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" REUNION AND SURVIVAL OF INTERACTING
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Reunion and survival probibililies of p random walkers in d dimensions with
mutual repulsive interaction are formulated via appropriate partition functions of
directed polymers. The exponents thét ‘describe the decay of these probabilities with

" length are obtained through renormalization gm;\p 1o O(e?), where ¢ = 2 ~ d. The
distribution function, and the probability of n out of p walkers meeting are also
discussed. To first order, the distribution function is a gaussian one modified by the
_Mmln;llmls exponent of V. The procedure is generalized to lllllh.i('!il-i-d':ll many body
“interaction. For these multicritical cases, the exponents are obtained to second order
in the relevant epsilons. At the upper critical dimcnsi'on of the in‘tcractinn there is a
logarithmic correction other than the Gaussian exponent. Aninteresting consequence

- js the log correction for one dimensional - walkers with three body repulsive interaction.
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A problem that quite often arises, e.g. in varions phase transitions, is to hind o
how the probability of reanion of a set ol mutually interacting (generally vepulsive)
random’ walkers decays with the length of the waik. We aré not unfamiliar with
such phenomena occuring in nature. One known examplé is the Commensurate -
Incommensurate(CI) transition {1, 2]. The dislocations present in the medium are
responsible for the creation and annihilation of the domain walls {1-3]. This physical
picture in terms of formation of loops of walkers kelps in visualizing the nature of
wetting traunsitions (1,2}, melting of commensurate phases {1, 2], the Ising model [6]
etc. Such loops are also relevant in the context of seif organized criticality as in Ref [7]
where they study the 'vril.iml behavior of directed abelian 2d sand pile model and 1d
voter II]Od(‘i. These repulsive walkers have been called vicious walkers. See Ref [1,2]
for more on one dimensional vicious walkers.

The particnlar elass of problems we like to add:ess in this paper involves the re-
union and survival probabilitics for a set of p random walkers. Given that p walkers
start at, say, the origin in the d dimensional space at time zero, we want to know the
probability that they will all meet (reunite) at some point r at length (or time) N, N
being very large [8]. For reunion anywhere, an integration over the end point coor-
dinate is required. Another quantity to consider is the survival probébility where at
time N the walkers can be anywhere in space. This requires independent integrations
of the end point coordinates, thereby encompassing the reunion case. Asymptotically
for large N, power law decays are expected. Such power laws generally signify uni-
versality in the sense of irrelevance of micorscopic details of the walks. Therefore,
for these universal asymptotics, one can choose a continuum description - and this is
where directed polymers (DP) come quite handy.

By treating the time or the length of the waik as a special dimension, a d-



dimensional random walker. can be viewed as a d + 1 dimensional DP. Defined in
a general way, directed polymers in d + | dimensions are random walkers directed
in a particular direction with entropic- fluctuations in the transverse d dimensional
space. This, in turn, means that a walker cannot come back to its previous d + 1
dimensional positions, signifying a self avoidance in-built hy its construction.

The relevance of directed polymers (DP) in the context of many physical phenom-
ena has made them an alive topic of an extensive research in statistical physics. For
example, the fluctuating domain walls in the uniaxial CI transition can be identified
as directed polymers in two dimension [1]. The flux lines in high T, superconductors
[9], polymeric nematics [10] etc are examples of DPs in three dimensions. DP in a
random medium is a topic of interest in the context of surface growth [11] and as
a simple model random system [12]. It is known already that several properties of
interacting DP s can be studled exactly using renormalization group { {RG) [13, 14].
We have shown-elseu here that even a randomly interacting system can also be treated
exactly [15]

The reunion probablhty of p vicious walkers in 1 dimension {equivalent to 1+1

dimensional, Dl’) was derlved using diffusion theory methods (2| but the whole ap-

proach was“’festrlcted to 1 dlmensmn only. In fact, the development of an approach

for higher dlmensnonal systems was remaining as an open problem.

Our mﬂ;lj mtenuon is to achieve results for arbitrary dimeusional systems using

the renormalization group(RG) technique. This is not really beyond reach. The
reunion probability for a system of two vicious walkers can be calculated exactly in
the renormalization group approach. It is, indeed, possible to resum [16] the whole
perturbation‘series in interaction, instead of renormalizing it. The solution obtained

through this exact calculation is, therefore, applicable to any dimension. However it

appeared that for a system of more than two chains such an exact resummation is

not feasible, and, therefore, RG approach turns out to be unavoidable. Such an effort
has been made here for a system of more than two chains using ¢(= 2 — d) expansion.
Though it is not possible to proceed exactly, formula upto O(¢?) could be obtained.
Some of these results have already been reported [17]. We provide the details and
several new results.

The natural tendency, infused by the success in the vicious walker problem, is
to extend the above problem to polymers interacting with multicr;tical many body
interaction [18, 19]. We ask the same question of reunion and survival for p chains
with m(< p) body interaction. The m = 2 case is the vicious walker problem. It turns
out that such a problem with many body interaction, which is relevant both in the
polymer context and in the wide regime of condensed matter physics, posscsses all the
mathematical and physical aspects of the vicious walkers case in a much more general
way. To obtain results for arbitrary dimensions we again use the renormalization
group technique.

Why RG? For nomnteractmg walkers, the exponents follow (sce below) from the
classic single walk (or a DP) result or purely from dimnensional analysis. The exact
1 +-1 dimensional results for vicious walkers show that the interaction do change '
the exponents (discussed later). The difference, to be called the anomalous exponent,
seems to violate dimensional analysis, and a length scale is needed to take care of this.
Here, the RG approach comes to our rescue. In this approach, the noninteracting case
serves as the starting point to explore the effects of the interaction as a perturbation.
The divergenges in this perturbation series are then cured through renormalization
by introducing a length scale that paves the way for the anomalous exponents.

