation of the Raman intensities,
one nceds its value only at q=0 and the contribution to x~*(0,w) coming from the free
clectron part vanishes. However, since the ground state of the system is the RVB metal,

there is a Rnite contribution proportional to Ay, which can be deduced from eqn. (73)

of [ and is given by

- — A? K3L;, 1 1
Pp-hig ) = =R, Pk — x
X TH0w) = Z" lEZ anh 2 [w—"EL u+'2Ek] 25)

The real and imaginary parts of f:qn.- (25) can be calculated by following the procedure
exactly similar 1o that discussed for the calculation of the particle-particle polarisability.
Again splitting the frequency region into two depending on whether (w/2Ag)? > lor <
1. the results are given below.

For (w/22p)? > 1

~ #N(0) 1 1 (), w<AT
[P h0,w) = —
R I 7T vy ey ) IR
19




N(O)

Rex™(0,0) = ~(=)

( 1 I ( ((*'/QAnV—l)—(w/l'_\n))” (28 R/4T). w<4(fg”
VIw/23p)7=1)  V((«/22R) = 1) + (w/225)

__(w/;AR)' w > AT
Similarly, for (w/2Mp)? < |
=N(0 1 1 (=), w< T
R (0.w) = (= ))( TN = (o/20n) ! (2%)
MRS L - BTy e

and

N(0)
s

Imy?(0,0) = (50)

( 1 : H\/(l —(@/23a0) - L I (2AR/4T). w <AT
n
V(U= (w/2ARr)?) V(= (w/2Ap)%) + 1

(29)
1 . -
PTEEVSE w> 47

In the limit of (w/2AR)? >> 1 i.e: for vanishing Ag. the imaginary part of the particle-
hole polarisability vanishes as can be seen from the eqn. (23). This is in contrast to the
particle-particle polarisability which gives the marginal Fermi iiquid result (eqn. (23)) in
this limit. Yet another general feature of the result of the finite temerature calculation
presented in eqns. (19) and (22) is that the cut-off frequency does not enter explicitly

20

in any of these expressions. This is in contrast to the result of the zero temperatur
calculation presented in I. The reason for this cut-off independence lies in the fact that i
this case essentially the results are obtained purely by performing é-function integration

and partly by doing a Kramers-Kronig analysis.

4 The Response Functions in the Superconducting

State

The caleulation of the Raman intensitics in the superconducting state requires th
eviluation of all the response functions in this state. The mechanism by which super
condnetivity arises in the correlated inetallic state was discussed in detail in I. In wha
follows, we first give a briel summary of the essential features of superconductivity i
this system before presenting the l"CSIllt.S for the response functions.

As pointed out in I, superconductivity appears in the model due to the pairing ¢
quasi particles arising ont of the correlation bag mcchani;m. Elimination of the bosoni
degreces of freedom from the interaction hamiltonian of eqn. (6) of the correlated meta
result .in an effective interaction between the charge carriers which is attractive and wi
give rise to pairing. The result for the gap equation and the transition temperature an
their dependence on the normal state gap parameter as well as the doping concentratic

was discussed in 1. This mechanism is expected to work in the region of rather lar

dopant concentration beyond a critical value. As shown in I, in this region the transitic

21
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v (9) and (25) rspectively. In calculating the real and imaginary parts of these response

temperature decreases with increasing the dopant concentration.

. . ) functions the summation over k is replaced by an integration over E} and the density of
The polarisabilities in the superconducting state are required for the calculation of P y g * of

« . . . state is taken to be a constant as done in I. As a result the signature of the normal state
the Raman intensities at temperatures below T,. These are derived in connection with . &

. ap (AR) does not enter explicitly in the final expressions in the superconducting state
the phonon response in the superconducting state and can be obtained from eqns. (83) gp (2r) P - p P & !

stk (4] of 1. Blenie she parthclespurbiele and the particlehiole polarisabilitios in tha except for those entering through the coherence factors. These quantities are calculated

; : . - in the low and high temperature limits following the same procedure as outlined in the
superconducting state (denoted with a subscript s) are given by

normal state calculation. Thus the imaginary and the real parts of the pair polarisability

function in different regions of the frequency and the temperature are as given below:

)_Z{m,’,r B (ah+ad

Lle. e e For (w/24,)? > 1 o 4
AR(& b_\nA,,(I'.L, - A;,)J tanh (e /2) ) ;
- “ 30 ,
Ef + ¢ Ek"k ]( T hE ) ( ) t
and N(O)= 1
p-p N s
S e WP AW EWAVAL
3 — (/24,)? o . : 1 (7). w<dT -
2A7 A? C o) + 22 AR)((w/24,) = 1) = (w/23,) f———= (331
- w/23,)2 -1 (/2. )2 — _
-\RZ[ AL+ A}( Icku Hefse) WiESE=11 4 ssar
e_kz 3A(EF - A,t)z I anh(,’)ek/z"l)) 31) and
Ek ApLies w? —def
where
A\
Re\f-p(o“d) = _(ﬂ)_l_.
Y - R EWEVSE
e = (B + 4] (32) 3= () g\ (/200 — 1 24, )?
+[(m 2(2,/Ar)((w/22,)* = 1) = (w/24,)*)
and A, is the superconducting gap parameter. The expressions within the square bracket
1 (/237 = 1) - (w/21,) (24,/4T), w< 4T
of eqns. (30) and (31) essentially comes from the coherence factors. It is easy to check N NCEANE) In| ( \/ I =) + (0/20,) , (34)
' wran w>4T

that in the limit of A, = 0, eqns. (30) and (31) reduce to the normal state result of eqns.
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For (w/24,)? < 1
o N 1
Rexi™(0w) = ~ (=) RN (A /AR
%L (5 /A (o2 1) (w/9ALN? 1 (5F) w<47:‘
[( — (/257 2) 22 AR (w/23,)T = 1) = (/2 ’)\/]ﬁ 1. u.'>~(‘:;:’)
and
- N(0) 1 o o LI
Im\P~P(0,w) = (—— 1 )A,/An)zlu(W/Z_\,.)(.Z(A'/—\n) 1)
(w/27,)* - . : : : 23,)°
e 4 A A2 = 1) = (/23,0
— (w/- 2y — (23, 1T), w AT
1 In}( (1—(w/23,)%) 1)” /AT) < (36)

\/(1-(u/2_\,)7) VIL = (w/23,)) + 1

(.,/Iu.)' w> 4T
Similarly, the imaginary and the real parts of the particle-hole polarisability which fol-

lows from eqn. (31) are given in different regions as follows:

For (w/24,)* > 1

oy o N0z 1
I 0w) = = A Ay
(“""/2—&:)2""3 2 1 (ﬁ)v w < o
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24
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The real and imaginary parts of the polarisabilities in the normal and superconducting

states contribute to the intensities of light scattered by the charge carriers and phonons in
the system. In the superconducting state, the expressions for the imaginary parts of the
polarisabilities which contribute to the background intensity gets modified as dictaied
by eqn. (33). Moreover, at low [requencies, the Raman intensity will get contributicas
from the imaginary parts of the polarisabilitics as well as the phonon spectral density
functions. Therefore, it is necessary to calculate the temperature dependence. of ::ie

phonon spectral density functions which will be carried out in the next section.

5 Electron-Phonon Interaction and the Phonon
Spectral Density Function

[t was pointed out in section 2 that the Raman intensitics are determined b. <-=
scattering due to charge carriers as well as the phonons. While the charge carrier sczai-
tering is proportional to the imaginary part of the polarisabilitics, the phonon scatteri-g
is given by its'spectral density function. The phonon response of the system requires 1ze
e;laluation of its self energy which essenti{ally depends on the nature of the ground stz:e
and of the interaction of phonons with t;}he charge carriers in the system. Unlike 1Ze
usual metals it was pointed out in [ that in the correlated metallic state, there exist =0
different interaction mechanisms between the phonons and the charge carriers. These

interactions arise because the displacements of ions from their equilibrium positions cct
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only modify the hopping integrals ¢;; giving rise to the usual electron-phenon interac-
tion but also modulate the kinetic exchange integral J;; giving rise to a different kind of
charge carrier-phonon interaction. These interaction hamiltonians (H.-,) are derivile-.

i and are given by

2
Heep= HY + H® (41)
Y =g Z € naCrady (42)
k.q,0
I, =g/ A Y (chyqrchiy + c-renican)d, (43)
k.

where 4, = (), + b'ﬂ) is the g component of the plionon amplitude and the coupling
constants g and ¢’ are assumed to be constants in‘dcpen(lcnt of momenta. Note that
the second interaction ]IEZ);, depends explicitly on the RVDB ground state through the
parameter A, and the c.oupling constant g’ depends on the exchange integral J. It was

pointed out in I that there are propagating as well as localised phonons in the system.

