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One of the well estahlished results l 
--

4 in condensed matter physics is that all electronic llandom l'rimer Model 
ei~enstates of a disordered one dimensional system are exponentially localized irrespective 

of the strength of the disorder. The early work of Anderson' on uncorrelated site-diagonalD.	 Giri" P. K. Oattatand K. Kundu l 

disorder in the tight binding model (TBM) and of Mott and Twose3 form the basis of this Institute 0/ Physics, Bhubaneswar 751005, India p~ 
result. Of course, the result of Anderson, and Mott and Twose cannot be rigorously valid in 

one dimensional systems in which the disorder is correlated. For example, in the context of a 
Abstract 

TBM it has been shown that correlated off-diagonal disorder cannot localize the state at the 

band center.s,s Another example in this category is the model proposed by Dunlap, KunduThe'existe~ceof nonscattered states in random systems of trimers in its gen­

and Phillips (DKP).T Disorder in the DKP model arises from the dilation of the lattice.eralized form and a base element is studied in the context of a tight binding 

The coupling of the electronic motion to the structure induced disorder is described by a Hamilt1>nian. Many conditions for the existence of such states in this general-
I 

tight binding Hamiltonian (TBH) in which disorder appears both "in the diagonal and theized rando~ t.rimer model (GRTM) are obtained by introducing appropriate 

off-diagonal terms. Once a specific correlation between the diagonal and the off-diagonalstructural correlations between the host element and the trimer. This aspect 

disorder is postulated, one obtains a .set of nonscattered states. The most well known of the correlated disorder systems was not studied before. The condition for 

cX<llllple, however, is the random dimer model (ltOM).8--n This is basically the off-spring of tuning the positions of the two sets of nonscattercd states is obtained. We 

the original OKP model. RDMs a.re random binary alloys with elements of one componentfurther show that the two resonances of a single trimer in the host lattice can 

appearing in pairs. So, in the context of a TBH, this model is characterized by a short rangebe merged at a single energy. For this case, when the resonance energy is 

correlation in site energies. Due to this short range correlation, a set of nonscattered statesinside the host band, the width of the nonscattered states is found to decay 

in the neighborhood of the dimer energy is obtained. The obvious generalization of the RDMas - N-J/4. N'is the number ohites in the system. This is a novel result. To 

is, of course, random n-mer model 12 in which the length of the correlation in site energies is our knowledge, this is the first time such a result is obtained. Experiments to 

increased beyond the nea.rest sites. So, a random n-mer model is a random alloy of a distinctobserve the broadening of the width are proposed. In all other cases width is 

shown to decay as _ N-'/2. host element and.a cluster of 'n' number of elements. All of these n elements mayor may not 

PACS numbers: 71.55.Jv, 72.15.Rn be same. But, some of these must be distinct from the host element. If the cluster contains 

only one type of element, the random n-mer model (n > 2) is then expected to sustain 

nonscattered states at more than one energy, provided certain constraints are ~et. This is 

precisely so. Recently Sit etaP3 have shown that those energies can be found from the zeros 

of the n-th Chebysev polynomial of second kind. The a.rgument of the Chebysev polynomial 
Typeset using REVTEX 
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i. th" trac" oC th" transCer matrix oC th" "("lnl'nt oC tltl' c1ustl'r. Furtlll'rmflfl', iC I,h,. c1l1~t"r 

contains de,,~nts in eVI~n numheuand hM & plane of Kylllllll!try, it (',All Ill' mn""'l't",1 to 

a dimer by a real space renormalization group (RSRG)14 procedure. By converting such 

clusters to dimers it has been shown that a binary random system of such clusters and a 

host element CAn sustain nonscattered states. Other studiesl1·14-1s involve the changing oC 

the hopping elements inside the cluster without destroying the plane oC symmetry. Even 

with this generalization, nonscattered states have been obtained. The repulsive binary alloy 

(RBA)IS and the magnon problem&,II are two such examples. We note that the cluster in 

the RBA contains three ele!l1e'nts, two oC which are host sites. This cluster also has a plane 

of syinmetry. Hence, RBA can also be trAnsCormed to an effective random dimer system. 