Once we know how to scttle the divergence problem through RG, many other
questions can be answered. Specifically, the distribution function for the reunion

point, the probablitity that out of p walkers any n can reunite at time N. It is also
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possible to study the thermodynamic limit where we want to know the probability
of reuhion of say two walkers in a finite density of particles. The last problem will.
hé\i’é&'&r, be discussed elsewhere. o
: "I‘his paper is arranged as follows: In section II the model for p vicious walkers
s ‘pt/)ped. For convenience the relevant quantities to be evaluated and the procedure
7 followed for the cvaluation are formally presented here. In section 11 the exponents
S

6§ tEithion probability are derived. Section IV discusses the distribution function
for the reunion point, and the survival case is t;aken up in section V. The general
problem of n out of p walkers meeting at a point is discussed in section VI. Section V11
contains the description of the madel for many walkers with many body interaction

and the solution for the reunion problem. Conclusions can be found in Section VI

Mathematical details are presented in the two appendices.

I MabiL
Since we are actually interested in the asymptotic behavior (large length scale
liinit), we adopt the continunm al)br()nqix. Following the Edwards approach for con-
ventional polymers [20], the hamiltonian, in the path integral formalism, describing
p DPs with mutual repulsive interaction is given by[9]

, H _lz”: Nd- Jr.(z) 2+ Nd_(sv (. o
o r=32. ) 4 (% vo ). [ 4 (riy(=))- (2.

i=1 (b3

\vl}('rn ri(z) is the d dimensional position vector of the ith chain at the contonr length
'z micasured along the chain. This = is .thc stcplcnglll.f()r the random walker or
-tli¢‘ordinary polymer formed after. projection of the directed one in the transverse d
di;nensional space. lerer;(z) = r;(z)—r,(z) and .V is the total léngth of the polymer.

JFhe fiest term, which iimplies the chain connectivity; contributes the entropic part of

the Gaussian chains. The second term causes the viciousness ®f the chains through

a mutual equal time § -function repulsive interaction (vo > 0). If we consider this
hamiltonian as that of particles (quantum or random walker (21]), then z plays the
role of time. The first term produces the Wiener measure for random walks (or the
kinetic energy of the quantum particles), while the second term is the interaction
among the particles.

Viciousness. as introduced here by a §-function repulsion, allows intersection of
the polymers though at a cost of finite energy. Apparently this cost of finite energy
does not support, in the true sense, the reqnired mutual avoidance which can be
recovered only in the limit v — c0. A simple dimensional analysis tells us that vy
should always occur in the combination voN?~4, so that for d < 2 this quantity goes
to infitnity as .\ — co. cven for finite vo. In the RG approach, this scaling limit
is taken care of by introducing a renormailzed conpling constant that apbronch(-s a
nontrivial fixed poiut (# 0) value in the large length scale limit. In other words, the
R approach shows that the inite energy cost does pot alfect the conchusions as long
as we are interested in the macroscopic behavior of the system.

The quantity of interest is the weighted number or the partition lunction for p
walkers to be reunited once they start together (i.c z = 0) from some spatial point
considered, for simplicity, to be the origin in the d dimensional space. Formally this

can be written as

P

Zny(0) = / Dr e []18%(ri0))6" (e V). (2.2)

(|
Here f Prtakes care of the sum over all possible paths in this constrained partition
function. For simplicity the reunion is assumed to occur at the origin of the d dimen-
sional space. This partition function is basically the total weight of all possible walks

starting from otigin and reuniting again at the origin: The reunion at any arbitrary

point r. and reunion anywhere are described by the partition functions
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Zr,(r) = / Dr e~Hr TTI5ei(0)8*(e:(N) = r)}, and Za, = / d'r Zp ().

=1
(2.3)
Without the end point constraint imposed by the delta function for r;(N), the above
equation yields the partition function Zs, (survival probability). These partition

functions, for large N, show power law decays like

Zy,~ NVre (2.4)

where g stands for R and S. These decays define the exponents YRrp and ¢s,. For

Zgp, reunion anywhere, the exponent is denoted by ¥ .

B
A. Noninteracting chains
A noninteracting gaussian chain is described by the normalized pattition function

(“propagator™)
G(r|z) = (2xz)~?exp(—r?/2:) (2.5)

where r is the end to end spatial distance at length z along the chain. Zp(r), and
Zp,(0) are just products of such p propagators with same r for all the chains. Since

G is normalized,
Zs, = / [[id*riGies | M) =1 (2.6)
giving ¥s, = 0. The “gaussién" expo:'nents are, therefore.
Ysp=0, Yrp=pd/2, and ¥p, = (p — 1)d/2. (2.7)

These exponents, though follow from the frce propagator. Eq. 2.5 , can also obtained
from the definitions of the partition functions, Eqs. 2.2 and 2.3, by dimensional

analysis. These are therefore the cannonical dimensions of the partition functions.
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These “gaussian” numbers are to be compared with the exact d = 1 results for

interacting walkers [1]

—1 2
VYsp = p(pT)’ YRp = %, and ¥p, =

2 —
Pl (2.8)
We write ¥r, = pd/2 + n, with 7, as the anomalous exponent. Since ¥s, = 0 for

gaussian chains, this exponent is the anomalous part by itself.

B. RG

Renormalization group in statistical mechanics is used to understand the long
distance behavior of a system in arbitrary dimensions. Since our interest is basically
in the N — oo, the field theoretic renormalization group can be adopted [22].

The partition functions are evaluated bby a perturbation expansion, done dia-
gr;unmatically, in the coupling constant vy. The coeflicients are divergent at d = 2.
These divergcnc@ e;rc identified by evaluating the terms by analytic continuation in
d (dimensional regularization). The systematic removal of these divergences requires
a‘nultiplicative renormalization constant for the whole series apart from the reno-
malization of the coupling constant. This multiplicative renormalization constant is
the origin of the anomalous exponent 75, rerﬁiniscent of what happens in, say, the ¢*
theory.
~ Let us give the general argument in support of the presence of the anamalous
dimension from RG [22], taking Zp,(0) as an example. We define a dimension-
less coupling constant up = voL® where ¢ = 2 — d and L is an arbitrary length
scale. The renormalized coupling constant u and the multiplicative renormalization
constant Rg,(u) are defined in such a wa!y that the renormalized partif:ion function
Zrppe(Lyu, N) = Rpp(#)Zpp(vo, V) is finite and has a welldefined ¢ — 0 limit. (We

have, for the time being, suppressed 0 but made the dependence on the coupling



constant, L, and N explicit.) The price we pay (or the bonus we gain) is the L

dependence of Zy ..