The later arises due to the magnetic disorder created on doping the system. Because

. of this the localised phonons are expected to interact with the charge carriers through

eqn. (43) while the interaction of the propagating phonon is given by eqn. (42). The
phonon response of the system is determined by both the types of phonons and require

the calculation of their propagators, which are given by



i .' i : 5 =1
D) (w) = b-qpuwr(w? — " — V(g ¢, w))] (44)

where i=l,p denote the localized and the propagating modes, I1'")(g,w) being their sclf
energies. From the knowledge of the polarisations the spectral density function which is

related to the imaginary part of the phonon Green's [unction can be evaluated as
S'(0w) = —2["10;(“.‘ +17") |20 (13)

24 (2en' 4 Tmll(0.w)) .
=_- 2 a2 10 12 9t . 1?2 (4))
7([w? —w 't = Rell(0,w)] + 2wt + T dl(0.])

In writing eqn. (16) an appropriate width (') is given to the bare phonons by replacing
w — (w + in') which is independent of temperature. Besides, the interaction of the
phonons with the charge carriers provides temperature dependent shift and width which
are given by the real and imaginary parts of the respective polarizations. These shift

and width of the frequency of the plionous with =0, are the observable quantities in

the Raman measurements. In [ these self energics are evaluated at zero temperature for
the normal and the superconducting state. As can be seen from eqns. (47) and (43)
bl the self energies of the localised and the propagating phonons are proportional to the

particle-particle and the particle-hole polarisabilities and are given by

_ 2P P(0,w), i=1
n'o,w) = (47)

' A Ow), i=p
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where the dimensionless coupling constants § = ((9'A)?N(0)/9Q,) and §, = (g>N(0)/w,

, 2, and w, being the [requendes of the localised and the propagating phonons and

X(0,w) = x(0,w)/(N(0)7/4) (4

The pair and particle-hole polarisabilities in the normal and the superconducting stz
have been explicitly evaluated at finite temperatures in section 3 and 4. Hence the
together with eqns. (47) and (43) when substituted into eqn.(46) give the phon

spectral density function.

6 Results and Discussion

The stage is now sct to calculate the temperature dependence of the Raman intensit
using eqns. (1) and (46-138). 1t is evident from eqn. (1) that the intensitics p
up contributions coming from (i) the scattering by the charge carriers given by |
imaginary parts of the polarisabilities and (ii) the scattering by the phonons given
the phonon spectral density functions. In contrast, in paper [ only the later cntribut
was calculated at zero temperature and a constant intensity background was ad
by hand. The number of phonons observed in the Raman spectrum varies {rom
cuprate to another, in particular in the case of the 123 systems there appears th
phonons as mentioned in the introduction. Since our aim is not to make a quantital
comparision with the observed spectrum but only to explain its qualitative features,

confine ourselves to the calculation of only two spectral density functions one for eitl
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category namely the propagating and the localised phonons as was done also in 1. lt
can be seen from the eqns. (19-22), (26-29) and (33-40) for the polarisabilities in the
normal and superconducting states as well as the eqn. (46) for the phonon spectral
density functions that the finite temperature results unlike the zero temperature ones
are independent of any cut-off frequency. This is a remarkable improvement over the
zero temperature calculation of [.

It was pointed out in I that the model for the correlated metallic state and that for
superconductivity are valid only in the region of large dopant concentrations. However,
in principle the results l'or_ the polarisabilities presented in eqns.(8) and (21) of this
paper arc valid in the entire dopant concentration region starting {rom that of the low
corresponding to the insulating RV'B state to the high concentrations where the ground
state is the correlated metallic state. The only way we distingnish between them is by
noting that in the insulating state the RVD gap exists all over the Fermi surface, where
as in the correlated metallic state it vanishes over large regions of the Fermi surface,
existing only in small portions. This has been incorporated into our calculation by
rewriting the k-sums in the polarisabilities as having two different contributions in the

normal state as

L= X (1)

keAR#0  keAp=0

which is similar to the approximation introduced by Bilbro and McMillan {13] for the

case of charge density wave superconductors. Eqn. (119) is equivalent to breaking up the
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density of states at the Fermi level into two parts such that

