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REUNION AND SURVIVAL OF INTERACTING 

WALK8H.S 

Sutapa Mukherjj· and Somendra M. Dhattacharjee·· 3 0 
Instill/Ie 0/ Physics, BhuooneswlIr 751 005. I"dill 

Reunion and survival probabilities of p random walkers in d dimensions with
 

mutual repulsive inlf'radion are formulated via appropriate partition functions of
 

directed polymers. The exponents that describe the decay of these probabilities with
 

l,'n~th ar" nhtain"" lhrnlll\h r"nl1rlllaii~ati"n ~rl1l\l' In 0(,'). wlll'rl" " 2 - d. '1'1",
 

distribution function, and th~ probahility of n O\lt of.p walkers ml'din.; Me also
 

discussed. To first order, the distribution function is a gaussian olle modified by the
 

anulII:duus f·.XPllllf·1I1 IIf N. TIIl'llCnr,',lulo is l~"""r"lizl',lto lIIuh.inilil'"IIILIII)' 1""ly
 

'intl'raction. For thl'sf' multicriticaJ cases, the exponents arc ohtained to sl'concl ordl'(
 

in the relevant epsilons. At the uplier critical dimension of the interaction there is a
 

logarithmic corn'ction other than the Gaussian exponent. An interesting consl',!uence
 

:: ;is the log correction for one dimensional~alkers with three body repulsive interaction. 
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r;,"dorn walkers decays with tile length 01 the w;\ik. We an' nOl ulllamiliar with 

such phenomena occuring in nature. One known example is the Commensurate ­

Incommensurate(CI) transition [1,21. The dislo(";\lions present in the nle<lium arc 

responsible for the creation and annihilation of the domain walls [I-·jl. This physical 

picture in terms of lormation of loops of walkers helps in visualizing the nature of 

weUing I.ransitions [1,21. melting of comrnensuratf' pha.~es [1,21, the Ising mood [61 

etc. Sud, loops are also relevant in the context of 5('if organized criticality as in Ref [7/ 

wlH'''' tl,,'~' '1.lIdy t.1I,· cril.i..,~ll)('h.wior 01 .I in'elf'c! .,b"'ian 2,1 sallc! pil,' 1I11"kl anel lei 

voter lIIodel. These repulsive walkers have been cal~ed vicious walkers. See Rd [1, 2J 

for l1Iore on one dimensional vicious walkers. 

'I'll .. partif'olitr dass or prllJ.lems we like to ;"1,):.·,, in this pap"r invol,"'s till' p'. 

nnion an"sun'i"al probabilities for a set of l' randum walkers. Gi"en that p walkers 

st.art at. say, till' origin in the cl dimensional space at time zero, WI' want to know the 

Ilrobability that they will all meet (reunite) at some point r at length (or time) X, N 

h"iug vcry large (8]. For reunion anywhere, an inte~ration over the end point coor· 

dinate is required. Another quantity to consider is the survival probability where at 

tillle N the' walkers can be anywhere in space. This requir"" independent integrations 

of th" enel poiut coordinat.es, the~hy enwmpa.ssillg the reunion case. Asymptotically 

for large N, power law decays arc expected. Such ;J0wer laws generally signiry uni­

versality in the sense of irrelevance of micorscopic details or the walks. Therefore, 

for these universal asymptotics, one can choose a continuum description. and this is 

where directed polymers (DP) come quite handy. 

By treating the time or the length of the waik as a special dimension, a d· 
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dimensional random walker can be viewed as a d + 1 dimensional D P. Defined in 

a. general way, directed polymers in d + 1 dimensions are random walkers directed 

in a particular direction with entropic fluctuations in the transverse d dimensional 

SpAce. This, in turn. meanll that a walker cannot come back to its previous d + 1 

dimensional position5, signifying a self avoidance in-built by its construction. 

The relevance of directed polymers (OP) in the context of many physical phenom­

ena. has made them an alive topic of an extensive research in statistical physics. For 

example, the fluctuating domain walls in the uniaxial CI transition can be identified 

as directed polymers in two dimension [1]. The flux Hnes in high Tc superconductors 

[9], polymeric nematics [10] etc are examples of DPs in three dimensi0!1s. 01' in a 

random medium is a topic of interest in the context of surface growth 1111 and i\.'1 

a simple model random system [12]. It is known already that several properties of 

interacting OP's can be studied exactly using renormalization group (RG) [13,14] . 
.r.A~-\' • .' - • 

We have shown elsewhere that even a randomly interacting system can also be treated 

exactly [15]. 

The reunion probability of p vicious walkers in 1 dimension (equivalent to 1+1 

dimensionafOP) was derived using diffusion theory methods [2] but the whole ap­.;.;, -. . 

proach was4i-~·t·rieted to 1 dimension only. In fact, the development of an approach 

for higher dimensional systems was remC!-ining as an open problem. : 

Our maJn:1~tention is to achieve results for arbitr;;lry dimensional systems using.. ~" 

the renormalizatioD group(RG) technique. This is not really beyond reach. The 

reunion probability for a system of two vicious walkers can be calculated exactly in 

the renormalization group approach. It is, indeed, possible to rcsum [16] the whole 

perturbation series in interaction, instead of renormalizing it. The solution obtained 

through this exact calculation is, therefore, applicable to any dimension. However it 

appeared that for a system of more than two chains such an exact resummation is 
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not feasible, and, therefore, RG approach turns out to be unavoidable. Such an effort 

has been made here for a system of more than two chains using f(= 2 - d) expansion. 

Though it is not possible to proceed exactly, formula upto 0«(2) could bc obtained. 

Some of these results have already been reported [17]. We provide the details and 

Ilr.vcral ncw rcsultll. 

The natural tendency, infused by the success in the vicious walker problem, is 
·f 

to extcnd the above problem to polymers interacting with multicritical many body 

interaction [18, 19]. We ask the same question of reunion and survival for p chains 

with m( < p) body interaction. The m = 2 case is the viciolJS walker problem. It turns 

out that such a problem with many body interaction, which is relevant both in the 

polymer context and in tilt· wide regimc of condcnsed nlalter phY:li(:~, P0:l:lC:lllCS all the 

mathematical and physical aspects of the vicious walkers case in a much more general 

way. To obtain results for arbitrary dimensions we again use the renormalization 

group technique. 

\Vhy RC? For noninteracting walkers, the e.xponents follow (sec below) from the 

classic single walk (or a 01') result or purely from dimensional analysis. The t:,xact 

1 +-1 dimensional results for vici?u:_ w~lkers show that the interac~}~n do change 

the exponents (discussed later). The difference, to be called the anomalous exponent, 

seems to violate dimensional analysis, and a length scale is needed to take care of this. 

Here, the llG approach comes to our rescue; In this approach, the noninteracting case 

serves as the starting point to explore the effects of the interaction as a perturbation. 

The divergences in this perturbation series are then cured through renormalization 

by' introducing a length scale that paves the way for the anomalous exponents. 

Once we know how to settle the divergence problem through RG, many other 

questions can be answered. Specifically, the distribution function for the reunion 

point, the probablitity that out of p walkers any n can reunite at time N. It is also 
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possible to study the thermodynaIllic limit where we want to know the probability 

of reunion of say two walkers in a finite density of particles. The last problem will. 

h~wever, be discussed elsewhere. 