The renormalization group equation, that originates from the coudition of L in-

dependence of the bare theory (i.e L 8Zp (v, N)/OL = 0), is

a
(Lﬁ + B2 - 27n.,(ﬂ)) Zas (L, u(vo, L), N) = 0 (2.9)
where
du a
B(u) = L3t and 2yp,(u) = A(u)7-1In Rpp(u)- (2.10)

The solution of the above equation at the fixed point u = u®, determined by 3(u*) = 0,

has a form

Zrpe(L,u", N) = L &(N, u") (2.11)

where v* = yg,p(u*). From the dimensional analysis argument and the above solution,

the NV depedence can be found out as

Bl Lo, Ny~ NA" (2.12)

where A is the cannonical dimension for the partition function.. The factor ¥°, {in
the exponent of N) is completely an outcome of the renormalization group analysis
and is not bredictable by the dimen;;ional analysis argument. This is the anmalous
dimension 7,. Let us repeat that an anomalous dimension can occur if and only if

the quantity in question requires a multiplicative renormalization constant.

III. AN ENSEMBLE OF VICIOUS WALKERS
For a detailed investigation we first study the case of reunion (at origin) of vicious
walkers. The partition function Zg,(0), Eq. 2.2, is expanded perturbatively in the

" coupling constant vo. {13, 14] The two cahin problem can be solved exactlyand is
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discussed in Ref. (15]. The diagrams upto second order in the perturbative series

are shown in Fig.1. The rules for evaluating the diagrama corresponding to the termsa

in the perturbative series are given below. The evaluation of the diagrams will be

perforined in detail in Appendix A.

A. Diagrammar

The rules for the diagrams are as follows: (i) Each solid line is identified as a
directed polymer represented by the gaussian propagator G(r | z) of Eq. 2.5. (ii) Each
of the dashed lines represents the equal time § -function interaction and contributes
—vg té the expression. At the point of interaction, the two polymers have the same
position and z coordinate. (iii) All the internal coordinates (spatial), i.e., the space
coordinates of the points of interaction are to be integrated over. (iv) Integrations
over the z coordinates of the interaction points are to be done. (v) Each diagram has
a symmetry factor coming purely from combinatorics.

The two integrations of steps (iii) and (iv) are needed because the polvmers
can interact anywhere in space and at any point along the chain. The ordering of
interaction points along the chain is to be preserved in doing t>hc z integrals. Such a
time ordering cancels out the factorial one gets from the expansion of the exponential.

All integrations are to be done by analytic continuation in d. A little reflection
shows that the integrals are divergent for d < 2 (see Appendix A). In the analyti-
cally co;\tinucd form, such divergences show up as poles at d = 2. A Laurent series

expansion is done in ¢ = 2 — d to identify the poles.

t
B. Zero and first order diagrams

With the above rules we now evaluate the diagrams for ZR,,(.O). T}\le first one is

the case of no interaction among the walkers and its contribution is (2x N)=?%/2, This

10



gives the gaussian exponent.
In the first order in vo there are two mutually interacting walkers other than p—2

gaussian walkers, Following the prescriplion given above, its contribution is

—(21rN)-P‘“vo/v""“(:)m>"”L2r((12——_%2) -

_(2x1v)-"‘/’4l7‘r3(;) (% +2hnz+ O(‘c)) , (3.1

where g = voL®, z'= 47 N/L?, and as before ¢ = 2 ~ d. Here the symmetry factor

%) is to take care of all possible combinations of walkers forming the interacting pair.

C. Second order diagrams
In the second order there are three different kinds of diagrams. The one in which
the interaction forms a ladder type configuration (Fig 1a.1) is simply the higher order

extension of the first order one. The analytical expression for this is

- ye P2
v3(2mN) QY am) N Frs =
(2,r1v)-v‘/’( ) (,)( +~31n:+0( )) A "(3.2)

There is another diagram in the second order that has two separate mutually
interacting pairs (Fig 1a.2). The contribution of this diagram (in a way square of the
first order one) to the perturbation series with the proper symmetry factor is given
by ‘

D41 - d/2) _

v(z;(Q,rN)—(pdﬁ).l_(;)(';’)N"“(47r)'d @ —d)

(21rN)""/’( r) e )(;8;+§lnz+0(l)>. (3.3)

Double counting is avoided by dividing the symmetry factor by 2.
The most crucial contribution comes from the diagram that involves three chains

connected by the interaction (Fig 1a.3). Evaluation of such diagrams requires a bit

11

technicality. The details are relegated to Appendix A. The final expression for this

connected diagram is given by

Gug(2m N ) PEN (A1) aFaé, 1~ €,63¢,1 —&3/4) +

d[r

(%) F[(‘i——c)e) g(g aFy(e,6,152¢,1 +63/4)} (3.4)

where ¢ = ¢/2, and 3F} is the generalized hypergeometric function [23,24]. Extracting
the poles in € requires a careful bandling of the singularities of the hypergeometric
functions. The technicalities can be found in appendix A. The relevant ¢ expansion

is

’ 8 2 3 8

~pd/2 (0 Shhs+= 1)}. 3.5

(27 N) ( ) 5(3)( ~Zing+ > Inz + O )) (3.5)
D. Partition function

Combining all the terms, we obtain the following perturbative series in terms of

the dimensionless coupling constant ug

Zry anfl Inz
R A A CP =

C 35 C
uj (4—- - —i)- In(3/4) + ir%e

ey Radypc In r) + oy (3.6)
where C = (5)[3+ (p—2)(p+1)].

