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Abstract

The‘existeq'ce of nonscattered states in random systems of trimers in its gen-
eralized form a.pd a base element is studied in the context of a tight binding
Hamiltonia;l. Many conditions for the existence of such states in this general-
ized randoni t;imer model (GRTM) are obtained by introducing appropriate
structural correlations between the host element and the trimer. This aspect
of the correlated disorder systems was not studied before. The condition for
tuning the positions of the two sets of nonscattered states is obtained. We
further show that the two resonances of a single trimer in the host lattice can
be merged at a single energy. For this case, when the resonance energy is
inside the host band, the width of fhe nonscattered states is found to decay
as ~ N~V N'is the number of sites in the system. This is a novel result. To
our knowledge, this is the first time such a result is obtained. Experiments to
observe the broadening of the width are proposed. In all other cases width is

1
shown to decay as ~ N-1/2,
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One of the well established results'™ in condensed matter physics is that all electronic
cigenstates of a disordered one dimensional system are exponentially localized irrespective
of the strength of the disorder. The early work of Anderson! on uncorrelated site-diagonal
disorder in the tight binding model (TBM) and of Mott and Twose® form the basis of this
result. Of course, the result of Anderson, and Mott and Twose cannot be rigorously valid in
one dimensional systems in which the disorder is correlated. For example, in the context of a
TBM it has been shown that correlated off-diagonal disorder cannot localize the state at the
band center.>® Another example in this category is the model proposed by Dunlap, Kundu
and Phillips (DKP).” Disorder in the DKP model arises from the dilation of the lattice.
The coupling of the electronic motion to the structure induced disorder is described by a
tight binding Hamiltonian (TBH) in which dis;nder appears both in the diagonal and the
off-diagonal terms. Once a specific correlation between the diagonal and the off-diagonal
disorder is postulated, one obtains a set of nonscattered states. The most well known
example, however, is the randomn dimer model (RDM).27'7 This is basically the ofl-spring of
the original DKP model. RDMs are random binary alloys with elements of one component
appearing in pairs. So, in the context of a TBH, this model is characterized Sy a short range
correlation in site energies. Due to this short range correlation, a set of nonscattered states
in the neighborhood of the dimer energy is obtained. The obvious generalization of the RDM
is, of course, random n-mer model'? in which the length of the correlation in site energies is
increased beyond the nearest sites. So, a random n-mer model is a random alloy of a distinct
host element and a cluster of ‘n’ number of elements. All of these n elements may or may not
be same. But, some of these must be distinct from the host element. If the cluster contains
only one type of eleﬁlent, the random n-mer model (n > 2) is then expected to sustain
nonscattered states at more than one energy, provided certain constraints are met. This is
113

precisely so. Recently Sil etal™ have shown that those energies can be found from the zeros

of the n-th Chebysev polynomial of second kind. The argument of the Chebysev polynomial



is the trace of the transfer matrix of the element of the cluater. Furtheriore, if the cluster
contains elements in even numbera and has a plane of symmetry, it can be converted to
a dimer by a real space renormalization group (RSRG)' procedure. By converting such
clusters to dimers it has been shown that a binary random system of such clusters and a
host element can sustain nonscattered states. Other studies’?'™!% involve the changing of
the hopping elements inside the cluster without destroying the plane of symmetry. Even
with this generalization, nonscattered states have been obtained. The repulsive binary alloy
(RBA)'® and the magnon problem®® are two such examples. We note that the cluster in
the RBA contains three elements, two of which are host sites. This cluster also has a plane
of symmetry. Hence, RBA can also be transformed to an effective random dimer system.
The total transparesicy of the cluster in the neighborhood of an energy belonging to'the
band of the host system is due to the vanishing of scattering of the incoming wave due to

the cluster. Consequently, a set of nonscattered states is obtained around that energy in

the random system of the cluster of interest and the host unit. In as much as the presence |