The total trAnspareacy oC the cluster in the neighborhood oC an energy belonging to'the 

band or the host system 'is due to the vanishing of scattering oC the incoming wave due to 

the cluster. Consequently, a set oC"nonscaUered states is obtained around that euergy in 

the random system oC the cluster oC interest and the host unit. In as much as the presence 

or the nonscattered states in random systems can give rise to the anomalous tI ansport 

properties, a systematic investigation oC the resonance property of the clusters of varioll~ 

sIzes and kinds is, lIIIereCore, necessary. For example, the maximuin number of Ie~onaDc,:.' 

that a one dimensional n-site cluster can 'yield is (n - 1). Hence, it is necessary to fit'd out 

the conditions foe obtaining these resonances. The effect of these re30n1l,nces on the widths 

oC the nonscattered states also needs to be studied. Furthermore, a cluster with more than 

two sites CAn yield more than one resonance. ThereCore, in trimers and larger clusters it is 

possible to obtain condition(s) for two or more resonances to merge at a single energy. If 

such a situation is obtained, the width of the nonscattered states will increase substantially. 

Consequently, a profound change in tbe transport properties will be observed. Since a trimer 

is tbe simplest possible clulter which can exhibit all these properties, we plan to study in this 

paper the resonance property of a trimer in its generalized form. The random system of the 

trimer in its generalized form and a host site will be referred to as the Generalized random' 

trimer model (GRTM). Of course, we assume that GRTM can be described by an appropriate 

3 
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TnJl. Notl' that th~ wl!lIknown random trimf'r mOflel (RTM) and th" nnA ar~ two "p"( 

m'WN of thiN f·.. ·, ... lldil...1VI'I.io", FllltIIl'IIIIOI'f·,lh., 1"·Null. fm lilt, H,DM fllllllh, Il,! oill/lill 

from this genc~al model. lienee, GH.TM encompasses many hitherto known models. \ 

show in this paper that GlUM can yield many conditions for obtaining nonscattered sLt', 

provided appropriate structural correlations between the host element and the element. 

the trimer are introduced. Consequently, this model may be applied to physical syste. 

in which structural correlations play crucial roles. Moreover, there are conditions for wbi. 

GRTM yields two sets of nonscattered states due to the additional structural correlatio 

If these two energies are close to each other, states in between these energies develope vel 

, large localization length. Another interesting Ceature of this model is that the positions. 

the resonances can be adjusted by modulating the site-energy of the central atom of th 

trimer. Of course, the trimer should possess a plane oC symmetry. In the extreme c~ 

these two resonances can be merged at a single energy. To our knowledge we are the fir~ 

toobtain this interesting result. These results can be verified by fabricating appropri,l 

layered heterojunction and by coupling quantum dotsY Furthermore, the degeneracy ,­

resonances that we encounter here may be the key to the understanding of the anomal"., 

dctrical conductivity in polyaniline and other related systems. 

The organization oC this paper is as folilows. In Sec. II, we present the rele\'ant aspects, 

GRTM and calculate the transmission coefficient of a system containing only a single trim' 

in its general Corm. In Sec.IlI, we present the arguments for the presence oi nonscatter.; 

states in GRTM. We calculate the number oC nonscattered states using our method. 1o 'n 

pole structure behavior oC the site Green function is studied. This is necessary to understan 

the nature of the nonscattered states at the band edges of the host system. We conclud 

the paper by highlighting the features that differenti~te GRTM Crom the well known RDrv 
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II." TRANSMISSION COEFFICIENT FOR A SINGLE GENERALIZED TRIMER 

Aa mentioned earlier we are dealing with a random binary system made up of a host 

element and cluster of three elements which are different from the host element. We further 

assume that the static and the dynamical properties of the system can be described ade­

quately by a TBH with nearest-neighbor hopping only. We assign fa' fb and f c to the site 

energies in the cluster (ABC). Without any loss of generality we set zero to the site-energy 

of the host element. In other words, site energies in the cluster are measured relative to the 

aite energy of the host system. We assume that the nearest neighbor hopping terms in the 

cluster are 1Ia. All other nearest neighbor "hopping terms that will appear in the system are 

given the same value, say unity. So, the effect of o~-diagona1 disorder on the energy states 
I 

I 

are treated in a limited way in our model. 

Our aim is to find the energies at which the random system sustains nonscattered states. 