This paper is arranged as follows: In section II the model for p vicious wal kers 

is .p~~ed. For convenience the relev~nt quantities to be evaluated and the procedure 

followed for the evaluation are formallycpresepted here. In section III the exponents 
. \ 

· ..··,·t6rt~ltmon probability arcderi"ftL 'S(~dion IV discus~s the distribution function 
; 

for the reunion point, and the survivaL ca:w is taken up in section V. The gl'nl'ral 

problem of 71 out of p walkers meeting a.t a point is discussed in section VI. Section \'11 

contai()s the description of the Inqdel for many walkers with niany body interaction 

and the solution for the reunion problem. Conclusions can be found iIi Section \'111. 

~talhemiltical details are presented in the two appeudices. 

II. \1 () () 1:1. 

Since WI' are actually int.<,[l-sted in thl' asymptotic behavior (btr~l' kru~tll ,calc 

limit); we a(lo(>t tire contillunln approach. Following the Edwards approach for con­

\'entional polymers [201, the hamiltonian, in the path integral formalism, dc,crlbing 

p DPs. with mutual repulsive interadion is gi\'(~n by[91 

1 p!", (Dr'(:;l)1 iN 
Hp == 2L io dz --a;- + Po ~ d:: S(r;)(::)). (2.1 ) 

,=1 0 ,» 0 

W'l<'r~ l-j(z) is t.lll· d dillll'n,ion;tl posit.ion \'('dor of till' itlr chain at tIll' contour klll;th 

:: nlt'a:lllfed along tire chain. This:; is the steplcngth for the random walh('r or 

lhe'ordinary polymer formed after projection of the directed one in the transwrse ,j 

di~ensional space. Here ri;(=) == ri(z)-rJ (=) and .V is the totall~ngth of the polymer. 

Thl! first I.p.rm. whirh irnplit>s tlr., chnin l"onlll'cti\'il)/; cot\trihllh'~ t he entrapit': pnrt of 

the Gitlissian chains. The second term causes the viciousness Qf the chains throllgh 
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a mutual equal time fJ -function repulsive interaction (vo > 0). If we consider this 

hamiltonian .1$ that of particles (quantum or random walker [21]), then z plays the 

role of time. The first term produces the Wiener measure for random walks (or the 

kinetic energy of the quantum particles), while the second term is the interaction 

among the particles. 

Viciousness. as introduced here by a fJ-function repulsion, allows intersection of 

the polymcrs though at a. cost of finite energy. Apparently this cost of finite energy 

dol'S not support, iu thl' true sense, the required lIlutual avoidan('(' which can 1)(' 

recovered only in the limit Vo --+ 00. A simple dimensional analysis tells us that Vo 

should always occur in the combination voN2-d, so t.hat for d < 2 this quantity goes 

to infitnity 01.<; .\' --+ 00, even for finite vo. In the RG approach, this scaling limit 

is takf'll care of by introducing a [l'norrllailzed coupling constant that approaclws a 

llOllt ri\'ial fix('(1 point (~ 0) value ill the large lengt h scale limit. In otlwr words, the 

Il(: "1'1'11 1.1' It ~.IIIl\\·:; f II.d. t lit' lilliit' I'llt'l~y co"t dlH'~; Ilot ;,,11-1'1 till' t'l,"l'\II:;ioll:; OI,'j 11I1I~ 

;L.'i \\"(~ are interested ill t he macroscopic behavior of tire system. 

TIIf' q\lalltity of interest is the weighted lltlm!H'r or t.he partition function for p 

walkers to IH' r('\lllited once th('!"start togl'l.lrer (i.e:: = 0) from some spatial point 

l"Ollsidered. for silllplicity, to be the origin in the d dimensional space. Formally this 

can bl' writtell as 

Hphll,I'(O) = f Dr e- IT[hd(r;(O))hrl(r;( N))I· (2.2) 
"I 

lI('r(' JDr t.ak('s care of the SIIIIl OV('r all possible paths in this constraincd partition 

function. For ~irnplicity the reunion is assumed to occur at the origin of the d dimen­

sionill ~flace. This partit.ion function is basically the total weight of all possible walks 

~Llrt.in~ frolll otigill and l'ellltiti/l~ iI~llin Ilt thr. nt;'~ifl. Th(~ rflUlliort ;\t AllY Mhitr"l\f'f 

point. r. and reunion anywhere ar" described by the partition functions 
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HZR,,,(r) =J'Dr e- " O[6d(ri (0))6d(ri (N) - r)], and ZR,,, =J~rZR,,,(r). 
.=1 

(2.3) 

Without the end point constraint imposed by the delta function for ri(N), the above 

equation yields the partition function Zs,,, (survival probability). These partition 

functions, for large N, show power law decays like 
,;·;I~· 

1, , i '1',., , ..... 
"""'_~-C>'''''f~~1'"'''l'''''J' 

Zg,,, '" N-"'," (2..t) 

where 9 stands for Rand S. These decays define the exponents tPR,,, and tPs,,,. For 

ZR;,'" reunion anywhere, the exponent is denoted by WR,,,. 
~ ~ 

A. Noninteracting chains 

A noninteracting gaussian chain is described by the normalized partition function 

("propagator" ) 

G(r I z) = (2:rz)-d/2exp(-r2/2.:) (2.,5) 

where r is the end to end spatial, distance at length za)ong the c!lain. Zn,,,(r), and 

ZR.,,(O) are just products of such p propagators with same r for all the chains. Since 

G is normalized, 

Zs,,, =JIIlddriG(ri IN)] = 1 (2.6). 
giving tPs." =O. The "gaussian" exponents are, therefore. 

tPs,,, = 0, tPR,,, = pd/2, and WR." = (p - 1)d/2. (2.7) 

These exponents, though follow from the free propagator. Eq. 2.5 , can also obtained 

from the definitions of the partition functions, Eqs. 2.2 and 2.3, by dimensional 

analysis. These are therefore the cannonical dimensions of the partition functions. 
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These "gaussian" numbers are to be compared with the exact d 1 results for 

intera~ting walkers [1] 

pep _ 1) p2 p2 - 1 
tPs,,, =--4-' !/JR,,, = 2' and WR,,, =-2-' (2.8) 

We write tPR,,, == pd/2 + TI" with TI" as the anomalous exponent. Since tPs,,, = 0 for 

gaussian chains, this exponent is the anomalous part by itself. 

B.RG 

Rcnormalization group in statistical mechanics is used to understand the long 

distance behavior of a system in arbitrary dimensions. Since our interest is basically 

in the N -+ 00, the field theoretic renormalization group can be adopted [22], 

The partition functions are evaluated by a perturbation expansion, done dia­

grammatically, in the coupling constant vt>. The coefficients are divergent at d = 2. 

Thc~e divergenc~ are identified by evaluating the terms by analytic continuation in 

d (dimensional regularization). The systematic removal of these divergences requires 

a lIlultiplicative rcnormalization constant for the whole series apart from the reno­

lI1alization of the coupling constant. This multiplicative r('normalization constant is 

the origin of the anomalous exponent TI", reminiscent of what happens in, say, the <1>4 

theory. 