The removal of the divergences requires renormalization of the coupling constan
used in the bare theory. Such a renormalization had already been done in connectio
with previous studies of virial coefficients of directed polymers [13, 14]. Thfe secon:
virial coefficient is related to the connected partition function for two ghains Sarith th

same hamiltonian as in Eq. 2.1 but with all ends free. Since it is the same system wit

identical two body interaction, the renormalization of the coupling constant remain’

12



the same. We, therefore, straightaway quote the series for the coupling constant from

Ref. [13,14] as
ug = u(l + ayu + azu® + ....), with g, = (27¢)7", Vp. (3.7)

This renormalization of the coupling constant is necessary but not sufficient to
remove the divergences of the partition function in Eq. 3.6. The presence of di-
vergence in the very first order term in up indicates that an overall multiplicative

renormalization constant, given by the series
Rpp=1+bu+bu’+..., (3.8)

has to be introduced. Since the divergence of Zp,p in the first order in ug is not
touched by the renormalization of u, b can be obtained without much ado by the

requirement of the minimal subtraction of the pole. Replacing 1y by u, we get
by = (3)(=e)™". (3.9)

In the next order, ug is to be replaced by the series in terms of u. Eq. 3.7, and

demand that R be such that the poles are removed minimally. This gives

_O@-p+1) 30) V ‘
by = 247— + 4;’( In(3/4). (3.10)

We are now in a position to evaluate the 4 and the v functions of Eq. 2.10. The
B function, which physically means the variation of the coupling constant with the

macroscopic length L, can be formally evaluated as
B(u) = ue [1 — u/(2re)). (3.11)

This 3 function is known exactly. The flow of the coupling constant with the change in
the length scale can be studied by looking at the stability of the fixed point u® = 2r¢

in différent dimensions [13,14]. Following the prescription of Sec. Il A the anomalous

13

exponent can be computed from the multiplicative renormalization constant. Using

Eq. 2.10
(W)= () X +30) 1a(3/4) - +0() (3.12)
TRs ¥ orx 3 4r?
which at the stable fixed point gives the anomalous dimension upto O(¢?) as
7 = 1rp(u7) = (§) €+3 (5) In(3/4) €+ O(c%). (3.13)

An important feature is that the three chain connected diagram in Fig. 1a.3 is
only responsible for the O(e?) contribution in 7. The other second order processes
where two chains talk to each other pairwise are important for renormalizability, but
do not contribute (o the exponent. For second order, three chains shouid collectively
be aware of their existences. We believe that this collective feature will be carried

over in higher orders also. The exponents are
Yrp=pd/2+1,, and ¥p, =(p—1)d/2 +n, (3.14)

with 5, given by Eq. 3.13.

E. Digression on RG
Beyond the simple algebra, there is still something that is of significance and can
also be used as a method for cross checking or self consistency. Using the 3 function

of Eq. 3.11, and Egs. 2.10, 3.8, ya,(u) can be written formally as
2p,p(u) = eulb + (2b; — by (27€)™t — Bu +..}. (3.15)

In general, b;’s are expected to have expansions of the type

= Zb:f (3.16)
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because of the condition of minimal subtraction of poles. Now, the finiteness condition

of yp,p(u) as ¢ — 0 puts stringent constraint on the coefficients b;,. E.g., substituting

the expansions for 4, and b; in Eq. 3.15, we require
2611 - b;ll - (21!')-1bu =0 . . (317)

for the coefficient of O(¢~?) term to vanish. This leaves behind only O(e~!) coefficient
that can stay in the O(u) term in the square bracket of Eq. 3.15 - remember. the ¢
outside in this equation. In other words, a consequence of the restriction of finiteness
of Yrp(u) is that only O(c'") terms can survive in the coefficient of each order of u
in Eq. 3.15. This, furthermore, guarantees that to find out n to O(¢?) it is sufficient
to know only the coefficient of O(u?) term, and so on for higher orders. We can now
turn the table around and use the finiteness criterion to predict or check the next
term in Rp,. The renormalizability of a model, therefore, means that the leading
divergence in € at a particular order in the perturbation series has to be completely
determinced by the lower order terms in the series. The universality class, as governed
by the exponents, is dc;tcrmined only by the O(e™") residues.

Of course, the above identity is satisfied by b, and & of Egs. 3.9, 3.10.

IV. DISTRIBUTION FUNCTION

An important quantity is the distribution function, Zg ,(r), for the reunion point
of p vicious walkers. This can also be thought of as the propagator, in a combined
fashion, for p interacting walkers meeting at r.

Had the walkers been noninteracting, the partition function is just GP(r | V).
The correction upto first order in the coupling constant, can be obtained with slight
modification of the steps for the evaluation of the partition function Zg,(0). The
only change required is the replacement of the last part of the propagators in the

evaluation of a diagram by G(r —ry | N — z;) which keeps r. It is straightforward to

15

show that the divergence in the first order is identical to that of Zr,(0). So, to O(u)
the renormalization constant Rgy{u) will be determined by the same b; as given in

Eq. 3.9. Actually, it is expected that the renormalization constant would be the

“same for Zp,(0) and Zg,(r) to all orders. The simplicity of the first order graph is

that the r dependence comes out as a G(r | N) as for the zeroth order term. This is
a feature that does not survive in higher order connected diagrams. We h;ve already
scen that to first order no renormalization of the coupling constant is required. No
harm is however done by replacing the coupling constant by u. We skip the details.

The renormalized partition function is given by

u 4rN
Zpppe(r) = G(r | N)V[l -—(;)2—7rln I } (4.1)
Reexponentiating the log term, we obtain at the fixed point u = u* = 2re,
. ' pr?
Zppp(r) = (2N P N L) exp (‘z—zv) .o (42

a.gasussian function modified by the anomalous exponent. This O(e) form is exact

for two chains (p = 2) for all € > 0. From exact results of Ref. [2], we see that this

" is also exact for all pat d = 1.

We have not attempeted to go to second order mainly because of the complexity of
the diagram of Fig. 1a.3. It is, however, easy to check that r dependence is no longer
in the simple exponential form. Previous results on the virial coefficients showed that
the r does not require any aﬁomalous dimension, neither does N, essentially because

of the absence of any self interaction. We, therefore, expect a scaling form
Zp e (¥) ~ N2+ F(e N1/ (4.3)
where 7, is given by Eq. 3.13. This immediately gives the result for ¥a,, as quoted

in Eq. 3.14.
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- V. SURVIVAL PROBABILITY

. Survival probability as defined in section II is the total weight of all posible
configurations of the vicious walkers originating from the origin but free at the other
end. Because of this, the diagrammatics also go through necessary changes - in fact,
the diagrams are much easier to calculate.