To find those energies it is necessary to find the energies at which a single cluster embedded 

in the host la.ttice is transparent. Following Liu and Chao!8 the tral1smision coefficient 

(I T I') of the single cluster is calculated. In as much as the calculation is very standard, we 

only present below the relevant results. 

2 4 _w2 

I T I = .. . ....... . ~... ...., I .... ~, ........ (1 )
. ....... . I. • ~,
 

where 

A = (w - fa)(W - fb)(W - f c ) 
," - (Zw - fa - f ) ,YO c 

B = 1 _ (w - fc)(W - fb) 

V,2 ' o
 
C == (w - fb)(W - f.)


V2 -1, 
o
 

D = _(40.1 - c.)
 /v.'o . II 
Furthermore, W is the particle energy which is 2 cos k. k is the wave vector. fe now discuss 

the various cases. 

Case I: fa = fb, f c == 0 

In this case we obtain I T 12=1 at W == fa, when Vo == 1. This is the usual dimer case. to 

Case II: f" == f c == 0, fb = (1 - y~nwo. 

This cluster yields IT 1 1 at Wo with the constraint IWo 15 2. This is the RBA case}62 = 

Case III: fa = fb = f c = (0. 

This case yields two values of the particle energy w, namely w+ and w_, at which IT 1'= 1. 

TheYak-e 

W+ == fo + Voe( (2a) 

and 

W_ == fo - Voe-E, (2b)
f 

/ where the parameter ~ ;, defined by 

/ . 1 _ ~2
 

/ smh ~ = 2V
Of o •
 

I 

/ I We also nced IW± I:::; 2. When Vo == 1, the cluster is rdered to as a trimer. 12 For this case 

/ 
we obtain IT \2= 1 at W == lo ± 1, provided I fO 15 1. On the other hand for 1 <I (0 I:::; 3, we I 

2=

value of w.
 

C;I~;I' IV: t~ -,-, ( .. I- t,.
 

/ obtain IT 1 1 at a single energy. If I fo I> 3, IT 12 will not yield unity at any permissible 

This systcm yields I 7' 12= 1 at W = (b for any value of Vo. Of course, we need I fb 15 2. 

However, f" and f c may take any value provided the required constraint is met. Note that 

the symmetry 12 in the defect cluster is not necessary for the vanishing of the reflection 

coefficient. We also find that for a particular value of Vo, the width of the transmission peak 

becomes sharper as the values of I fa I and I !c I are increa.sed. Due to the constraint. there 

18 ." lnclJl't Ih the site energies around the central elemcmt of tho trimer. A. we iocrcelUe the 

magnitude of I ~" I and I ~c I, the situation becomes more a.nd more similAr to the Stark 

localization of Bloch eigenstates in a pure crystal by a strong applied electric field. t9 Hence, 

the width of the transmission peak should decrease. Similarly, if we reduce 1Ia keeping fa 
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and f., fixed, we reduce the overlap between site Wannier orbitals. Con!equently, the width 

of the transmission peak will decrease. Conversely, increasing Vo, we allow the electron to
0;".,' 

see the cluster in a mean field way. This, inturn, increases the width of the transmision zone. 

.I.~ 
These ate acttially observed and presented in Fig. 1. We should also point out that the site 

energy of the central unit also depends on the site energy of the host unit. Hence, there is a 

structural correlation between the trimer and the host. In the dimer, trimer, a.nd the RnA,
;l "': 

this kind of structural correlation is also present. It appears through the ineqa.lities which 
, 

ate required to be satisfied by the relevant site-energies. This correlation for thest: cMes is, 
,. 

howenr, weak. 

Case V: f. = lo = l. and lb = lQ 

~ .! \' This is basically the generalized version of RBA. This is, however, a ternary system. 

Since the reflection coefficient IR I' will be zero at the perfed reS::>r,iloce, re1O[)~nCe enl\rgio 

ate calculated by setting the numerator of the'expression for I R F to zeia. Ct'rl:'e<!t!l.'ntly, a 

',- seCond order algebraic equation in w is obtained. 

'. 

--.< '[ 1 - VO'] 1 lOW - lO+l.+--w+(lol.-2\~ +·-)=0. 
t. l. 