Let us give the general argument in support of the presence of the anQmalous 

dimension from RG [22], taking Zn,,,(O) as an example. We define a dimension­

less coupling constant Uo = voL' where f = 2 - d and L is an arb~trary length 

scale. The renormalized coupling constant u and the multiplicative renormalization 

constant RR,p( u) are defined in such a way that the renormalized partition function 

ZR,vlr(L, u, N) = Rn.,,(U)ZH,p(VO, .V) is finite and has a welldefined f -+ 0 limit. (We 

have, for the time being, suppressed °but made the dependence on the coupling 
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constant, L, and N explicit.) The price we pay (or the bonus we gain) is the L 

d"pl'nt!f>I1C" or ZIf".I" 

The renormaliz."\tioJl group equation, that originates from tlw condition or Lin­

dependence of the bare theory (i.e L aZR,,,(vo, N)/8L = 0), is 

(L:L +fJ(U):u -2"YR.,,(U)) ZR."lr(L,u(vo,L),N) = 0 (2.9) 

where 

aul afJ(u) =LaL and 2"YR,p(U) = fJ(u) au In RR,,,(U). (2.10) 
vo 

Tlie solution of the above equation at the fixed point u = u·, determined by /1(uO) = 0, 

has a form 

ZR."lr(L,u·,N) = (l"·~(N,u·) (2.11) 

where "( = 'YR,P( u·). From the dimensional analysis argument and the above solution. 

the N depedence can be found out as 

ZR,"lr(L,u·,N) '" N- A
-7° (2.12) 

where A is the cannonical dimension for the partition function .. The factor "Yo. (in 

the exponent of N) is completely an outcome of the renormalization group analysis 

and is not predictable by the dimensional analysis argument. This is the anmalous 

dimension l]p' I,.et us repeat that an anomalous dimension can occur if and only if 

the quantity in question requires a multiplicative renormalization constant. 

III. AN ENSEMBLE OF VICIOUS WALKERS 

For a detailed investigation we first study the case of reunion (at origin) of vicious 

walkers. The partition function ZR.,,(O), Eq. 2.2, is expanded perturbatively in the
 

. coupling constant va. [13, 14) The two cahin problem can be solved exactlyand is
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discussed in Itef. [15J. The diagrams upto second order in the perturbative series 

arl' shown in FiK.). Th~ rule!'! for f'Vallliltinp; t.lw rliap;ram" corrc>!'!pondinp; to the INm" 

in thc perturbative series arc given below. The (~vallJation or the diagram/! will he 

performed in detail in Appendix A. 

A. Diagrammar 

The rules for the diagrams are as follows: (i) Each solid line is identified as a 

directed polymer represented by the gaussian propagator G(r I z) of Eq. 2.5. (ii) Each 

of the dashed lines represents the equal time 6 -function interaction and contributes 

-Po to the expression. At the point of interaction, the two polymers have the same 

position and z coordinate. (iii) All the internal coordinates (spatial), i.e., the space 

coordinates of the points of int?raction are to be integrated over. (iv) Integrations 

over the z coordinates of the interaction points are to be done. (v) Each diagram has 

a symmetry factor coming purely from combinatorics. 

The two integrations of steps (iii) and (iv) are needed because the polymers 

can interact anywhere in space and at any point along the chaiu. The ordering of 

interaction points along the chain is to be preserved in doing the z integrals. Such a 

time ordering cancels out the factorial one gets from the expanslon of the exponential. 

All integrations are to be done by analytic continuation in d. A little reflection 

shows that the integrals are divergent for d < 2 (see Appendix A). In the analyti ­

cally continued form, such divergences show up as poles at d = 2. A Laurent series 

expansion is done in t: = 2 - d to identify the poles. 

B. Zero and first order diagrams 

With the above rules we now evaluate the diagrams for ZR.,,(O). The first one is 

the case of no interaction among the walkers and its contribution is (21rN)-rxl/ 2• This 
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gives the gaussian exponent. 

In the first order in Vo there are two mutually interacting walkers other than p- 2 

8AIIllllian walktlflt. Following th6 pr"licrlptloll giVtlll Ahuv", its coulrilllltiull 18 

-(27rN)-ptl/2V Nl-d/2m(47r)-tl/2f2(1-d/2) = 
o f(2 -d) 

-(27rNrptl
/2 
:: (~) (; +21n x +O(t:)) , (3.1) 

where Uo = voLt, x'=47r N / L2, and as before t: = 2 - d. Here the symmetry factor 

(n is to take care of all possible combinations of walkers forming the interacting pair. 

C. Second order diagrams 

In the second order there are three different kinds of diagrams. The one in which 

the interaction forms a ladder type configuration (Fig 1a.l) is simply the higher order 

extension of the first order one. The analytical expression for this is 

v2(27r N)-lpd/2l(")(.llr)-dN' f3( (/2) = 
o 2 l'(3f/2) 

(27rN)-ptl/2 (;:Y' (;) (:; + 12 1nx + 0(1»). , (3.2) 
f 

There is another diagram in the second order that has two separate mutually 

interacting pairs (Fig 1a.2). The contribution of this diagram (in a way square of the 

first order one) to the perturbation series with the proper symmetry factor is given 

by 

i(2 N)-lpd/2)~(P)(P-~)N2-d(4 )-d r·( 1 - d/2) = 
va 7r 2 2 2 7r f2(2 _ d) 

(27rN)-ptl/1 (;;) 2 (~)(P;2) (~+; lnx +0(1») . (3.3) 

Double counting is avoided by dividing the symmetry factor by 2. 

The most crucial contribution comes from the diagram that involves three chains 

conn~cted by the interaction (Fig 1a.3). Evaluation of such diagrams requires a bit 
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technicality. The details are relegated to Appendix A, The final expression for this 

connected dia~ram is given by 

(' 'l('l y)-"J/1(")N'(,t )-d[ 1':1(l) [. (' 1 _ " ". 3" 1 - ". 3/4) +
)110 _lrJ 3 Jr f(3i) 3 1'2 t, t:, f, t, t:, 

3)< f(-i) f2(t:) • 
( 4 f(1-i)f(2t:) 3F2(t:,f,1;2(,1+t:;3/4)]. (3.4) 

where i =f/2, and 3F2 is the generalized hypergeometric function [23,24]. Extracting 

the poles in f requires a careful handling of the singularities of the hypergeometric 

functions. The technicalities can be found in appendix A. The relevant ( expansion 

IS 

2 ( UO) '2 ( 8 2 3 8 )(2rrN)-rd / -- 6(") ---In-+-Inx+O(1) , (3.5)
-br 3 f2 ( 4 f 

D. Partition function 

Combining all the terms, w{' obtain the folIowiilg pcrturba.tivc series in terms of 

the dimensionless coupling constant Uo 

Zn,,, (1 In x)1. (P
---'--- - - tio ) - + - +(2;rN)-pd/2- '2 7rf 21l' 

2 (C C3(~) Inx) + ... , (3.6)
U o 4;:-2(2 - 47r2i In(3/4) + 41l"2( 

where C = (~)[3 + (p - 2)(p + I»). 