The zeroth order diagram is simply unity because of the normalized propaga-
tor. Similarly, the contribution from the nonintersecting chains is also unity in any
diagram. The procedure is identical to the reunion case. We just give below the

renormalization constant.

P-p+2 u? 2

4 (2me)?

u
(2)

V=14 () P 3 3 3
RS-»(F)~1+(1)2”5+(2) +§(§) 7, ln;+0(u ) (5.1)
The coefficients again satisfy the condition of Eq. 3.17. The crucial point to note is

that Rp, = R, and hence

ol
.

Ysp = sy = Np/2. ) (5.2)

;Usin‘g”the critical exponents Wp, and s, it was previously found in Ref. [17] that

the critical number of viciqus walkers (p.) that are sure to meet is 2 for d < 2 upto
0(&) [25]. )

The above scaling relation, especially the connection between the two renormal-
ization constants, has actually been. proved to O(u?). We believe that this is true
to all orders. One way of justifying this, is to cut the diagrams of the reunion case
at the middle to produce two diagrams of the survival type. The reunion diagram
is then a product of the two “survival” type diagrams witlh an integration over the
glued points. This remains to be established yet. A more s‘igniﬁcant outcome would
be that one can associate Rs,;, as the renormalization constant for a “vertex” from

where p chains emanate.

T
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V1. REUNION PROBABILITY FOR A SUBSET OF WALKERS
So far we have been considering the situation where all the chains meet. A
variation on this theme is a case where, as before, p walkers start together at time 0
but we want to know the probability of mating of any two. Complicacies arise here
because, before their reunion, each might have interacted with any of the remaining
p — 2 chains. The diflerence comes out even in the first order in € and we stop there.
The perturbative cxpansion in vy has the diagrams as shown in Fig 1b.1-3, in

which the third one is the important one. Its contribution is

F N4, 20 o/ (e/2) ~ . . .
(27 N) Cz:l:rz 2 T+ /9) 2P (1 —€¢/2,e/2;¢/2 + 1;1/2) (6.1)

where the combinatorial factor C; = 2(})(p — 2). When combined with the other

terms, the partition function Zg,2(0) is given by

- - 1)u
Zrpa(0) = (27N)7(3) ( 1 - =l — ) °) : (6.2)
Since the cocfficient of the O(u) term of the multiplicative renormalization constant is

identically equal to the magnitude of the coefficient of O(u) term in the above series,

the former is given by

-1
1+ L

u. (6.3)

TE

The anomalous exponent can be evaluated using Egs. 2.10 3.11 and Eq. 6.3 and it is
n=e¢lp~1)+ 0(). (6.4)
This agrees with the result of Eq. 3.13 for p = 2. It is possible to go to higher orders,

and unlike the p = 2 case, the exponent does not stop at O(e).

An extension of this analysis to meeting of n(< p) walkers is rather trivial. Only
change required is the replacement of (2rN)~% and C; by (2rN)™"¥/? and C, =

(°)n(p — n) respectively. The renormalization constant turns out to be 1 + n(p —

)u/(2re) + O(u?) yielding
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1 =en(p—1)/2+0(c") (6.5)

which agrees with Eq. 6.4 for n = 2 and with Eq. 3.13 for n = p to O().

VII. REUNION WITH MANY BODY INTERACTION

This is the case where only m number of chains can have repulsive interaction.

There is no interaction at points of encounters of less than m chains. Here also the
aim is to evaluate the exponent 95 ,. ¥, follows from YRy a8 discusséd in section
V For simplicity, we use the same notation as for the m = 2 case. The Hamiltonian
is now given by
P 2 m-1
H, = %Z/‘)Ndz (aia(‘—)) + Up Z/oﬂdz 15tz (71)
i=1 G} j=t
where the summation is over all possible m membered s;zts from p chains. From
dimensional Snalysis using the dimensioniess hamiltonian it is transparent that the
coupling constant v, becomes dimensionless at d = d, = 2/(1n — 1) which is the
upper critical dimension for this multicritical prohlcu.l. (18, 19] To derive an ¢, =
2 —(m —1)d = (dw — d)(m — 1) expansion for thc anomalous exponent we again
perform perturbation expansion in the coupling constant v,,. As before dimensional
regularization is performed to identify the poles at the upper critical dimension d.
The generalized approach follows identically the procedure for. p vicious walkers
i.e. the two body interaction case. Not much technicality is involved in the evaluation
of the first order ;iiagram in vy, (Fig 2a). In higher orders there are complexities arising
out of the connected diagram that appears first in the second order. As shown in Fig
2b-d, in the second order, the‘import;ant diagram involves m + n chains with n going
from 1 to nma = min(m — 1,p — m). At the end we need to do a summation over
all possible values of n. Finally, the result can be verified with the known results for

m = 2. Another elegant check is to use the convergence criteria for the anomalous
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exponent as a tool and observe whether the magic cancellation, mentioned before Ec

3.17, occurs here also, as it should.

A. Ladder diagrams

We now proceed to the evaluation of the ladder type graphs (Fig 2a-c) corre
sponding to the perturbation series. The first order graph with m chains and the tw
graphs in the second order nvolving m and 2m chains respectively do not require an
new computation. The basic structure of these graphs is identical to those of sec. Il
except for the replacement of the two interacting chains represented by G?(r | z) b
G™(r | z) [sce Appendix B]. We shall skip the details and state the results straight
away with proper syminetry factors. The contribution from the first order diagrar
is

U oy~ pe a2 Teml2) . ,
—(1’,,)7(;(231\) "‘“(4(11\1)"‘“—[‘((—(;-[)7-, (7.2

where o = znMm=D72 which is 7 for m = 2.
The second order graph, in which two independent groups of mn walkers are con
nected by interaction (Fig 2c), gives

[(cn/2) ‘
1‘2(("‘) ’

]
%(fu)(p;.m) (%) (‘27rN)_"d/2(40N)‘"‘

The ladder type diagram (Fig 2b) in the second order involving a group of m chain
yields

P(en/2)

G (§2) @xNy o Ny,

10

B. Nonladder diagrams

There is one more graph in the second order which involves ;n + n chains. Detai

of its derivation is given in Appendix B. This graph ends up with identical difficult
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related to the convergence of hypergeometric functions as in the case of vicious walkers
in sec. [I1 C and Appendix A. With some special care, this problem can be tackled to
extract the leading singularities.