(3) 

:", ~'; 

The two roots (w±) of this equations are 
~,~ ~,.: 

1 C)'­
w± = l. +'2[P± Vp'- 4ql, (I) 

where 
.~••1." 

ft..:" 
P = lQ _ 

1 _ ~" 
l. +__0_ 

l. ' 

'.t,! 

(0 
q = - -

l. 

1
(1 +Yo). 

To obtain IT 1'= 1 at w±, these two roots must satisfy two conditions, namely (il Iw± I:S 2 
v: 'If 

and (ii) w± must be real. The reality of w± requires p' ~ 4q. Since RBA and RT~I are 
11~t ,. 

special cases of this situation, results for those cases can also be pbtained from w±. Notc 
;,ll t 

that when q ;== 0, we have 

With this choice we obtain I T ,1'= 1 at w_ = l. and W+ = lO + (1 - Vo~t ..It is apparent 

that for any choice of Vo and I l. I~ 2, w+ may not belong to [ ·2, 2 J. Furthermore, (01 

Vo = I, two resonances appear exactly at site energies of the trimer, namely lo and {D. The 

general expression of w± also suggests that two resonances can be brought closer togethe: 

by changing the ratio~. This shows the importance of the structural correlation. Thl 

condition for the two resonances to merge at a single energy yields 

[l: +1 + Vol - 2 I Vo I ~l 
£0 = . (6) 

l. 

Since (0 must bc a real quantity, the inequality I l. I~ 1 must be satisfied. As a special 

case if we introduce Eq. (5) in Eq. (6) we find that two resonances will merge exactly at l. 

provided Vo' = (1 -l:t I. SO, if the trimer contains a plane of symmetry, the posi tions of the 

resonances can be tuned by modulating the central energy of the trimer in the prescribed 

way. This is the major result of this paper. 

III. NONSCATTERED STATES IN GRTM 

In as much as a single trimer embeded in a host system is totally transparent at certain 

energies depending on the structure of the trimer, it is natural to ask whether or not a 

. random system of these trimers and the host is also transparent at those energies. In the 

case of RD M, this is found to be 50. 10 It has also been claimed that the RDA and the random 

trimer system are also totally transparent at the resonance energies of the system with a 

sil\~l" duster .I'.llI We, th<:rcfon~, prcscnt here the numerical calculation of the transmission 

~oellicient of those random systems which form the base of this paper. The cases considered 

ar~: (a) q = l.+lc, Vo= 1, (b)£. = lc =l.. lb = lo = (I+Vo' )l., (C)ls = lo = If,lb = loand 

«l+l+Vo'-ll~ol~1 h d· F· () (d) h d( d) (a = ~ . T e results are presente In Igs. 2 a·2 . T e proce ure of 
<-

Datta, Giri and Kundu lO is employed to obtain these results. The salient features of these 

calculations are as follows. 

t"'>!' (i) The additional structural correlation introduced in these models is not sufficient to 

)" lo = (1 +Yo')f•. (,5 ) 
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suppress theoverwhehning localization tendency of most of the states due to the 5ub~;tilu-

UUIl~1 Clillufcl.-r. 

(Ii) 'l'bd rAndom systemll ILIl1o,yleld unity (or the trallSlllil\lIioll t'lw(\id~llt (I 'l'(w) IJ
) al 

the rf'1I0niulcC'! f'n.,r~iell of th., llin~l., trilll~r f1y!llenl. 

(iii) For a given length (N) of the random system, the transmission coefficient at the 

energies between two resonance energies depends strongly on the separation of the resonance 

energies. Compare Fig. 2(c) and Fig. 3. 

(iv) For a given N, the width ofthe transmitting zone for the case where two resonances 

merge is subtantially larger than the width of the ttansmitting zone of a comparable random 

dimer SY5tern .1!> 

tv) ((we take e, = 1 and 1Io =1, for the case (d) two resonances appear at \.I.!o = 2.0, i.e 
, I 

at the upper band edge o( the host system. We find that compared to the random climer 

case, the width of the transmitting zone shown in Fig. 4 is substantially large.'o 

We now show by an analytical method20 that the random systems under considerati<Jn 

sustain in general extended states at the energies (say wo) at which the transmission coeffi­

cient is unity. The proof goes as follows. Let t3(w) and tF(w) be the tran~fer matrix of the 

trimer and the perfect site respectiv;ely. , 

A(w) B(W)]
ta(w) = .	 (i)[ C(w) D(w) 

with A, B, C and D already defined in the previous section and 

[ 
-1] (8)w 

tF(w) = 1 0 . 