The removal of the divergences requires renormalization of the coupling constan 

used in the bare theory. Such a renormalization had already been done in connectio 

with previolls studies of virial coefficients of directed polymers [13,14). The secon 
I 

virial coefficient is related to the connected partition function for two chains .~ith th 

same hamiltonian as in Eq. 2.1 but with all ends free. Since it is the same system wit 

identical two body interaction, the renormalization of the coupling constant remain 
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the same. We, therefore, straightaway quote the series for the coupling constant from 

Ref. 113, 14J as 

Uo = u( 1+alu +a2u2 + ....), with a" = (2",er", 'Vp. (3.7) 

This renormalization of the coupling constant is necessary but not sufficient to 

remove the divergences of the partition function in Eq. 3.6. The presence of di­

vergence in the very first order term in Uo indicates that an overall multiplicative 

renorma.lization constant, given by the series 

Rn,l' = 1+blu +~U2 + .... , (3.8) 

has to be introduced. Since the divergence of ZR." in the first order in Uo is not 

touched by the renormalization of u, bl can be obtained without much ado by the 

requirement of the minimal subtraction of the pole. Replacing flO by Il, we get 

bl = (~)(;r(rl. (3.9) 

In the next order. Uo is to be replaced by the series in terms of Il. Eq. 3. i, and 

demand that R be such that the poles are removed minimally. This giw's 

(~)(p] - p + 1) + 3(~) In(3/4). (3.10)~ = 4",](] 4",]( 

We are now in a position to evaluate the {3 and the I functions of Eq. 2.10. The 

P function, which physically means the va.riation of the coupling constant with the 

macroscopic length L, can be formally evaluated as 

;3(u) = ue 11- u/(2Jri)). (3.11) 

This ,a function is known exactly, The flow of the coupling constant with the change in 

the length scale can be studied by looking at the stability of the fixed point u· = 2lfl 

in different dimensions [13,14J. Following the prescription of Sec. III A the anomalolls 
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exponent can be computed from the multiplicative renormalization constant. Using 

Eq.2.10 

2
U u

IR,,,(U) = (;) 2", + 3(~) 10(3/4) 4",2 +O(u
3 

) (3.12) 

which at the stable fixed point gives the anomalous dimension upto O( (2) as 

1]1' == iR.p(U·) = (;) (+ 3 (~) In(3/4) e'+ 0(e3). (3.13) 

An important feature is that the three chain connected diagram in Fig. la.3 is 

only responsible for the O( (2) contribution in 7]R,p. The other second order processes 

where two chains talk to each other pairwise are important .for renormalizability, but 

do not contribute'to the exponent. For second order, three chains should col/edit'ely 

be awan~ of their existences. We believe that this collective feature will be carried 

oVt'r in hi~ht'r orders also. Thc exponcnts are 

tPn,,, = pd/2 + 1]1" and \{t n,,, = (p - 1)d/2 + 1]1' (3.14) 

with lip given by Eq. 3.13. 

E. Digression on RG 

Beyond the simple algebra, there is still something that is of significance and can 

also be used as a method for cross checking or self consistency. Using the' {3 function 

of Eq. 3.11, and Eqs. 2.10,3.8, iR,,(U) can be written formally as 

2IR,p(U) =w[bt + (2b2 - b1(2",er 1 
- ~~u + .. ). (3.15) 

In general, b;'s are expected to have expansions of the type 

~bip (3.16)bi =£- -;p' 
1'=1 
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because of the condition of minimal subtraction of poles. Now, the finiteness condition 

of "YR.p(U) as e - 0 puts stringent constraint on the coefficients bip' E.g., substituting 

the expansions for bl and ~ in Eq. 3.15, we require 

2b22 - b~l - (21rt1bll =0 (3.17) 

for the coefficient of O( c 2 ) term to vanish. This leaves behind only O(c l
) coefficient 

that can stay in the O( u) term in the square bracket of Eq. 3.15 - remember. the f 

outside in this equation. In other words, a consequence of the restriction of finiteness 

of "YR,p( u) is that only O(c l ) terms can survive in the coefficient of each order of u 

in Eq. 3.15. This, furthermore, guarantees that to find out Tf to O( f2) it is sufficierit 

2to know only the coefficient of O(u ) term, and so on for higher orders. We can now 

turn the table around and use the finiteness criterion to predict or check the next 

term in RR.p. The renormalizability of a model, therefore, means that the leading 

divergence in f at a particular order in the perturbation series has to be completely 

'. determined by the lower order terms in the series. The universality class, as governed 

by the exponents, is determined only by the O(c l ) residues. 

Of course, the above identity is satisfied by bl and lrz of Eqs. 3.9, :3.10. 

IV. DISTRIBUTION FUNGTION 

An important quantity is the distribution function, Zn,p(r), for the reunion point 

of p vicious walkers. This can also be thought of as the propagator, in a combined 

fashion, for p interacting walkers meeting at r. 

Had the walkers been noninteracting, the partition function is just GP(r IN). 

The correction upto first order in the coupling constant, can be obtained with slight 

modification of the steps for the evaluation of the partition function ZR.,,(O). The 

only change required is the replacement of the last part of the propagators in the 

evaluation of a diagram by G(r - rl IN - ZI) which keeps r. It is straightforward to 
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show that the divergence in the first order is identical to that of ZR,,,(O). So, to O(u) 

the renormalization constant Rn,,,( u) will be determined by the same bl as given in 

Eq. 3.9. Actually, it is expected that the renormalization constant would be the 

. same for ZR,p(O) and ZR,,,(r) to all orders. The simplicity of the first order graph is 

that the r dependence comes out as a G(r I N) as for the zeroth order term. This is 

a feature that does not survive in higher order connected diagrams. We have already 

seen that to first order no renormalization of the coupling constant is required. No 

harm is however done by replacing the coupling constant by u. We skip the details. 

The renormalized partition function is given by 

Zn,,,lr(r) = GP(r IN) (1 _(P)~ In 411" N] (4.1 ) 
. 2 211" £2 . 

Reexponentiating the log term, we obtain at the fixed point u = u· = 211"f, 

Zn.p/r(r) = (21rNf Pd/2(47r N L-2f~")( exp ( -;~) , (4.2L 

a.gasussian fUllction modified by the anomalous exponent. This O(i) form is exact 

for two chains (p = 2) for all f > O. From exact results of Ref. [2], we see that this 

is also exact for all p at d = 1. 

We have not attempeted to go to second order mainly because of the complexity of 

the diagram of Fig. la.J. It is, however, easy to check that r dependence is no longer 

in the simple exponential form. Previous results on the virial coefficients showed that 

the r docs not require any anomalous dimension, neither does N, essentially because 

of the absellcc of allY self inkraclion. We, therefore, expect i\ scaling Conn 

Zn,plr(r) '" N-(pd/2+",.) F(r/NI/'l) (4.3) 

where l7" is given by Eq. 3.13. This immediately gives the result for 'lJn,p as quoted 

in Eq. 3.H. 
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V. SURVIVAL PROBABILITY 

Survival probability as defined in section II is the total weight of all posible 

configurations of the vicious walkers originating from the origin but free at the other 

end. Because of this, the diagrammatics also go through necessary changes - in fact, 

the diagrams are much easier to calculate. 