The O(¢;?) term turns out to be n-independent and is equal to 8¢% The sum-

mation over n is then just a sum over the combinatorial factors as

Nmax

Z(M.. (AR = () = GG = ()

(7.3)
g " PRI 0T e e
where the first term on the right hand side is just the free combinatorics for the two
vertices while the last two terms subtract out the two types of sccond order ladder

graphs discussed above. The cancellation of the coefficient of O(e7?) in ya,(u) now

turns out to be obvious.

From the previous RG analysis after Eq. 3.15 it is clear that the contributing -

parts to the exponent are basically the ¢;' terms in the second order diagrams.
As we expect, the O(e2!) term comes from the connected nonladder diagram. The
. magnitude of this residue is also the coefficient b, of the renormalization constant.

The O(¢;1) term of the coefficient of u? is —tpm/(40%€m) where

=m0z r v (5 ) (1] 4

'lm-l
2 Z ) ORI )[7+w( ) Ry(n,m) — R,(n,m)] (7.4)
n=12
where v is the Euler gamma, (o) is the polygamma function,
m+n m n—1 n? .
Rl(ﬂ;m)— m? JFz(l.l,m_l,z,z—m_l,l—m), (I.Oa)
l-n n n? A=t
m=B{—= -2 _V(1-
'R1(n m) (m—l m—-l) (1 m’) X
-1 2
?Fl( lm 1!4‘ llil—r:>. (7.5b)
For m = 2 we get back the vicious walker results because of the fact that ¢(1) = —+.
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The renormalization of the coupling constant is, again, known Zom virial coefli-
cients [18,19). Taking un, as the renormalized coupling constant (defized as v, L*™), it
is given by a series of the type Eq. 3.7 with a, = (20¢€,) 77, and the 3 unction is given
by Eq. 3.11 with u/2x replaced by u/20 and ¢ by €. As a matter of fact, once we
are satisfied with the cancellation of the O(e;;?) term, the details of renormalization

need not be carried out. The anomalous exponent follows as

Mp = (fn) €m + tpm Crzn + O(C?n) (7-6)

For p = m, the exponent stops at O(en) (16], and, in fact, like the 5 = m = 2 case,

the RG is exact.

C.d=dn
At d = dn,, the fixed point diagram and the stability analysis show that the
coupling becomes marginally irrelavant. The integration of the 3-fuz:tion tells us the

length dependence of u, and at d = 2, we find

Uo

1 + (uo/20) In(L/ Lo)’

um(L) = (7.7)

where 1y = um(Ly). For large L., u,, decays as (In L/Ly)~". The RG equation then

produces
Zry ~ NP Dy In(N/Ng)) ). | (7.8)

Even though the coupling goes to zero in the long length scale regizie, the behavior
is not that of a noninteracting case. The log correction, which does not affect the
gaussian pb\ver law, is the remanent of the repulsive interaction.

For m = 2. the result agrees with Ref {17}, and also with the exact result for
p = m[106]. An interesting consequence is the log correctfon for p walkers in 11

dimension because d = 1 for m = 3. The RG prediction; that fo.iows from the g
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function and ¥, is Zr, ~ N7P/3(In N)=G). This could be checked casily on a lattice

numerically..

VIII. SUMMARY
Using the analogy with directed polymers, we have obtained the decay exponents
of the reunion and survival probablilities or the partition functions of the interacting

DPs, to second order in € = 2 — d for two body interaction. This has also been

Ce e pyy

géncralf;ed to multicritical rr;;ri‘)'body interaction for which the expansion parameter
i3 €m = (m — 1)(dm — d) where dn, = 2/(m —1). We expect in this case, as explained

in section IV, the survival exponent to be half of the reunion one of Eq. 7.6. For the

two body interaction we have also studied the distribution function and the question A

of reunion of a subset of walkers. These are done to O(¢). For the subset reunion
case, the O(e) correction does not enjoy a simple combinatorial interpretation unlike
the case of reunion of al4l the chains. Our analysis also yields the log corrections to
the exponents at the upper critical dimension d,,. Explicit results arc given for two
body interaction in two dimensions and three body interaction in one dimension.

It would be interesting to get these exponents on fractals. Since our procedure can
be extended without much difficulty to higher orders, this gives a rare opport.unity
of comparing results of ¢ expansion based on the idea of analytic continuation to
nonintegral dimensions and on fractals which are well defined nointegral dimeasional

entities.
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APPENDIX A: EVALUATION OF A FEW DIAGRAMS FOR VICIOUS WALKERS
In this appendix we evaluate the diagrams shown in Fig. 1 with necessary details.
The mathematical expression corresponding to the first order diagram, as per the

rules of Sec. IIT A, is
: N
J = —v0(27rN)’(”"2)"“/ dz, /drl G*ry [N —21) G¥ry | 21) (A1)
. 0

The symmetry factor (5) which counts all possible pairings is not considered. This
expression can be simplified by using the following identity for the gauassian propa-

gators
G(c|5) = @ra) oG o). (A2)
We use the Markovian property for the propagators
/dr G(ry —r]2)G(r=r2| 22) =G(ry — 12 | 21 + 22) (A3)

to perform the integration over the space coordinate in Jy. Finally we are left with

the task of evaluating the integration over length = as

N
Jy = —uo(27N) =226 (0 | N/‘Z)(4rr)‘°‘[ dzy (N = )92

-df2 [‘2(1 — d/'))

T2-d) ° (A1)

= —vo(2x N) PN (4x)

as qouted in Eq. 3.1.
Next, we evaluate the ladder type diagram involving only a pair of walkers with

two succesive encounters. This can be written as

Jo = vg(Zm\/)"("z’d“fc:v dzy J7' dzg [ dey [ dry GP(ry | N — 2) %

G*(ry — ra | 21 — 22)G*(r2 | 22). (A5)



Performing the spatial integration over r; and r; using Eq. A2 and the Markovian
property we obtain

. N n
Ja = 3 (2a N) P92 (41) =32 G0 | N/2) [ dz, / dzy (N = )¢
. 0

&

(21 2) 7327 (A0)

which finally gives Eq. 3.2.