For 13 and iF to commute at a ce~tain energy, say Wo, we need 

B=-C,	 (9) 

and 
" 

A-D =Cwo.	 ( 10) 

9 

If 1.<.·0 tlcllotes the resonance energy (or the single trimer system, the (orm of t3(WO) for various
 

':tr".~ til'll 11'1'1,·,1 III I."" PI~"'IOII'l rl.·.I.'''lI O\1f' ;I.'l f"lIow'1.
 

Case I.
 

(0 =!b, t c = O. 

ta( to) = -tl'( to) at Wo = f o' 

Case II. 

to = £c = 0, f o = (1 - \'02) Wo, IWo I~ 2 

b(,-,'o) = t;(,-,·o). 

Case Ill. 

to = th = t c = £0, Vo = 1 

tJ(wo) =±I at wo = to ± 1. 

However, if Vo i 1, t3 does not reduce either to a unit matrix or t p• But it can be shown
 

that ta and t p commute with each other at the resonance energies.
 

Case IV.
 

th = to + f c 

t3(fb) = tl'(fh) at Wo = fh. 

Case V : f o = t c = £, 

In this general case, t3 does not always reduce to a simple recognizable form as in the 

other cases. However, at the resonance energies ta indeed commutes with tl" For the special 

cases namely, (i) tb = £0, f. = ~, 1Io = 1, /£0 1$ 2 and (ii) fh = £0 = (1 + 16~f., I f. 1$ 2, 

the form of t3 at the resonance energies are 

(i)	 t 3(to) = tp(to), 

to _I to 
t3("2) = tl' ("2)' 

10 



and 

(ii) t3(f,) = t;l(f,) 

respectively. According to Wu, Goff and Phillipsl2 the sufficient condition for a random 

system of this type to sustain a nonscattered states at Wo is that the cluster transfer matrix 

must reduce to either a unit matrix or that of a perfect site. Here, we constructed examples 

for which such a situation is not obtained. It is, therefore, necessary to prove that the state 

at Wo in all these cases is in general extended. 

Since t3 and tp conunute with each other at Wo for all these cases, Furstenberg's 

theorem20•2J cannot be applied here to discern the nature of the state at woo To deter­

mine the nature of the state at Wo we need to solve explicitly the Fourier transform of the 

amplitude '(Gn(w)) at each site. In the transfer matrix formalism J8,22 the amplitud€ at tbe 

n - th site is related to the amplitude at the given sites by 

Xn+l =TnXI , (11 ) 

when X! = (Gn +! (w), Gn(w)). Tn' which is called the transfer matrix, is a random product of 

t3 and tp for the cases under study. Since both t3 and tp are unimodular matrices irrespective 

of w, Tn is also a unimodular matrix. Furthermore, Tn is a 2 x2 matrix. Hence, the two 

eigenvalues (A), A2 ) of Tn can be written as e' and e-'. 0 is either real or purely imaginary. 

Consequently, the trace of Tn (= 2cosh 0) is a real quantity. This is true for all nand w. 

Now suppose that a string of N sites contain mJ trimer and m2 = (N - 3md host sites. 

Since t 3 alld tp COlIIlJlute at Wo, at thi:t l'Jl(~rgy we hav(~ 

TN(wo) = [t3(wo)}m, [t,,(wo)}N-3m l • (12) 