of the nonscattered states in random systems can give rise to the anomalous transport
properties, a systematic invatigaiion of the resonance property of the clusters of various
sizes and kinds is, Wherefore, necessary. For example, the maximuim number of rezonanc::
that a one dimensional n—site cluster can'yield is (n —1). Hence, it is necessary to find out
the conditions for obtaining these resonances. The effect of these resonances on the widths
of the nonscattered states also needs to be studied. Furthermore, a cluster with more than
two sites can yield more than one resonance. Therefore, in trimers and larger clusters it is
possible to obtain condition(s) for two or more resonances to merge at a single energy. If
such a situation is obtained, the width of the nonscattered states will increase substantially.
Consequently, a profound change in the transport properties will be observed. Since a trimer
is the simplest possible cluster which can exhibit all these properties, we plan to study in this
paper the resonance property of a trimer in its generalized form. The random system of the

trimer in its generalized form and a host site will be referred to as the Generalized random’

trimer model (GRTM). Of course, we assume that GRTM can be described by an appropriate
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TRH. Note that the well known random trimer model (RTM) and the RDA are two Ape
cvient of Lhis generalized version, Fairthenmore, the results for the RDM e alio be obtain
from this gencral model. Hence, GRTM encompasses many hitherto known models. '
show in this paper that GRTM can yield many conditions for obtaining nonscattered st .
provided appropria‘te structural correlations between the host element and the element
the trimer are introduced. Consequently, this model may be applied to physical syste:
in which structural correlations blay crucial roles. Moreover, there are conditions for whi
GRTM yields two sets of nonscattered states due to the additional structural correlatio

If these two energies are close to each other, states in between these energies develope ve

- large localization length. Another interesting feature of this model is that the positions .

the resonances can be adjusted by modulating the site-energy of the central atom of tk
trimer. Of course, the trimer should possess a plane of symmetry. In the extreme ca:
these two resonances can be merged at a single energy. To our knowledge we are the firs
to obtain this interesting result. These results can be verified by fabricating appropri-u
layered heterojunction and by coupling quantum dots.!” Furthermore, the degeneracy «
resonances that we encounter here may be the key to the understanding of the anomal.:
elctrical gonductivity in polyaniline and other related systems.

The organization of this paper is as folllows. In Sec.Il, we present the relevant aspects «
GRTM and calculate the transmission coefficient of a system containing only a single trim¢
in its general form. In Sec.III, we present the arguments for the presence of nonscatter:
states in GRTM. We calculate the number of nonscattered states using our method.! T!;
pole structure behavior of the site Green function is studied. This is necessary to understan
the nature of the nonscattered states at the band edges of the host system. We conclud

the paper by highlighting the features that differentiate GRTM from the well known RD



II. TRANSMISSION COEFFICIENT FOR A .SINGLE GENERALIZED TRIMER

As mentioned earlier we are dealing with a random binary system made up of a host
element and cluster of three elements which are different from the host element. We further
assume that the static and the dynamical properties of the system can be described ade-
quately by a TBH with nearest-neighbor hopping only. We assign ¢,, ¢, and ¢, to the site
energies in the cluster (ABC). Witl;out any loss of generality we set zero to the site-energy
of the host element. In other words, site energies in Ithe cluster are measured relative to the
site energy of the host system. We assume that the nearest neighbor hopping terms in the
cluster are Vo, All other nearest neighbor hopping terms that will appear in the system are
given the same value, say unity. So, the effect of oﬂ{-diagonal disorder on the energy states
are treated in a limited way in our model. :

Our aim is to find the energies at which the random system sustains nonscattered states.

To find those energies it is necessary to find the energies at which a single cluster embedded

in the host lattice is transparent. Following Liu and Chao!® the transmision coefficient [

(I T I?) of the single cluster is calculated. In as much as tﬁe calculation is very standard, we /
only present below the relevant results. /
|T = 4ot (1)
T A4 B4+ C?*+ D'+ (A-D)B -C)w—- ADw? +2’ .
\ /
where i
//
A= (w— €a)(w ——;;)(w —€) (% — € — €, /
Vi ,
(w—e)w—e) !
B=1- ——%2 , ;
@-alw-a) /
Vi ’ /
- _(w=a) /
7z %

Furthermore, w is the particle energy which is 2cos k. k is the wave vector./We now discuss

the various cases. S
/

/

Case e =€,€6.=0

In this case we obtain | T [*=1 at w = ¢,, when Vp = 1. This is the usual dimer case.'®
Case II: ¢, = €. = 0, & = (1 — V¥ )wo.