Now let us turn to the third diagram which connects three chains. This diagram

Jy= vl 2r NY PN (4r) 4T = vlGPY( 0|N) / dz, / dz; / dr, / dry x
Glin | N = 2)G(ri2 ) 212)G(r1 | 2))G(r2 | N — 23)G(r; | 22) (AT

where 2y2 = 2y — 23. After completion of the spatial integration using the identities
of Eqs. A2 and A3, we are left with integrations over z; and z;, a bit complicated

because of the connected nature of the graph. We obtain

1 ' 1 . .
J= / da (1 - z,)’d“z,""-’/ dzy 2371 = (321 + 1) 472 (AS)
(/] S /]

The integration over z; is in t!ié form of the Euler representation of the hypergeometric

fuhc;tiqn so that

L T(1-dj2 | <o 1a p, (4 d, (_1_3:.+1)
‘ J= *P(2 d/2)/ dZ](l Z) Fl 1—2 —2, 1 . (r\g)

Before proceedmg further one should be cautious. Eventhough it looks tempting to
substitute the series expanswn fpr the hypergeometric function and perform integra-
tion term by term, the problem at the upper limit of the integration should be noted.
The series expansion for the“.‘l'lnlypergeomet.ric function is not valid when the variable
becomes unity. This problemcan be bypassed by analytic continuation. Exploiting

the following transformation f(érmula for the hypergeometric function [24)

L%

[(c)F(c—a—b)

I'c—a)l(c—b)

(el (a+b-c)
P(a)l'(b)

which renders the argument always less than unity through out the domain of integra-

2Py (a, b5 2) = 2F(a,bia+b—c+ 151 —2)+

(1 =2z WFilc—a,c=bjc—a—-b+1;1-2), (A10)

tion, in I2q. AY, the remaining zy integrations can be.carried out. 'T'he final expression

i8
r3(c/?.) € € € 3¢ 6‘3
=@ (5*‘“§v§’7,1—2,;>+
/2
3) D=/ IHe) 14 &3
(.1) T(1 = ¢/2) T(2¢) 3F; 6,6,1,26,1+2,1 , (Al1)

where ¢ = 2—d and 3F) is the generalized hypergeometric function [23]. The reward,
after all this, is the immediate retrieval of the O(e~?) term. The subleading term is

also not much of a problem now if the limiting forms

- A € € Je (_3 _ €. 2 .
31’2 (E,l - 5,5,?,1 —‘,—2,3) =1 +51n4+()(c ) (\l.!a)
and
€3
3f2 c,c,l;?c.l+§4 —1+—ln4+0( Y, (Al2b)

obtained from the series cxpansion, are used. The final resuit is given in Eq. 3.6.

APPENDIX B: CONNECTED DIAGRAM OF FIG 2

This graph amounts to the following expression

N 2y .
v G| N)/ dz./ dz,/dr./dr,[c'"(r,uv—z.) X
0 (1]

G™ ™ (ri2] 213)G™(r2 | N = z2)G™(r1 | 21)G™(r2 | z2)].  (BI1)

where r;; =r, —r; and 73 = z; — z3. The identity in Eq. A2 reduces the powers

of the propagators to unity. We furthermore use the following relation
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G(r | a)G(r |b) = [2n(a + )] *G(r | =)

(B2)
which leads to the following form for the integrand in Eq. Bl

(2")-d(3m+n-3)/1(m_ n)-d/l[(N _ zl)zll-d‘m-l)n[(N - zg)zll-d(n—l)/‘l x

(212) "m0 (uy)2G 0y | (N = 2)24) G113 | BL)G(ry | (N ~ 22)22v).(B3)

m-—n

where u~!

= Nn—zin+mz, and v~' = mN —mz; + nz;. Use of the Markovian
property to perform the integration over the spatial coordinates ry and r; with rescal-

ing of z;,2; by N, produces

2
(2#N)‘"‘/7%(4QN)""1, (B4)

P
where ¢ = xm!/(m-1)/2 and
‘ 1 i (I
I =/° dzy(1 _‘:l)—ﬂm—l)/'zzll—(m-l)d./o dzy(1 — z3)~4m=n=12=dim=1)/2
(1 = 2220) 74 2(1 — z5(n® + m?z, = n?z))/m? 42 (B5)

Theintegration over z; can be performed casily using the standard Euler type formula,

to get [23]

1
- m . d d
I= A/ dzy(1 = z,)~Hm=0/21=(m=1d C—,ﬁ, —iem N2, 5 (B6)
o 2 2 2

where F) is the first Appell function (multiple hypergeometric function) of two vari-

ables [24, 26),
A = Blem/2, (em +nd)/2), 7i = (n — 1)d/2,

apd

2

m+21(1—

n

2
n
2)'

) = —
m

B(z,y) = [(z)T'(y)/T(z + y) being the standard Beta function. The Appell function

has the following series expansion

27

+8)(b, 5)(b2,2)
(c, s+ t)s!t!

1‘*|(a, bh bz; C, IhII) = Z (ay 3

s,l=0

7} (B-'T)

- for | 1 |,| z2 |< 1. The short hand notation (a,b) = [(a + b)/[(a) is used. This

integration requires special attention since at the upper limit both the variables of
the multiple hypergeometric function become unity. Using a standard transformation

rule for hypergeometric function of double variables [26], namely

T(c)T(a +b;—¢c)
[(a)l(2)

Fl(c—a,b,,c—bl—bg;c—a—-b,-[_ 1,

L(c)l(c—a—b)
[(c—a)l(c-b)

Fi(a,by,by; c;11,20) = (1- Il)'b‘(l - Iz)c—a—bz %

1 -z,
1—11

y 1- 1‘2) +
F)(a,bl,bz;c‘—bz,l—C+a+b');l‘1,l—1'1) (BS)
F, being the second Appell function [24,26], we obtain [ = I) + I, where