In as much as two diagonalizable commuting matrices can be simultaneously diagonalized, we 

assume that U is such a matrix which diagonalizes both t3(wo) .and t,,(wo). If the eigenvalues 

of t3(wo) and t,,(wo) are eH3 and e±dll' respectively, we have 

U-1TN(w)U = (13)[a 0],
o a-J 

11 

whf're a "'= exp[mJtP1 + (N - 3mdtP,,}. Furthermore, we have 

Tr[TN(wo)] = 2 cosh[mI tP3 + (N - 3ma)c/>,,1. (14 

Assume now that Wo = 2cos ko. Since trace of t,,(wo) is bounded by 2, two eigen~ues ( 

t" will be purely imaginary. In other words c/>" will be purely imaginary. It (an be show 

that tPP = iko. Now, if 4>3 is real at Wo, the trace of TN(wo) will be a complex quantity Cl 

woo This is a contradiction. So, the trace of t3(WO) should be bounded by 2. It can be easil 

verified for all the cases considered here that the trace of t3 (wo) is indeed bounded by 2. Th 

important consequence of this result is that the trace of TN(wo) is also bounded by 2. Thi 

can also be verified numerically. We should emphasize that ITr1N(wO) I~ 2 is a necessar 

condition for the state at Wo to be extended. 

Because of the commutation of t3 and t" at Wo, the calculation of GN+l(Wo) and CN(Wo 

is trivial. So, we present the result only. 

G ( )_sin«(}+ko)C _ 
N+l Wo - sin ko I 

sinO Csin ko 0, (15a] 

and 

GN(Wo) = ~in (} -C 
SIO ko 1 

_ sin(O - ko)
sin ko Co. (ISh 

Here 0 = mJ ¢3 +(N - 3m.)ko. C1 and Co are given initial condition. Since tP3 is a mod(2 

quantity, as long as Wo is inside the host band, both GN+l and GN are bounded. Hence, 

lim -.!..[C2 +G2
] (16N -<:>0 N N +t N -+ o. 

ConSC(jlH;lJtly, the state at Wo cannot be exponentially localized. Furthermore, due to tt 

boundedn~ss of CN(wo) and CN+1(wo), the solution of the amplitude equation at Wo cann 

grow. Therefore, the state at Wo should be extended in nature as long as Wo is inside t 

host band. 

However, for all the cases considered here when the resonance is appearing at the b 

edges of the host system, we find a pole in the Green funetion1o•23 of the host system with 

trimer impurity. We prescnt our result in Fig. 5 for the case of degenerate resonances. Sin 

12 



the Green function shows a pole, the state at the band edges cannot be extended. Of course, 

it will not be exponentially localized because condition (16) will be still satisfied. We argue 

by analogy with the random dimer system that the state at the band edges are a.lgebraically 

localized. tO We plan to check this proposition by the band width scaling method in our 

future work. 

To determine the nature ofthe states in the vicinity of Wo we assume that the total 
••oj.' • _ •• ,..,.....~.>••';.o.......... .~ " ...~ '. . ­

transmission coefficient 1TN(W) 12 when w is in the vicinity of Wo is approximatelylO 
I 

I TN(W) 12 =:::1 t,(w) 12m
\ • (17) 

2Here, mt is the number of trimers in the sample. I t,(w) 12 and I r,(w) 1 are the transmission 

and reflection coefficient of a single trimer at w respectively. In this approximation we ncgkct 

the effect of multiple back scattering of the incident particle for w '" ~·o. Furthermore, we 

as5ume that there exists a value of N beyond which two resonances are well s('paratcd. 

2Consequently, they can be treated independentlY. Since I t,(w) 12 + I r,(w) 1 = 1, Eq. (17) 

can be written as 

oc 

ITN(w) 12~ e-PN?; 1r,(w) 1
2n 

/n 
(18) 

wiLh p = mJiN. It is ea.sy to see that if I r,(w) 1
2 < ~, I TN(w) 12 -+ 1 as N -+ -Xl. To 

find the energy width we first note that our numerical calculations show that for w '" ...·0. 

2I r.(w) I',.." O. So, we expand I r,(w) 1 in Taylor's series around ~'o which is a zero of 

2I r.(w) I'. Furthermore, for 1Wo 1< 2, the absolute millimum of I r.(w) 1 also occurs at ",,'0. 

Therefore, if IWo 1< 2, in the leading order approximation we must have 

I r,(w) 1'2,.." QJ(W- WO)'2, (1 !)) 

where a, = a~I~~~)f] 1...="'0 and a2 should be positive definite. Consequently, around t.,'o we 

oblain 

ITN(W) 12~ e-PG](",-"'O)]N (20) 

13 

So, from this derivation we find that the inverse localization length of the states in the 

neighborhood of WI) is given by"'" pa2(w-wofz. This in turn gives that the energy width inside 

which the localization length of the states is superior to the sample size is approximately 

-fN. Since w = 2 cos k, for k ,.." ko we have 

(W-WO)2 ""'4sin2 ko 1 ilk 1
2 

• (21) 

So, if we assume that Bloch k's are good quantum number in the vicinity of ""'0, we then 

obtain approximately v'N Bloch type extended states for each r~sonance. 