N(0) = Ni(0) + Ny (0) 0). -

Where N, (0) is the free electron density of states at the Fermi level associated with the
region where the RVB gap Ag # 0 and N;(0) is that for the region where the RVB
gap tends to zero. So that the polarisabilities will pick up contributions céming from
(«w/2AR)? < 1 with a weight factog .(NI(O)/.'V(O)) and another contributions coming from
(«/22R)? >> 1 with a weight factor (V2(0)/N(0)). Note that the second contribution
is actually the polarisability of the marginal Fermi liquid state as given by eqn. (23) for
the pair polarisabilty function. In this scheme if V() >> .V(0) it will correspond to
the low dopant or the RV'B insulator regime and il N3(0) >> .V (0) it will correspond
to the correlated metallic state. Since the constant intensity background in the Raman
spectrum arises from the polarisabilities, in principle the present model predicts the
existance of the background intensity starting from the insulating to the Fermi liquid like
metallic state as has actually been observed both in the 21 [6] and the 123 [3] systems.
However, in the present calculation our main concern is the béhaviour of the Raman
spectrum in the correlated metallic state, therefore in all the numerical calculations we
take N;(0) > Ny(0) ([V2(0)/N(0)] = 0.7 and [.V,(0)/N(0)] = 0.3). Moreover in the
calculation of the polarisabilities several constraints (such as (w/2Ag)? > lar}d < 1and
also (w/4T') > land < 1) are introduced, which requires a more careful analysis [16], in

keeping track of the regions of validity of these constraints.
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The phonon-Raman scattering measurements are mostly confined to the analysis of

the temperature dependent shift and width of the phonons. These quantities are ex-
pected to show diﬂ'erem behaviour depending on whether the phonon lies above or below
the superconducting gap. An analysis based on the strong coupling theory by Zeyker
and Zwicknagl [17] predicts that the phonon with frequency higher than the supercon-

ducting gap will undergo softening and hroadening on lowering the temperature helow

-the superconducting transition temperature (T.). On the otherhand. a phonon with

frequency less than the superconducting gap will sharpen on going below (7). This is
so simply because below (T,) the density of states within the gap vanishes and hence
the width arising from the clectron-phonon interaction is expected to vanish. Similasly
on opening the superconducting gap the density of states just. above the gap increase
which will result in the broadening of the plionon lying above the gap. In contrast o

the strong coupling theory, the weak coupling analysis always predicts the hardening

. of the phonon frequency. The predictions of these theories are based on the fact ttat

the phonon interacts with the charge carriers through the normal electron-phonon ia-

teraction, so that the phonon self energies involve only the electron-hole polarisability.

In contrast, the present theory has two different charge carrier-phonon couplings which

involve the electron-hole as well as the pair polafisabilities for the self energies. Hence
the temperature dependence of the phonons in this case are expeted to he quite differ-
ent even within a weak coupling theory. Therefore, an analysis of the phonon shift azd

width in the present model is going to be important from the point of view of testicg

the model.

In all the numerical results the Ramgn intensities in arbitrary .units are plotte
against the reduced frequency (w/w,), w, being the frequency of the propagating phonor
Furthermore, the calculation involves several dimensionless parameters such as the rati
of the frequencdies of the propagating and the localised phonons (w,/f,), the ratio of th
phonon frequency to the normal state gap parameter (w,/24g), the width of the bar

- ‘
phonons (n'/€,) and (1?/w,) as well as the coupling constants for the phonon charg
carrier interaction § and g,, besides the ratio of the phonon frequencies to the ten
perature (w,/17T). Qu going over to the superconducting state onc must add two mor
parameters to the list corresponding to the superconducting gap parameter (w,/24,
and the ratio hetween the superconducting to the normal state gap parameters (A,/Ap
In all the calculations in the superconducting state it is usually assumed that the super
conductivity appears over the normal state gap, so that A, << Ap. However, in all th
calcufations the values of the three of these parameters namely, the bare phonon width

(m/9,) and (n,/w,) as well as the ratio between both the phonon frequencies is keg

fixed. The later is so chosen that the frequency of the localised phonon is twice that ¢

the propagating phonon (i.e; (w,/f,) = 0.5). The results pertaining to the variation

the rest of the parameters are presented in Figs. (1-14).
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6.1 Raman Intensity in the Correlated Metallic State