This cluster yields | T |I’= 1 at wo with the constraint | wp |< 2. This is the RBA case.!®

Case Ill: ¢, = €5 = €. = ¢o.

This case yields two values of the particle energy w, namely w,. and w_, at which | T |*= 1.

They a}e
i
| wy = eg+ Voet (2a)
/ and
, W. = € — ‘/Oe-ey (2b)
//where the parameter £ is defined by
/ . 1 -7
sinhé = Voeo "

We also nced | wy |< 2. When V = 1, the cluster is refered to as a trimer.'? For this case
we obtain | T [*=1 at w = eg % 1, provided | g [< 1. On the other hand for 1 <] ¢ |< 3, we
obtain | T |*>= 1 at a single energy. If | ¢g |> 3, | T |? will not yield unity at any permissible
value of w.

Case Wiy =, b,

This system yields | 7' |*= 1 at w = ¢, for any value of Vy. Of course, we need | € |< 2.
However, €, and ¢, may take any value provided the required constraint is met. Note that
the symmetry!? in the defect cluster is not necessary for the vanishing of the reflection

coefficient. We also find that for a particular value of V4, the width of the transmission peak

becomes sharper as the values of [ ¢, | and | €. | are increased. Due to the constraint, there

18 a ladder In the site encrgies around the contral elemont of the tritmer. As we increase the
magnitude of | ¢; | and | ¢ |, the situation becomes more and more similar to the Stark
localization of Bloch eigenstates in a pure crystal by a strong applied electric field.!® Hence,

the width of the transmission peak should decrease. Similarly, if we reduce V; keeping ¢,

6



L

- o

]|

il

S
s

ik

and ¢, fixed, we reduce the overlap between site Wannier orbitals. Consequently, the width
of the transmission peak will decrease. Conversely, increasing V,, we allow the electron to
see the cluster in a mean field way. This, inturn, increases the width of the transmision zone.
These arte actually observed and presented in Fig. 1. We should also point out that the site
energy of the central unit also depends on the site energy of the host unit. Hence, thete is a
structural correlation between the trimer and the host. In the dimer, trimer, and the RBA,
this kind of structural correlation is also present. It appears through the ineqalities which
are required t‘.o be satisfied by the relevant site-energies. This correlation for these cases is,
however, weak.
Case Viea=¢.=¢,and e, = ¢

This is basically the generalized version of RBA. This is, however, a ternary system.
Since the reflection coefficient | R |? will be zero at the perfect resorance, resonance cﬁorg?cs
are calculated by setting the numerator of the expression for | R J? to zeio. Consequently, a

second order algebraic equation in w is obtained.

2
V"]w+(eoe,—21{,’+-‘-9) =0. )

w? - [60 + €, +
€, €,

The two roots (w4 ) of this equations are
i . .
wi =&t lpt Ve - 44, (1)

where

1 -2
p=¢€—¢€+ P ’

9= 2=+ 15).

To obtain | T |>= 1 at wy, these two roots must satisfy two conditions, namely (i) | wy |< 2
and (ii) we must be real. The reality of ws requires p? > 4¢. Since RBA and RTM are
special cases of this situation, results for those cases can also be obtained from wy. Note

that when ¢ = 0, we have

0= (1+V)e. (5)
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With this choice we obtain | T ’=1at w_ = ¢, and wy = €0 + (1 — W)L It is apparent
that for any choice of V5 and | ¢, |< 2, wy may not belong to [ -2, 2 |. Furthermore, foi
Vo = 1, two resonances appear exactly at site energies of the trimer, namely ¢ and-2. The
general expression of ws also suggests that two resonances can be brought closer togethe:
by changing the ratio ©. This shows the importance of the structural correlation. The
condition for the two resonances to merge at a single energy yields

_ld+1+W-21%|V/1-€)
€

(6)

€0

Since €o must be a real quantity, the inequality | €, |< 1 must be satisfied. As a special
case if we introduce Eq. (5) in Eq. (6) we find that two resonances will merge exactly at e,
provided V7 = (1 —¢?)~"'. So, if the trimer contains a plane of symmetry, the positlim-ls of the
resonances can-be tuned by modulating the central energy of the trimer in the prescribed

way. This is the major result of this paper.