The zeroth order diagram is simply unity because of the normalizf'd propa,ll\a­

tor. Similarly, the contribution (rortl. the nonintersecting chains is als~ unity in any 

diagram. The procedure is identical to the reunion case. We just give below the 

renormalization constant, 

u p'-p+2 u' 3 u' 3 
Rs,,( u·) = 1 + (~) 211"f + (~) 4 . (271"f )2 +2m (21l")2t: In 4+O( lJ3) (5.1) 

The coefficients ag~in satisfy the condition of Eq. 3.17. The crucial point to note is 

that RR,p = R~" and hence 

1/Js" = TJs" = '1,j2.	 (5.2) 

~siJig the critical exponents III R" and 1/Js" it was previously found, in Ref. [17Jthat 

the critical number of viciQus walkers (Pc) that are sure to meet is 2 for d '$ 2 upto 

'O( (2), (25). 

The above scaling relation, especially the connection between the two renormal­

ization constants, has actually been proved to O(u'). We believe that this is true 

to all orders, qne way of justifying this, is to cut the diagrams of the reunion case 

at the middle to produce two diagrams of the survival type. The reunion diagram 

is then a product of the two "survival" type diagrams wi~h an integration over the 

glued points. This remains to be established yet. A more significant outcome would 

be that one can associate Rs,p as the renormalization constant for a "vertex" from 

where p chains emanate. 

•	 .q"
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VI. REUNION PROBABILITY FOR A SUBSET OF WALKERS 

So far We have been considering the situation where all the chains meet. A 

variation on this theme is a case where, as before, p walkers start together at time 0 

but we want to know the probability of mating of any two. Complicacies arise here 

)W('(UIS{', before their reunion, each might have interacted with any of the remaining 

p - 2 chains. The difference comes out even in the first order in f and we stop there. 

The pcrturbative expansion in Va has the diagrams as shown in Fig Ib.1-3, in 

which the third one is the important one. Its contribution is 

d Uo n r(f/2)
(211"Nr C2-x( r( / ) ,F1(1 -	 fj2, fj2; fj2 + 1; Ij2) (6.1)

47l" 1+f2 

where the combinatorial factor C2 = 2(;)(p - 2). When combined with the other 

terms, the partition function ZR,p,2(O) is given by 

ZR,p,2(O) = (211" Srdm ( 1 _ (p ~t:l )uo) . (6.2) 

Sincc the coefficient of the O( u) term of the multiplicati vc rCllormalization constant is 

identically equal to the magllitude of the coefficient of O(ll) term in the above seri(~s, 

the fOrrJwr is given by 

1'-1
1 + --u.	 (6.3) 

7rf 

The anomalous exponent can be evaluated using Eqs. 2.10 3.11 and Eq. 6.3 and it is 

TJ = t:(p - 1) +0(c1 
).	 (6.4) 

This agrees with the result of Eq. 3.13 for p = 2. It is possible to go to higher orders, 

and unlike the p = 2 case, the exponent does not stop at O(c). 

An extension of this analysis to meeting of n(< p) walkers is rather trivial. Only 

change required is the replacement of (211"Ntd and G2 by (2rrNt"d/'l and G" = 
(~)n(p - n) respectively. The renormalization constant turns out to be 1 + n(p­

l)uj(2rrf) +O(u2) yielding 
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71 =m(p - 1)/2 +O(f'Z)	 (6.5) 

which agrees with Eq. 6.4 for n = 2 and with Eq, 3.13 for n = p to 0(<:). 

VII. REUNION WITH MANY BODY INTERACTION 

This is the case where only m number of chains can have repulsive interaction. 

There is no interaction at points of encounters of less than m chains. Here also the 

aim is to evaluate the exponent tPR.p. tP.,P follows from tPR,p as discussed ill section 

V. For simplicity, we use the same notation as for the m =2 case. The Hamiltonian 

is	 now given by 

1 p iN (8r;(.:))2 t1 
m-I 

(i.l)Hp = "2 ~ 0	 dz ---a;- + Urn 10 dz J(r.J i1t1 (=)).E D
where the summation is over all possible m membered sets from p chains. From 

dimensional analysis using the dilllensiollle:;s hamiltonian it _is transpar"nt that tilt' 

cOllplillg constant t'", becomcs dimensionless at d = d", = 2/(rn - 1) which is the 

upper critical dimension for this Illulticritical problem. [18, 1~1 Tv derive ;\n (m = 

2 - (m - l)d ~ (d", - d)(m - 1) expansion for the anomalous exponent we again 

perform perturbation expansion in the coupling constant v"'. As before dimensional 

regularization is performed to identify the poles at the upper critical dimension d",. 

The generalized approach follows identically the procedure for. p vicious walkers 

i.e. the two body interaction case. Not much technicality is involved in the evaluation 

o(the first order diagram in Vrn (Fig 2a). In higher orders there are complexities arising 

out of the connected diagram that appears first in the second order. As shown in Fig 

2b-d, in the second order, the important diagram involves m +n chains with n going 

from 1 to nm..... = min(m - l,p - m). At the end we need to do a summation over 

-,all possible values of n. Finally, the result can be verified with the known results for 

m = 2. Another elegant check is to use the convergence criteria for the anomalous 

19 

exponent as a tool and observe whether the magic cancellation, mentioned before Ec 

3.1 i, occurs here also, as it should. 

A. Ladder diagrams 

We now proceed to the evaluation of the ladder type graphs (fig 2a-c) corr( 

sponding to the perturbation series. The first order graph with m chains and the tw 

graphs in the second order nvolving m and 2m chains respectively do not require an 

new computation. The basic structure of these graphs is identical to those of sec. IIJ 

except for the replacement of the two interacting chains represented by G2 (r I z) b: 

Cm(r I z) [see Appendix IJ], We shall skip the details and slale the results straight 

away with proper symmetry factors, The contribution from the first order diagran 

is 

_(1' ) I'm (')_ _ .1/2 ,['2( I')l'" .111 -" N) r	 (-II1N)',"/l~(::~,~- . (7.2]I'( (",) . 

wlll'rl'l1 = 11"11/1/(",-1)/2, which is 11" for 111 = 2. 

The ~ecolld order graph, in which two indepcnd<'nt groups of In ',\'alkers are con 

neeted by interaction (Fig 2c), gives 

~(~)(1';~m) C'm) 2 (21l"N)-rd/ 2(40"N)'m r4 
((m/2)

0"	 P(f",) . 

The ladder type diagram (Fig 2b) in t.he second order involving a group of m chain 

yields 

(~) (Vrn )2 (2;rN)-pd/'Z(40"Nr'" r 
3 
(fm /2)

40" r(3fm /2) ' 

B. Nonladder diagrams 

There is one more graph in the second order which involves m +n chains. Detai 

of its derivation is given in Appendix B. This graph ends up with identical difficul 
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related to the convergence of hypergeometric functions as in the case of vicious walkers 

in sec. III C a.nd Appendix A. With some special care, this problem can be tackled to 

extract the leading singularities. 