1
hh= Al/ dz (1 —z)="temt x
0

€m +nd _ €m n? .
Fy( 5 ,n.cm;7+n+l;l—;,l—z.), (B9a)
and
1 .
11= A’;/ (i.ﬁ(»l"' 2[)‘"'/2_l2{"'—1 X
1]
Falen/2,7,d[2€m +11,1 — €,/2 =115 21,1 — &) (B9b)
where
2 em /241
A = (1 - 572) B((€m + nd)/2. —em /2 —11) (B9c)
and
A2 = B(en/2 + 12, €n/2). (B9d)

The first term, Iy, is free from the above mentioned problem at the upper limit of

the hypergeometric function, whereas the second term should be treated in a different
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procedure because of the first variable in the hypergeometric function. The integration

over z; in I; gives [27]

I €n/24 nd[2 :€my€Em;ini; 2 2
L =4 (‘""P,‘,’; / / ’ 1-n-= (B10)
I(2em) emf2+7+1 1 26n; m m

where F,‘f,’;,' is the Kampé de Fériet function [26,27]. The series expansion for /, is

L adh Mo b g Eh A o Frin ﬁnmmn.,

_ n_2 O D(—€m/2 =) (em/2 +7i + 1)
h=(1- m') FI(E/2) -
T(em/24 nd/2 + 5 + )% (en + 8)[ (7 + t) n
Z Flem/24+R+s+t+ 1) (2¢m + 5) ltl(l__> (B11)

m?

2 st

This straight away reveals the O(¢;?) singularity from the s = ¢ = 0 term. but only

forn = 1. All n's however contribute to O(e,,~'). The relevant expansion is

11—"‘12‘—(— 7+V( lyl>+ln< ——1)+R( )}+0(1)(f0rn=1)
=£—'Rq(n,‘m)+0(l) (forn > 1), (B12)

where Ry(n, m) and R,(n,m) are defined in Eq. 7.5a,7.5b.
In Iy, the difficulty is with the first variable z; which can be sepcrated out into a

hypergeometric function as

4 Fi(em/2,7,d/2en + 7,1 —€m /2 =7, 21,1 = £) =

(d/2,5)(em/2.8) (1 =2)°
2.: (1 —en/2~7,8) 8!

1P (em/2 + 3,18 €m + 115 21) (B13)

Next step is to divide the range of integrati(;n into two equal parts, [0.1/2] and
{1/2, 1]; These two parts will ’l?e denoted by Iy, and Iy,

For ln, one géts rid of the trouble in performing the series expansion in the
by pergcometrlc functionof variable z; and can integrate term by term. This procedure

lea.ds to a sum of incomplete Beta functions of variables €, +¢ and €, /2 + s where t
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is the summation index used for the expansion of the hypergeometric function. Using
the connection between the incomplete Beta function and hypergeometric function,
we finally obtain

2—(m—t
1,,=,1zz —Filen 48, 1 —€m/2 = 8y€m + t +151/2) X

(d/2,5)(en/2, s + )i, 1) (1__"1) L By

(14 €m/2 — ¢, 8)(ney t) m?) sl
where n, = €, + .
As before, n = 1 and n > | cases are to be treated scparately . The O(¢;?) term

comes from s = t = 0. The expansions are

1'“:12 +61 \,1(1,"‘!)“‘0(1) (forn= 1) (8153)
=c_i - ;1— [7+¢(n 1) —R.(n,m)] +0(1) (forn>1). (B15b)

For [ involving fll”, we use the transformation rule for the hypergeometric
equation that was used in the context of p vicious walkers to avoid identical problem
with the series expansion. The transformation formula leads to two hypergeometric
functions of variable (1 — z;) each of which is regular through out the domain of

integration. After this substitution one can verify that
Iy = Iy + Iy2a. (B16)

where

! - [(s-)T(n) .
- PR 2 D el Pl Sutllnl ShA T 7 “1—g 1=
Iy = E' A,]m(l ) 3 (e )I( 3_)2F|(s+,71,1 so;l—12)

(B17a)

! et em1 L (n)T(=s-) .
I = Z 4. _/:/2(1 —-z) ':| l__~l’(s+)l‘(ﬁ) 2P+ s, 6mil F5oi—15)

(B17b)
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where ]
d/2,5)(em/2,3) 1 Y -
A'=A2((l—{—c,:)/+—/n,?) Pl (l—%) , and 33 = /23, (Blic)

_ At this stage use of series expansion is perfectly alright. The final result again comes
out in terms of incomplete Beta function which after converting-into hypergeometric

function yields for the right hand side of Eq. Bl7c

DT (snadig) 27040 Flg4sy) o
1 = ) A reetr) (L 500) (G757 @ (B18a)

L d e a

¢)F(—5 ) ("c-5+y<1)(<m.l1) 27t f((m +q)
Im-ZA. Cs)0@)  *(1+s.,9) (en+q) ¢ (B18b)

where ¥
F(z)=201(z,]1 — €m; 1 + 1,1/2)

" The useful observation here is that for leading singularity i.e. O(¢;?), the first terms
[= 1] in the expansions of the hypergeometric functions are the only relevant ones.
To search for the lower order singularity i.c. for O(¢;!) terms, one has to consider
separately the higher order terms in the expansion. \We quote the scries retaining

- terms upto O(e;!).

8 +0(1) (forn>1) (B19a)

I ===
(

I2=0(1) (forn=1) ' (B19b)
2 1 -1
=—£T—e— [7 ¢( )—R.(n,m)] +0(1) (for n > 1). (B19c)
Combining all the terms we obtain

=8 2 [7+¢(%)+ln (1 _$>] +0(1) (forn=1) (B20a)

€ €m
: 8 2 n—
(for n > 1), (B20b)
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FIG.1. (a.1-3)Second order diagrams for reunion of p chains. For clarity only 4 chains ‘\\_.Z/’/ \"*i / \Z/
are :l.ho.wn. (b.l) Zeroth order diagram for reunion of n chains with the remaining p — n (Zl. 1) (8.2) ' (,3_3)
" chains freeat z = N. (b.2-3) Two possible first order diagrams.
- ¢FIG. 2. (a) First order diagram for m-body interaction. (b,c) Two ladder type second \ ?
3 \
order diagrams. (d) A nonladder diagram involving m + n chains. Here m = 4,n = 2. For \ //
P \ -
clarity, noninteracting chains are not shown. The dashed lines represent m body interaction. \ // 3 \ i
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