II. NONSCATTERED STATES IN GRTM

In as much as a single trimer embeded in a host system is totally transparent at certain

energies depending on the structure of the trimer, it is natural to ask whether or not a

. random systern of these trimers and the host is also transparent at those energies. In the

case of RDM, this is found to be s0.!° It has also been claimed that the RBA and the random
trimer system are also totally transparent at the resonance energies of the system with a
single cluster.'2'® We, therefore, present here the numerical calculation of the transimission
tpelﬁcient of those random systems which form the base of this paper. The cases considered
are: (a) ey = €ate, Vo=1,(b) e =€ = €56 = €0 = (1+Y)e,, (€) €a = €. = 2L, €4 = g and
(d) & = L‘M The results are presented in Figs. 2(2)-2(d). The procedure of
Datta, Giri and Kundu'® is employed to obtain these results. The salient features of these
calculations are as follows.

(i) The additional structural correlation introduced in these models is not sufficient to



suppress the overwhelming localization tendency of most of the states due to the substitu-
tonal dixoeder. '

(i) 'The random systema alno yleld unity for the transmission coetlicient (| 7'(w) {1y at
the resonance energies of the single trimer system.

(iii) For #given length (N) of the random system, the transmission coefficient at the
energies between two resonance energies depends strongly on the separation of the resonance
energies. Compare Fig. 2(c) and Fig. 3.

(iv) For a given N, the width of the transmitting zone for the case where two resonances
merge is subtantially larger than the width of the'transmitting zone of a comparable random
dimer system.'®

(v) If we take ¢, = 1 and Vg = 1, for the case (d) two resonances appear at wo = 2.0, t.e
at the upper band edge of the host system. We ﬁ;1d that compared to the random dimer
case, the widtﬁ of the transmitting zone shown in F\g 4 is substantially large.'®

" We now show by an analytical method® that the random systems under consideration
sustain in general extended states at the energies (say wq) at which the transmiss'ion coeffi-
cient is unity. The proof goes as follows. Let ta(w) and t,(w) be the transfer matrix of the
trimer and the zperfect site respectively. .

ty(w) = [A(”) BM] . (7)
Clw) D(w)
with A, B,C and D already defined in the previoﬁs section and
w -1
tp(“l)=[1 0 ] (8)

For t3 and {, to commute at a certain energy, say wp, we nced

and

A-D = Cuwo. (10)

Il wo denotes the resonance energy for the single trimer system, the form of t3(wp) for various
canen dincunsed i the provioua section are an follown.

Case [,

¢ =€, €=1U.

t3(€) = —tp(€s) at wo = €.
Case 1II.
=c=0, €= (1 — V) wo,|wo |< 2
ta(wo) = t3(wo)-
Case 111

€ = € = € = &g, VO=1

t3(L&Ju) =% at wp = € + 1.

However, if V, # 1, t3 does not reduce either to a unit matrix or t,. But it can be shown

that t3 and t, commute with each other at the resonance energies.

Case.IV.

€& =€+ €

ty(es) = tp(es) at wo = €.