The O(t;:2) term turns out to be n-independent and is equal to 8~:2. The sum­

mation over n is then just a sum over the combinatorial factors as 

"rn...L (':+n)(":a+n)(;~,) = (~)2 - (~m)(~m) - (~) (7.3)
·"··...r'~- n=l'~'f!!i<"'l'l ... 'T 'I ,,""'''.'.-' 

where the first term on the right hand side is just the free combinatorics for the two 

vertices while the last two terms subtract out the two types of second order ladder 

graphs discussed above. The cancellation of the coefficient of O( ~~ in IR.p( u) now 

turns out to be obvious. 

From the previous RG analysis after Eq. 3.15 it is clear that the contributing 

parts to the exponent are basically the ~I terms in the second order diagrams. 

As we expect, the O( (~t) term comes from the connected nonladder diagram. The 

. magnitude of this residue is also the coefficient b:2t of the renormalization constant. 

The O(f;;.l) term of the coefficient of u:2 is -rpm /(4a 2{m) where 

rpm = ~m(m + l)(~+tl [, +~ (m ~ 1) + In (1 - ~:2 )] + 

~ ~(~+n)(:+n)(:,) [,+~ (;= ~) -n t (n,m)-n:2(n.f11)] (7..1) 

where '1 is the Euler gamma, ~(.) is the polygamma function; 

m+n (m n- 1 n:2 )n t (n,m)=--2-3F:2 1,1'--1;2,2--­
1
;1- 2m m­ m­ m 

' (i.5a) 

( 
1 - n n) (,n2(n, m) = B m _ l' m _ 1 I ­

;;;=t 
n:2 ) m­

m:2 X 

( 
n-l n n-1 n2 

),F, -I·'-1;1 +_.-1;1-....,m­ m­ m­ m • (i.i>b) 

for m = 2 we get back the vicious walker results because of the fact that "r( I) = -1. 
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The renormalization of the coupling constant is, again, known ::om virial coeffi­

cients [18.19J. Taking U mas the r~normalized coupling constant (def.:.ed as vmL~m.), it 

is given by a series of the type Eq. 3.7 with ap = (21J"fm )-P, and the .5 :unction is given 

by Eq. 3.11 with u/27f replaced by u/2a and f by f m • As a matter of fact, once we 

are satisfied with the cancellation of the O( f;;.:2) term, the details oi renormalization 

n('('<1 not be carried out. The anomalous exponent follows as 

TIp = (~) {rn + rpm (~ + O(f~). (7.6) 

For p = f11, the exponent stops at O(f".) [16J, and, in fact, like the .J == m == ~ case, 

the RG is exact. 

C. d = dm 

At d = drn I the fixed point diagram and the stability anaIY~:5 show that the 

coupling becomes marginally irrelavant. The integration of the t3-iu~:tion tells 'lS tlte 

lel1~th dependence of It, and at d = 2, we find 

Uo 
\7.7) um(L) = 1 + (uo/2a) In(L/ Lo)' 

where Ito = llm(Lo). For large L. Urn decays as (In L/ Lo(l. The RG equation then 

produces 

ZIl,p'" N-p/(II1-t)[uo ln(N/No)r(fn)· , ~ 7.8) 

Even though the coupling goes to zero in the long length scale regbe. the behavior 

is not that of a noninteracting case. The log correction. which d~ not affed the 

gaussian plower law, is the remanent of the repulsive interaction. 

For m = 2, the result agrees with Ref [1 i), and also with' the exact result fa!' 

p ... m(1<iJ. An interc8tlllg consequonce is the log corr~ctron ror ? walkers In 1+1 

diIlH.'!\:;ioll b(~calls(: elm = I for m ==:1. TlH.: lH.: prediction; that fO,lows from the {3 
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function and 'Y, is ZR.p ..... N":,,pn(ln N)-(~). This could be checked easily on a lattice 

numerically. 

VIII. SUMMARY 

Using the analogy with directed polymers, we have obtained the decay exponents 

of the reunion and survival probablilities or the partition functions of the interacting 

~"t ; 
DPs, to second order in f = 2 - d for two body interaction. This has also been 

.... g~~~;;:l~edto multicritical ~~~ybody interaction for which the expansion parameter 

is f m = (m -l)(d", - d) where d", = 2/(m -1). We expect in this case, as explained 

in section IV, the survival exponent to be half of the reunion one of Eq. 7.6. For the 

two body interaction we have also studied the distribution function and the question 

of reunion of a subset of walkers. Thcse are done to O(t:). For the subset reunion 

case, the O(f) correction does not enjoy a simple combinatorial interpretation unlike 

the case of reunion of all the chains. Our analysis also yields the log corrections to 

the exponcnts at the upper critical dimcnsion d",. Explicit results are given for two 

body interaction in two dimensions and three body interaction in one dimension. 

It would be interrsting to get these exponents on fractals. Sincc our proceJure can 

be extended without much difficulty to higher orders, this gives a rare opportunity 

of comparing results of ( expansion based on the idea of analytic continual ion to 

nonintegral dimensions and on fractals which are well defined nointcgral dillH'llsional 

entities. 
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APPENDIX A: EVALUATION OF A FEW DIAGRAMS FOR VICIOUS WALKERS 

In this appendix we evaluate the diagrams shown in Fig. 1 with necessary details. 

The mathematical expression corresponding to the first order diagram, as per the 

rules of Sec. III A, is 

. N 

J 1 =: -vo(21rN)-(P-z1d/zl dZ l f drl GZ(rl IN - zt} G2(rl I zd (AI) 

TIle symmetry factor (~) which counts all possible pairings is not considered. This 

expression can be simplified by using the following identity for the gauassian propa­

gators 

GP(r I =) = (21rz)-(p-1 1d/Z p-d/zG(r I zIp)· (A2) 

We use the ~Iarkovian property for the propagators 

Jdr G(rl - r I zl)G(r - rz! zz) =: G(rl - rz I ZI + Z2) (A3) 

to perform the int(~gration over the space coordinate in .fl' Finally we are left with 

tlw task of evaluating the int{'gration over length Z as 

J1 =: -vo(21rN)-(p-Z1d/2C(O I N/2)(41rtdiNdzl(N - zd-d/2 zt-
d/2 

['2(1 d/")= _ (21rl~)-pd/Z Vl-d/Z(A )-<1/2 -- (A,t)Vo 1 '11r f(2 _ (l) , 

as qoutcd ill Eq. :U. 

Next, we evaluate the ladder type diagram involving only a pair of walkers with 

two sllccesive encounters. This can be written as 

JZ =: v~(21r N)-(p-Z1d/2 It dZ I Iozi dZ2Jdrl I drz CZ(rl IN - zd X 

GZ(rl - rz I ZI - zz)GZ(rz I Z2)' (A5) 
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Performing the spatial integration over rl and r2 using Eq. 1\2 and the ~larko\'iil,n 

property we obtain 

J'J = l'~(2lrN)-(P-'J)J/'J(411'.r3J/]G(O I N/:!.) iN dZ I 1"0 dZ1 (N - z!l-J/l 

(:1 ., ':J),I/1:'l-,IO(,\I;) 

which finally gives Eq. 3.2. 