The variation of the Raman intensity with the variation of different parameters such
as temperature (w,/47T), the normal state gap parameter (w,/2Ag) and both the cou-
pling constants §; and g, are plotted in figs. 1-7. In all these plots, the coupling constant.
frequency and the width of the localised phonon are assumed to be larger than those of
the propagating phonon. Morcover, the frequencies of both the phonons are taken to be
less than the normal state gap parameter, as noted in every figure. Since the intensities
arc plotted as a function of the reduced frequency, the peaks corresponding to propagat-
ing and localised phonons are expected to appear around (w/w,) = land? respectively.
As mentioned ecarlier, the intensities in the normnal state are obtained by substituting
eqns. (19-22), (26-29) and (46) in cqn. (1). In looking at the temperature dependence of
the spectra, the high and the low temperature behaviour are plotted separateiy. In fact,
in the low temperature region, the e¢ntire spectrum becomes temperature independen
as can be seen from the above equations.

Fig. 1 shows the temperature dependence of the Raman intensity. The decreasing of
the parameter (w,/4T) from 0.4 to 0.3 is equivalent to increasing temperature. There-
fore, with decreasing temperature the intensitics of both the phonons decrease while
their frequencics soften by a small amount. Moreover, both the phonons broaden with
decreasing temperature. this effect being more noticeable for the localised phonon. Be-
sides, an increase in the intensity as the frequency tends to zero as well as a constant

intensity background at high frequencies are features associated with the scattering by
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the charge carriers.

Figs. 2 and 3 shows the variation of the Raman intensity with the normal state gap
parameter (w,/2AR), at high (w > 4T) and low (w < 4T) temperatures respectively. As
the parameter increases from 0.>25 to 0.35 for w < 4T and from 0.25 to 0’(5 for w > 4T,
the normal state gap increases. This feature can also be correlated to the variation of
the dopant concentration in the sense that a decrease in Ap amounts to an increase
in the dopant concentration. As.can be scen from fig. 2 for w < 4T with increasing
Ap, the intensities of both the plionons decrease. But the localised phonon softens
while there is no change in the 1}(~p1(‘|};_\' of the propagating one. Associated with these
effects is a li@t.l(: broadening of both the phonons. For w > T, as can be scen from fig.
3. the constant intensity background extends upto very high frequency and decreases
slightly with decreasing Ag. In this plot. a discontinuity appears around (w/w,) = |
for the (w/2AR) = 0.2 which moves to lower frequencies with decreasing Ag. This is
a signature of the normal state gap. The intensity of the propagating mode decreases
with increasing An and the peak broadens, while its frequency softens. Similar effects
can also be scen in the case of the localised 1;10(le.

Figs.4-T depicts the variation of the intensities on varying the strength of the charge

carrier-phonon interaction. Quly one of the coupling constant is varied at a time and

.the results for high and low temperatures are depicted separately. Onc general feature

of all the curves is that with increasing coupling constant the width of the corresponding

phonon increases and the intensity decreases to the extent that beyond a certain value of



.
the coupling constant the phonon vanishes. Furthermore, with increasing the strength

of the interaction phonon softens at high temperatures (figs. 4 and 6 ) while it hardens
at low temperatures (figs. 5 and 7). It should be mentioned that the Raman intensities
of the phonons are very sensitive to the values of the coupling constants. In the case of
localised phonon however there is a marked increase in the background intensity at low

frequencies with decreasing coupling constants.

6.2 Raman Intensities in the Superconducting State

Figures 8-11 depict the Raman intensitics in the superconducting state correspong-
ing to the variation of the temperature, the superconducting gap parameter and :te
coupling coustants for the localised and the propagating plionons as in the ecarlicr case
of the normal state. The only difference being the variation of the superconducting gap
(4,) in the present case compared to that of the normal state gap (Ag) in the eariisr
discussion. Since 4, is always smaller than Ap, the characteristic temperature dema:-
keting the high and low temperature behaviour is much smaller. Hence the discontinuiy
corresponding to the superconducting gap al\ya;'s appear in both the high aad the low
temperature plots. Besides, the choice of the parameters is such that the irequencies
of the propagating and the localised phonons are below and above the superconduc:-
ing gap. A general featl;re in all these plots is that in the superconducting state. tze
constant intensity background is much smaller than in the correlated metallic state.