When two resonances merge at a single energy we find that 

I r,(w) 12~ a4(w - wo)4 (22) 

for u:o inside the host band and 

I r.(w) 12~ a3(w - wo)3 (23) 

if u:o is at one of the band edges of the host system. To understand the origin of the fourth 

order term in the first case we note that for a given Vo and 1: we obtain two energies where 

I r.(t.,·) 1
2 is zero. In between these two zeros, we must have a maximum. Keeping \.'0 fixed if 

we change ~, two minima and the maximum move close to each other. At the critical values 

of ~, these minima and the maximum merge at a single point (Fig. 6). Consequently, both 

2the first and the second derivatives of I r,(w) 1 with respect to w evaluated at ""'0 are zero. 

~urtherIIlore, the function is itself zero at woo Again the absolute minimum of the function 

occurs a.t Wo for Wo inside the band. Furthermore, I r.(w) 12 is a positive semidefinite function 
I ' 

for I w I~ 2. IIence, the Taylor's expansion of I r.(w) 12 for ~'o inside the band should start 

with the fourth power ill (w - ~'o) and d. must be a positive definite quantity. this can be 

,i6fifiOti uy aUlncflCAl calculat.ionll. 'the sltua.tlon a.t the band edge Is, however, different Crom 

the first case. For this case at the critical value of ~ we also observe the coalescence of a 
(. 

maximum and a minimum at the band edge of interest (Fig. 7). But, the resonance energy is 

2not the absolute minimu~ of I r,(w) 1 • This can be seen from the analytical continuation of 
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l Ir.(w) r for Iw I> 2 (Inset of Fig. 1). Hence, the leading term of the Taylor's expansion in 

this case should start with (w -wa)3. Furthermore, the positive semidefiniteness of I r,(w) 1 
2 

for Iw I~ 2 demands that a3 should always be negitive definite at the upper band edge and 

positive definite at the lower band edge. 

If we now apply similar analysis as before, we find that the width of nonscattered states 

goes as ~ N- 1/ 4 for Wo inside the host band. So, the number of Bloch type extended states 
'::~m-::~.":"~ • 

will be approximately N3/4. On the other hand the width of the totally transmitting zone 

goes as N-I/3 if wa is at the band edge of the host system. Although the present calculation 

of the width of the nonscaHered states is an approximate one, qualitatively correct results 

were obtained by this method in the case of RDM.IO Since the cases where resonances do 

not merge are very similar to the random dimer case, we believe that results obtained from 

the present analysis are qualitatively correct. Of course, a thorough analysis of such a width 

and the nature of the states inside the width is desired. This will be presented elsewhere. 

IV; CONCLUSION 

A dimer being the simplest possible cluster does not offer any scope to improve upon the 

width of the nonscattered states. It is, therefore, necessary to find random systems which are 

simp!e but at the same time offer the opportunity to increase the width of the nonscattered 

states by adjusting a few relevant parameters. If this can be done, random systems will show 

enhanced electrical conductivity at low temperatures. Trimers in this respect are found to 

be ideal in many ways. The structure of a trimer is not very complicated. Consequently, it 

does not contain many adjustable parameters. Hence, it is possible to fabricate these trimers 

to study their resonance property. For example, strained layers of Ge-Si alloy of different 

compositon or Si can be grown on Ge to obtain adjustable potential wells.'4 So, equivalent 

trimer systems can be prepared. Furthermore, symmetric trimers offer the opportunity to 

tune the positions of the resonances. In the extreme case two resonances can be merged 

at a single energy. This inter~tillg feature of symmetric trimers makes them ('xlr{'lTwly 

15 

worthy of experimental ivestigations. It also remains to be seen whether this interesting 

feature of symmetric trimcrs has any role to play in the anomalous electrical conductivity 

in polyanilines and other related materials. This work is in progress. 
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