Now let us turn to the third diagra.m which connects three chains, This diagram 

is 

J3=t'~~211'N)-Ptl/2N2-tl(41r~-dJ= v~CP-3(OI N) iNdz,l" dZ 2 Jdrl J dr2 x 
G2~,rl IN - ZI )C(rI21 ,ZI2)C(rl I zdC(r2 IN - z2)C2(r2 I Z1) (;\ 7) 

where %12 = ZI - Z2. After completion of the spatial integration using the identitit's 

of Eqs. .-\2 and A3, we are left with integrations over ZI and =2. a bit complicated 

because of the connected nature of the graph. We obtain 

l lr r. . 
J = Jo dz l (1- zd-d/2z:-d Jo dZ2 z;d/2(l_ (:JZI + 1)=dlrd

/ 
2 

(.\~) 

The integration over Z2 is in t~e form of the Euler representation of the hypergeometric 

fUii~ion so that 

f(l- d/2)" . . -d/2 I-d (d d d 3z1 + 1)
J =[(2 _ d/2) 10 dzl(l - zd. Zl 2Fl 2,1 - 2; 2 - 2; -4- , (.-\9) 

Before proceeding further oo~ should be cautious. Eventhough it looks tempting to 

substitute the series expansion for ,the hypergeometric function and perform integra­

tio.n term by term, the probler;n a~ the upper limit of the integration should be noted. 

The series expansion for the.hYpergeometric function is not valid when the variable 

becomes unity. This problemrcail. be b}'passed by analytic continuation. Exploiting 

the following transformation tqrmulafor the hypergeomeLric function [24] 
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f(c)r(c - a - b) 
2 Fda,b;c;=)= I'(c_a)r(c_b)]Fda,b;a+b-c+ 1;1-z)+ 

c-,,-b f(c)f(a + b - c)
(1-z) r(ll)l'(b) 2F.(c-a,c-b;c-a-b+l;l-z), (AIO) 

which renders the argument always less than unity throll~h Ollt the domain of inte~ra-

tion. in Eq. AU, t.he rcmaining ZI illt(~gratiolls can be,(;arried Ollt. The final expression 

is 

3r (£/2) (£ f £ 3f f 3)
J = f(3£/2) 3

F
2 2,1 - 2' 2; 2,1 - 2; 4' + 

tl2 

3) f( -£/2) f2(£) ( f 3)F (A 11)( 4 f(1 _ £/2) f(2() 3 2 f, £,1; 2(,1 +"2; l' ' 

where ( = 2 - d and J F2 is the generalized hypergeometric fllBction [231. The reward, 

aft('r ,.1.ll this, is th,~ immedia.t(· rclrieval of the 0(f- 2 ) term. The subleading term is 

also lIot much of a problem now if the limiting forms 

r (( £ £ 3( £ 3) (
3'2 2,1-"2'2;2,1-"2;4 =1+ 61n'1+0«(2) (:\ 12a) 

and 

3) (
3 F2 (£ l' 2f 1 +-'£ - = 1 + -1n -I +0(("l ) (A12b)

( , , ,. 2' 4 2 ' 

obtained from the series expansion, are used. The final result is given in Eq. 3.6. 

APPENDIX D: CONNECTED DIAGRAM OF FIG 2
 

This graph amounts to the following expression
 

v~c(,,-m-")d/2(O I IV) iN dZ I1'1 dZ2Jdrl Jdf2[Cm(rl IN - zd x 

cm-"(rl2l ZI'J)G"(r2 I N - z2)C"(rl I zdCm (r21 Z2)]' (HI) 

where r12 = fl -f2 and ZI2 = ZI - Z'J. The identity in Eq. A2 reduces the powers 

of the propagators to unity. We furthermore use the following relation 
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/ ab
G(r Ia)G(r Ib) = [2",(a +b)rd 2G(r I-b) (82)

a+ 

which leads to the following form for the integrand in Eq. 81 

(2",)-d(3m+n-3)/2(m _ n)-d/2[(N - zt} z21-d(rn- II/2[(N - z2)ztl-d(n- ll/1 x 

(ZI2)-d(m-n-l l/2(jlv)d/2G(rll (N .... zt}zljl)G(ru I~)G(r2 I (N - Z2)Z2 V ).(B3) 

where jl-l = Nn - zln +mZll and V-I = mN - mZ2 + nZ2. Use of the Markovian 

property to perform the integration over the spatial coordinates rl and r2 with rescal­

ing of ZI, %2 by N, produces 

2 

(2", N)-"d12~(4(J N)('" I (Ill)
16(J2 ' 

where CT = ",m l /(m- I I/2 and 

-lId (1 • )-d(m- I I/2 1-(m-11dl1d '(1 )-d(m-n-I)/2.-d(m-I)/2I - Zl - "'I zi Z2 - Z2 "'2 X 
O' 0 

(1 - z2zd-d(n-II/2[1- z2(n2 +m2z1 - n2zd/rn2td/2.(I).5) 

The integration over =2 can be performed easily using the standard Euler type formula.. 

to get [231 

1 

I = A1dz l (1 - ZI td(m-II/2=11-(rn-lldFI ((;, 11,~; (m + n~; =., i l ) (B6) 

where FI is the first Appell function (multiple hypergeometric function) of two vari­

ables [24,261, 

A = 8(fm /2, ((m +nd)/2), n = (n - l)d/2, 

and 

n 2 n2 

.i l = -2 +ZI(1- -), 
m m 2 

B(x,y) = f(x)f(y)/f(x +y) being the stand~rd Beta function. The Appell function 

has the following series expansion 
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II. 

FI(a,b"b2;C;Xll X2) = f (a,s + t)(bl ,s)(b2,t) ~ I (B7) 
.,1=0 (C,S+t)8!t! XIX2 

for I XI 1,1 X2 1< 1. The short hand notation (a,b) = r(a + b)/r(a) is used. This 

integration requires special attention since at the upper limit both the variables of 

the multiple hypergeometric function become unity. Using a standard transformation 

rule for hypergeometric function of double variables [26], namely 

. . _ f(c)f(a +b2 - c) -b\ c-a-b]
F1(a,b ll b2,c,XlI X2)- f(a)f(b ) (I-x.) (l-x2) 

2 

1 - X2
F.( c - a, bl , c - bl - b2;c - a - b-z + 1; -1-, 1 - X2) + 

-XI 

f(c)f(c - a - b2 )
 
f(c _ a)f(c _ b ) F2(a, bll b2;c - b2, 1 - c + a + b2;XI, 1 - X2) (B8)
 

2

F" being the second Appell function [2'1,26], we obtain / == II + /2, where 

1 
- A 1d· (1 • )( ... -1.,,,,-1 x/1- I "I -"'I "'1 

o 
2 

(m + nd _ (m _ n • 
F.(--2-,n.(m; 2 +n + 1; 1 - m 2 ' 1 - z.), (B9a) 

and 

/2 = A211 dz.(l - Zt},,,,12-1 =;",-1 x 

F2((m/2,11, d/2; (m +11,1 - (m/2 - 11; Z1l1 - Ed (B9b) 

where 

2 , ... /2+';' 