Figure 8 shows that with decreasing temperature the frequency of the localised
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phonon hardens while its width increases and intensity decreases. The later conclu-
sions regarding the width and intensity hold good for the propagating phonon as weli.
But the frequency of the propagating phonon softens with decreasing temperature.

With decreasing the superconducting gap the intensity of the localised phonon in-
creases and its frequency softens while the width decreases for the high temperature case
as can be scen from fig. 9. The same conclusions also hold good for the propagating
plionon at a much smaller scale. In the low temperature casc as can be scen from fig. 10
the local mode softens drastically with decrcasing A,. Its intensity increases and width
decreases slightly. For the propagnti;lg phouon there is just an increase in intensity .wit}
decreasing N,

The variation of the phonon intensity. frequency and width with varying coupling
constants are depicted in figs. 11-14. With increasing coupling constant the intensity
of the localised mode decreases while its frequency and width increases in both higl
and low temperature limits as can be seen from figs. 11 and-12. The behaviour for the
propagating phonon (;15 depicted in figs. 13-14 shows a softening with increasing couplin
constant. This behaviour is in contrast with that of the normal state where both the
propagating and the localised phonons soften at high temperature while they harden i
the low temperature limit with increasing coupling constants.

The behaviour of the calculated Raman speétra discussed above shows qualitativ
similarity with detailed measurements carried out recently. As pointed out in the in

troduction. these measurements have focussed their attention on mainly two differen
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aspects namely (i) the variation of the continuum intensity with varying dopant concen-

tration [5, 6, 18] and (ii) the dopant concentration and temperature dependence of the
shift and width of various phonons [4]. One of the important results from the former
measurements on the continuum scattering seen in both La;_;Sr-CuQ, [6] as well as in
Y Ba,Cus0:_, [5, 18] is that a background intensity has been obscrved in the ranges of
the dopant concentrations corresponding to the metallic, superconducting and even in
the insulating state. Thisled to the conclusion that the continuum intensity in the metal-
lic and the insulating. stales mav be arising from the free and localised (pairs) charge
carriers respectively. In the present calculation. it is shown how the continuum intensity
ariscs microscopically within the model of the correlated metaltic state. Besides. at low
dopant concentration the model being that of an RVB insulator. it contains local pairs.
the scattering from which can give risc to a constant intensity background. Thus the
predictions of the theory is in agreement with the experimental results. The variation
of the intensity on going from metallic to superconducting state is also in qualitative
agreement with the Raman data.

The second aspect namely the detailed observation of the temperature dependent
shift and width of the phonons in the 123 compound having different oxygen contents
[4] also provides much useful information regarding the metallic and the superconducting
states of the system. A detailed discussion of the experimental situation is presented in
the introduction. In particular, the observation of the softening of the 500cm™" phonon

below ~ 80K in the deoxygeneted sample with a T, of 60 K is very significant. On
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comparing with the behaviour of the 340cm=! phonon which softens on going below the
superconducting transition temperature of 93 K in samples with the oxygen content of
6.93 or more; one can conclude that there is a gap in the normal state. This observation
fits in very nicely with our model of the correlated metallic state, where there exists
a gap (An). In fact, it is clearly shown in figs.1-7 that there is a shift in frequency
and change in width of both the categories of phonons in the normal state. The shift
could correspond to a softening or hardening under \;arious cor;ditions while the change
in width always corresponds to a broadening. The shift and change in width of of the
phonons persist in the superconducting state as well. However, in different regions of
temperature this may or may not agree with the observed behaviour in the normal state.
Furthermore, from the observed assymmetry of the line shapes of the different phonons
one can draw inferences about the variation of the strength of interction of the phonons
with the charge carriers in the system. The experimental results show that the 340cm =}
phonon }.)ccomcs more symmetric on going from oxygeneted to the deoxygeneted samples
indicating that its coupling wiLlllchnrge carriers decreases on deoxygenction. On the
otherhand, the 300cm ™! phonon becomes more assymmetric ;3n going to deoxygeneted
samples. This indicates that the coupling of the f)()‘()cm‘l mode with the ;harge carriers
increases in'the deoxygeneted samples, while the reverse is true for the 340cm™=! phonon.
Comparision of the t.heor_y' with the experimental facts is possible if we assign the local

|

phonon to be the 500cm ™" inode and the propagating phonon to be the 340cm=! mode.