Case V:ie, = €. =¢,
In this general case, 3 does not always reduce to a simple recognizable form as in the
other cases. However, at the resonance energies ¢3 indeed commutes with ¢,. For the special

cases namely, (i) ¢, = e, &, =2, Vo =1, | € [€ 2 and (i) & = o = (1 + e, | & [< 2,

the form of ¢3 at the resonance energies are

(1) ta(eo) = ty(ea),
6(3) =53,

10



and
(1) ta(es) = ‘;l(fn) .

respectively. Acocording to Wu, Goff and Phillips'? the sufficient condition for a random
system of this type to sustain a nonscattered states at wq is that the cluster transfer matrix
must reduce to either a unit matrix or that of a perfect site. Here, we constructed examples
for which such a situation is not obtained. It is, therefore, necessary to prove that the state
at wyp in all these cases is in general extended.

Since t3 and t, comﬁute with each other at wg for all these cases, Furstenberg’s
t.l’leore'mm'21 cannot be applied here to discern the nature of the state at wg. To deter-
mine the nature of the state at wo we need to solve explicitly the Fourier transform of the
amplitude IC,.(w)) at each site. In the transfer matrix formalism'®?? the amplitude at the

n — th site is related to the amplitude at the given sites by
Xo =T X4, (11)

when XT = (Cpy1(w), Cn(w)). Tn, which is called the transfer matrix, is a random product of
t3 and ¢, for the cases under study. Since both ¢3 and ¢, are unimodular matrices irrespective
of w, T, is also a unimodular matrix. Furthermore, T, is a 2 x 2 matrix. Hence, the two
cigenvalues (A, ;) of T, can be written as ¢’ and e~?. 4 is either real or purely imaginary.
Consequently, the trace of T, (= 2cosh®) is a real quantity. This is true for all n and w.
Now suppose that a string of N sites contain m, trimer and m; = (N — 3m,) host sites.

Since t3 and ¢, commute at wo, at this energy we have
Tiv(wo) = [ta(wo)]™ [tp(wo)]¥ =>™. (12)

In as much as two diagonalizable commuting matrices can be simultaneously diagonalized, we
assume that U is such a matrix which diagonalizes both ¢3(wo) and ¢y(wo). If the eigenvalues

of t3(wo) and t,(wo) are e*?* and e*®» respectively, we have

0 a!

a 0 .
U 'Tn(w)U = [ ] ' (13)

11

" quantity, as long as wy is inside the host band, both Cy, and Cy are bounded. Hence,

where a = exp{m 1+ (N — 3m;)é,]. Furthermore, we have
Te[Tw(wo)] = 2cosh{mys + (N — 3m1)d, ). - (14

Assume now that wo = 2cos ko. Since trace of t,(wp) is bounded by 2, two eigenvalues ¢
t, will be purely imaginary. In other words ¢, will be purely imaginary. It can be show
that ¢, = iko. Now, if ¢; is real at wy, the trace of Tn(wo) will be a complex quantity
wo. This is a contradiction. So, the trace of t3(wo) should be bounded by 2. It can be easil
verified for all the cases. considered here that the trace of ¢3(wo) is indeed bounded by 2. Th
important consequence of this result is that the trace of Tn(wo) is also bounded by 2. Thi
can also be verified numerically. We should emphasize that | TrTx(wp) |< 2 is a necessar
condition for the state at wy to be extended.

Because of the commutation of ¢; and ¢, at we, the calculation of Cy41(wp) and Cy(wy

is trivial. So, we present the result only.

sin(6 + ko)C _ sin @
sin kg ! sin kg

Cryi{(wo) = Co, (15a

and
sinf_ _ sin(8 — ko)
sinky sin ko

Here 8 = m;¢3+ (N — 3m, )ko. C) and Cj are given initial condition. Since ¢ is a mod(2x

Cn(wo) = Co. (15b

.1
‘,J'_{T}” N[C:Hl +C}] - 0. (16

Consequently, the state at wo cannot be exponentially localized. Furthermore, due to tt
boundedness of Cn(wo) and Cny1(wo), the solution of the amplitude equation at w, cannd
grow. Therefore, the state at wy should be extended in nature as long as uy is inside th
host band.