Al = (1 - :2) B((fm+ nd)/2. -(m/2 -11) (B9c) 

and 

112 = 8((m/2 +1l, (m/2) . (B9d) 

The fir~t term, h, is free from the above mentioned problem at the upper limit of 

the hypergeomelric function, whereas the second term should be treated in a different 
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proced ure because of the first variable in the hypergeometric function. The integration 

over %1 in II gives [27] 

2 
_ f2(lm) 1:2;1 (lm/2 + nd/2 : Em,lm;n; n • n2 ) 

(BI0) 
m lm/2+Ti+l : 2lm; ; m Tn 

II - Al f(2l )FI:I;o 1 - 2,1 - 2 

where Fll:~2~ is the Kampe de Feriet function [26,27]. The series expansion for II is 

~or' '·~~¥"~'''l''~· ,.,f'dt~7ir-:.~'~"'" 

" II = (1 _ .~) f( -lm/2 - Ti)f(lm/2 + Ti + 1) x 
. m 2 f(7i)f(d/2) 

~f(Em/2+nd/2+5+t)f2(lm+5)r(Ti+t)1 ( n2)'+' ( ) 
L..J 1-- 1311 
',1 

f(lm/2 + ii +s + t +1)f(2lm +s) s!t! m 2 

This straight away reveals the 0(l;;.2) singularity from the 5 = t = 0 term. but only 

for n = 1. All n's however contribute to O( lm -I). The relevant expansion is 

II =--i- -~ [, + ~,.(~1_")+In (1 -~) + RI(l. m)] +0(1) (for n= 1) 
Ifm lm m -1 m 

2 
=-R2(n,m)+ 0(1) (tor n > 1), (Ill:!)

E... . 

where RI(n. m) and R 2 (n. m) Me defined in Eq. i.5a,I.5b. 

In 12 , the difficulty is with the first variable z. which can be seperated out into a 

hypergeometric function as 

F2 ( lm/2, Tt, d/2, lm + Ti, 1 ...., lm/2 - Ti, Zll 1 - id = 

~ (d/2, 5)( lm /2,8) (1 -lzd~ 2 F.( (m/2 + s. fi; lm + 71; =d (131:n
L..J (1 - lm/2 - n,5) $. ". 

Next step is to divide the range of integration into two equal parts, [0.1/2] and 

[1/2,1]. These two parts will ~e denoted by 121 and 122• 

For 121, one gets rid of the trouble in performing the series expansion in the 

bypergeometric CunctionoC variable %1 and can integrate term by term: This procedure 

leads to a sum of incomplete Beta functions of variables lm + t and lm/2 +.5 where t 
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is the summation index used for the expansion of the hypergeometric function. Using 

the connection between the incomplete Beta function and hypergeometric function, 

we finally obtain 

2-,,,,-t1 
121 = ..12L --2FI(lm +t, 1 - lm/2 - 5; lm + t + 1; 1/2) X 

lm + t
',t 

..:....(d..:..../2....;..'--'s)....:.,..(l.....;.m.:..../2....;..'_s+-----,t)....:...(tl....;..'...:.t) (1 _ ~). --.!..- (B14 ) 
(1 + lm/2 - n.,.'l)(n., t) m 2 s!t! 

where fl, = f m + ii. 

As before, n = 1 and n > 1 cases are to be treated separately. The O(~~ term 

comes from s = t = O. The expansions are 

.t 2 
III = 2 + -R.(1,m) +0(1) (for n = 1) (Bl.ja) 

(~ lm 

2 1 [(n-l) ]=--- ,+~, -- -RI(n,m) +0(1) (for n > 1). (Bl.5b) 
l~ lm m - 1 

For [22 involving I//2' WI' lise the tran~formation rille for the hYP{'rgcometric 

equation that wa.<; used in the context of p viciolls walkers to avoid identical pmbll'm 

wi th the serii's expansion. The transformation formula leads to two hypergeorncLric 

functions of \'ariablc (1 - :1) each of which is regular through out the domain of 

integration. After this substitution one can verify that 

122 = 1221 + 1222 , (B16) 

where 

_" II ( _~ )~+- •.,.{",-I f(s-)f(n,) , -. ..,.
1m - A, 1,,1 "'I r( )f(- )2FI(s+.1l,I-s_,I- ...dL 

I 1/2 lm n + s_ 

(Bl7a) 

_~ II .,. ,- . . . ~'m_I.,.,m_If(n,)f(-s_)
1m - L: A. 1/2(1 - ",iJ "" f(S+)1'(7&) 2FI(1l +,';-, i,,,, 1 + s_. 1 -.,.t} 

(B17b) 
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where 

A, = A (d/2,s)(f"./2,s) .!. (1 _~)' 
1	 (HI ic)(1+f."./2-n(,s) s! m1' and,i±=f."./2±s, 

At this stage use of series expansion is perfectly alright. The final result again comes 

out in terms of incomplete Beta function which after converting ·into hypergeometric 

function yields for the right hand side of Eq. B17c 

~~.r i { 
' ..' je '.'.' / _ "'A r(s_)r(n() (sHq)(n,q) 2-(··+q) F(q + s+).c,.'.....' 

•	 . (B18a) . 1:ll-L
''i'~>lt''~t .,q q,fm)r;.(~~~),.,(l - s_,q) (q + s+) q! 

~ 

_ "'A r(n()r(-s':') (nc,-s+,q)(fm,q) 2-' m 
-

q F(f.~ +q)
/111-L • (BI8b) 

• ,q r(s+)r(ii)'; (1 +I,q) (f... +q) q! 

where I!. 

F(x) = 2FI(X, 1 - f. m ; 1+ x, 1/2). 

The useful observation here is that for leading singularity i.e. O(~~, the first terms 

l= 1) in the expansions of the hypergeollletric functions are the only relevant ant's. 

~, To search for the lower order singularity i.e. for. O(~ I) terms, one has to consider 
."\ 

separately the higher order terms in the expansion. \\'e quote the series retaining 

terms upto O( f,;I). 

8 
/111=""1+0(1) (forn~l) (B19a) 

f". 

1111 =0(1) (forn=l)	 (BI!lb) 

2 1 [(n-l) ]=-""1-- "y+¢ -- -R1(n,m) +0(1) (forn> 1). (B19c) 
f.". f". m-l 

Combining all the terms we obtain 

/=+ - ~ ["y+¢ (~) + In (1-~)] +0(1) (for n = 1) (B20a)
f.". f.". m 1 m 

8 2[ (n-l)	 ]= f.~ - f.". "y + ¢ m -1 - R1(n,m) - R 2(n.m) + 0(1) 

.~,	 (forn> 1), (B20b) 
:.~.;' 
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FIGURES 

FlG.l. (a.l.3) Second order diagrams for reunion of p chains. For clarity only 4 chains 

are shawn. (b.1) Zeroth order diagram for reunion of n chains with the remaining p - n 

chains free at z = .v, (b.2-3) Two possible first order diagrams. 
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