Thus the features of the experimental Raman spectrum can be qualitatively understood.
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7 Conclusion

The Raman intensities are calculated from first principles for the model of the corre-
lated metallic state and the superconducting state arising due to the bag mechanism as
proposed in I. These models for the normal and the superconducting states are expected
to represent the features of the cuprate superconductors in the large dopant concen-
tration range. The calculation sucessfully explains the constant intensity background
arising due to the scattering by the charge carriers in the system. This continuum
scattering is proportional to the imaginary part of the polarisabilities. Tu the it of
vanishing of the normal state gap. the imaginary part of the pair polarisabilit> function
reproduces the marginal Fermi liquid behaviour. The phonon response functions are
calculated using these polarisabilities. The calculated shift in frequency and the change
in linewidth of the phonons show qualitative agreement with the experimental results.

There have been other attempts to calculate the continuum scattering by charge car-
riers [19). In these calculations only the contribution of the electron-hole polarisability
is taken into account, since the normal state is assumed to be that of a Fermi liquid.
The imaginary part of the electron-hole polarisability is calculated for finite but small
momentum transfers, by providing a phenomenological width to the plasmon peak as
dictated by the marginal Fermi liquid theory. As a result, the plasimon peak broadens
to resemble the continuum scattering, however beyond a certain cut-off value it de-
creases and goes to zero. The cut-off in this procedure enters through the width of the

phenomenological marginal Fermi liquid theory. The essential difference between this
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calculation and that of ours lies in the fact that the normal state in our theory is nc
a Fermi liquid like metal but a correlated metal which has a built in gap due to qua
particle pairs. Therefore the Raman scattering picks up contributions due to the pa
fluctuation effects which is represented by the imaginary part of the pair polarisat;ilit

Thus the scattering cross section acquires a finite value even at zero momentum transfe

which will be strictly zero in the other theory [19].
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FIGURE CAPTIONS:

Figure 1: Raman intensity in the normal state as a function of the reduced frequency due

to the variation in w,/4T for the case where the frequency is less than the temperature

(w < 4T).

Figure 2: Raman intensity in the normal state as a function of the reduced frequency due
to the variation in w,/2Ap for the case where the frequency is less than the temperature

(w < 1),

Figure 3: Raman intensity in the normal state as a function of the reduced frequency
due to the variation in w,/23p for the case where the frequency is greater than the

temperature (w > AT),

Figure 4: Raman intensity in the normal state as a function of the reduced frequency
due to the variation in ¢ for the case where the frequency is less than the temperature

(w < 4T).

Figure 5: Raman intensity in the normal state as a function of the reduced frequency due

to the variation in g for the case where the frequency is greater than the temperature

(w > 4T).

Figure f: Raman intensity in the normal state as a function of the reduced frequency

|
due to the variation in §, for the case where the frequency is less than the temperature

(w < 4AT).
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Figure 7: Raman intensity in the normal state as a function of the reduced frequency due

to the variation in j, for the case where the frequency is greater than the temperature

(w>4T).

Figure 8: Raman intensity in the superconducting state as a function of the reduced
frequency due to the variation in w,/4T for the casec where the frequency is less than

the temperature (w < 4T).

Figure 9: Raman intensity in the superconducting state as a function of the reduced

frequency due to the variation in w, /240, for the case where the frequency is less than

the temperature (w < 47°).

Figure 10: Raman intensity in the superconducting state as a function of the reduced
frequency due to the variation in w,/24, for the case where the frequency is greater

than the temperature (w > 4T').

Figure 11: Raman intensity in the superconducting state as a function of the reduced
frequency due to the variation in § for the case where the frequency is less than the

temperature (w < 4T).

Figure 12: Raman intensity in the superconducting state as a function of the reduced
frequency due to the variation in g for the case where the frequency is greater than the

temperature (w > 4T).
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Figure 13: Raman intensity in the superconducting state as a function of the reduced
fregnency doe to the variation in g, for the case where the frequency is less than the

temperature (@ < A7),

Figure I1: Raman intensity in the superconducting state as a function of the reduced
frequency due to the variation in §, for the case where the frequency is greater than the

temperature (w > 47T).
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