However, for all the cases considered here when the resonance is appearing at the ban
edges of the host system, we find a pole in the Green function!®? of the host system with

trimer impurity. We present our result in Fig. 5 for the case of degenerate resonances. Sing

12




the Green function shows a pole, the state at the band edges cannot be extended. Of course,
it will not be exponentially localized because condition (16) will be still satisfied. We argue
by analogy with the random dimer system that the state at the band cdges are algebraically
localized.!’® We plan to check this proposition by the band width scaling method in our

future work.

o determine the nature of_»tlle_ vs»t.atidrin the vicinity of wp we assume that the total

Ceer g e e

transmission coefficient | Ty (w) |* when w is in the vicinity of wo is‘| approximately'?

| Tn(w) P tu(w) ™ (17)

Here, m, is the number of trimers in the sample. | ,(w) {? and | r,(w) |? are the transmission

and reflection coefficient of a single trimer at w respectively. In this approximation we neglect
the effect of multiple back scattering of the incident particle for w ~ wo. Furthermore. we
assume that there exists a value of N beyond which two resonances are well separated.
Consequéhtly, they can be treated independently. Since | t,(w) |* + | r.(w) |*= 1, Eq. (17)

'

can be written as

o

- Y | ra(w) [ [
| Tn(w) Pxe  n=t ) " (18)
with p ='m;/N. It is easy to see that if | r,(w) P< ] Tn(w) P— 1as N — oo, To
find the energy width we first note that our numerical calculations show ‘that for w ~ wy.
| ro(w) [~ 0. So, we expand | r,(w) |* in Taylor’s scries around wy which is a zero of
| r(w) [*. Furthermore, for | wy |< 2, the absolute minimum of | r,(w) |? also occurs at wo.

Therefore, if | wo |< 2, in the leading order approximation we must have :

| re(w) [~ ai(w—wu)Q, {193

2 2 oy .
where a; = 2—";—;(,5)']- |o=w, 2and a2 should be positive definite. Consequently, around wqy we

obtain

| T(w) |*a emrealomwnl’N (20)

13

So, from this derivation we find that the inverse localization length of the states in the’
neighborhood of wy is given by ~ pa;(w—uwp)?. This in turn gives that the energy width inside
which the localization length of the states is superior to the sample size is approximately

7",7. Since w = 2cos k, for k ~ ky we have
(w—wo)? ~dsin’ky | Ak |?. (21)

So, if we assume that Bloch k's are good quantum number in the vicinity of wp, we then
obtain approximately /N Bloch type extended states for each resonance.

When two resonances merge at a single energy we find that
[ ro(w) PP~ aq(w — wo)* (22)
for wo inside the host band and
[ ra(w) P2 a3(w — wo)® (23)

if wo is at one of the band edges of the host system. To understand the origin of the fourth
order term in the first case we note that for a given V; and £ we obtain two energies where
| ro(w) |? is zero. In between these two zeros, we must have a maximum. Keeping V} fixed if
we change @, two minima and the maximum move close to cach other. At the critical values
of 2, these minima and the maximum merge at a single point (Fig. 6). Consequently, both
the first and the second derivatives of | r,(w) |* with respect to w evaluated at wy are zero.
Furthermore, the function is itself zero at wo. Again the absolute minimum of the function
occurs at w for wo inside the band. Furthermore, | ro(w) |? is a positive semidefinite function
for | w |< 2. Hence, tile Taylor’s expansion of | 7,(w) |? for wo inside the band should start

with the fourth power in (w - wp) and a4 must be a positive definite quantity. This can be

weriROU vy Aummericai eaicuiationa. ''he situation at the band edge is, however, different from
the first case. For this case at the critical value of £ we also observe the coalescence of a
maximum and a minimum at the band edge of interest (Fig. 7). But, the resonance energy is

not the absolute minimum of | r,(w) |2. This can be seen from the analytical continuation of

14



| ro(w) |i for |w |> 2 (Inset of Fig. 7). Hence, the leading term of the Taylor’s expansion in
this case should start with (w—wp)?. Furthermore, the positive semidefiniteness of | r,(w) |?
for | w |< 2 demands that a; should always be negitive definite at the upper band edge and
positive definite at the lower band edge.

If we now apply similar analysis as before, we find that the width of nonscattered states

~ N=!4 for wy inside the host band. So, the number of Bloch type extended states

e

will be approximately N3/4. On the other hand the width of the totally transmitting zone
goes as N~1/3if wy is at the band edge of the host system. Although the present calculation
of the width of the nonscattered states is an approximate one, qualitatively correct results
were obtained by this method in the case of RDM.!° Since the cases where resonances do
not merge are very similar to the random dimer case, we believe that results obtained from
the present analysis are qualitatively correct. Of course, a thorough analysis of such a width

and the nature of the states inside the width is desired. This will be presented elsewhere.

IV. CONCLUSION

A dimer being the simplest possible cluster does not offer any scope to improve upon the
width of the nonscattered states. It is, therefore, necessary to find random systems which are
simple but at the same time offer the opportunity to increase the width of the nonscattered
states by adjusting a few relevant parameters. If this can be done, random systems will show
enhanced electrical conductivity at low temperat;ures. Trimers in this respect are found to
be ideal in many ways. The structure of a trimer is not very complicated. Consequently, it
does not contain many adjustable parameters. Hence, it is possible to {abricate these trimers
to study their resonance property. For example, strained layers of Ge-Si alloy of different
compositon or Si can be grown on Ge to obtain adjustable potential wells.* So, equivalent
trimer systems can be prepared. Furthermore, symmetric trimers offer the opportunity to
tune the positions of the resonances. In the extreme case two resonances can be merged

at a single energy. This interesting feature of symmetric tritners makes them extremely

15

worthy of experimental ivestigations. It also remains to be seen whether this interesting
feature of symmetric trimers has any role to play in the anomalous electrical conductivity

in polyanilines and other related materials. This work is in progress.
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FiGURES

FIG. 1. Plot of transmission coefficient (| 7' |?) as a functlon of particle energy for Case V. (a)

€6 = =3,¢ =3, Vp = 0.8 (Solid line). (b-) €& = —3,, € = 1, Vo = 0.8 (Dashed line). (c) ¢ = -1,
¢ =1, Vo = 4 (Dot-Dashed line).

FIG. 2. Plot of transmission coefficient (| T [?} as a function of particle energy for the random
segment of length N = 10* for different conditions. (a)es = €q + €c, Vo = 1; here, ¢, = 0.6, ¢, = 0.4.

(b) &a =€ = €,y65 = € = (1 + V@)e,; here, ¢, = 1.1, Vo = 0.8. (c) € = €. = &/2,6 = ¢ and

Vo = 1; for this case ¢g = 1.0. (d) ¢o = g1 -2l -4)' with c,.='0.5 and Vo= 1.

FIG. 3. Same as Fig. 2(c), but ¢ = 1.8 and Vo = 1.

FIG. 4. Same as Fig. 2(d), but ¢, = 1.0 and Vo = 1.

FIG. 5. Solid and dashed curve corresponding to the rea! and imaginary part of the Green
function (G) with impurity ¢, and ¢, calculated at site a as a function of particle energy. The solid

straight line corresponds to G = ;‘.— Here, ¢, = ¢. =0.5and Vo = 1.

FIG. 6. Plot of reflection coefficient as a function of particle energy for the single cluster in the
host system for various values of eo/t,kwith‘ € = .0.5 (fixed) and Vg = 1. Here, two resonances will
be inside the band. (a) & = 2.4 (Dashed line); (b) & = 9 — 4 (3°%) (Solid line); this is the case
where two resonances merge at a single energy; () £ = 1.8 (Dot-Dashed line); (d) ¥ = 1.2 (Dot

line).

FIG. 7. Same as Fig. 6, but here at least one resonance will be at the band edge. Value of
¢ = 1.0 (fixed) and Vp = l.. (a) & = 3.0 (Solid line). Here, two resonances merge at a single
_energy (Band edge); (b) £ = 2 (Dashed line); (c) 8 = 1.5 (Dot-Dashed line); (d) 2 = 1.0 (Dot

line). Inset shows the analytical continuation of | r,(w)|? of Case (a) forw > 2.
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