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Abstract 

We discuss the situation, frequently arisen in general relativity, in 
which the background spacetime is multiply connected. The associated 
gravitational Aharonov-Bohm effect can induce a sm, .~!tf~ ,,; ---1 
phase factor turning a massive point particle into an any n...·-.·· '" ."- .:.~ '~_.. ~ .-----·~l 
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It is by now well known that quantum mechanical systems in (2+ l)-dimensions 

exhibit a variety of peculiar quantum mechanical phenomena related to the peculiar 

structure of the rotation, Lorentz and Poincare groups in (2+1)-dimensions [1]. So, 

in planar physics there is the possibility that particles can carry arbitrary values of 

angular momentum exhibiting in that way fractional statistics [2]. This is essentially 

due to the abelian nature of the rotation group 50(2), which admits a continuum of 

unitary representations charactrerized by the eigenvalue j of its only generator J, 

the angular momentum operator. In contrast, in (3+ 1)-dimensions the rotation 

group 50(3) is non-abelian and its unitary representations are labelled by a discrete 

index, the integer or half-integer eigenvalue j of the angular momentum in that 

case. Upon rotation by an angle 9 (around an axis taken orthogonal to the plane), 

the wave function '$ of a system with angular momentum j acquires a phase 

ei8J '$ =ei8j '$ (1) 

In the fonner two space dimensional case a rotation by 2rt does not leave invariant 

the wave function, whereas in the latter three space dimensional case a phase 
factor ±1 arises. 

The connection between spin and statistics can be understood from the 

properties of the many particle wave function. The wave function of an n-particle 
system '$ ( ql , ... <In ), where <Ii denotes collectively all quantum numbers 

characterizing the i-th particle, upon interchange of two particles may be chosen to 

satisfy the condition 

'$ ( ...<Ii ,'" qj , ...) =e2ms '$ ( ...qj , ...<Ii, •••) (2) 

where s is the "statistics" parameter. In familiar cases the phase factor is ±1, 

corresponding respectively to bosons ( e.g. s=O ) and fermions ( e.g. s=l/ 2 ). 

However, an arbitrary value of the phase factor arises if the statistics parameter s 

acquires other than integer or half-integer values, leading to a quantum system of 

particles with fractional statistics, i.e. anyons. 

The spin-statistics theorem can be also understood from the topology of the 
many particle configuration space. The possibility of fractional statistics occurs in a 
quantum mechanical system, when the confIguration space has non-contractable 
loops [3]. Let us consider [4] a single particle moving in ad-dimensional 
configuration space Md. If the system contains n particles with positions Xi= (xl ' 

... xf ), i=l,...n, the configuration space for the system is 
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(3)
 

Morover, if the system consists of indistinguishable particles, the relative 

configuration space is 

Q (d, n) = M (d, n) I Sn (4) 

where Sn is the permutation group of n objects acting on M (d, n ). The wave 

function of the system '\P (x) = '\P (xh'" Xn ) is, in general, a multivalued function on 

Q (d, n ). However, it is always singlevalued on Q (d, n ) , where Q (d, n ) is the 

universal covering space of Q(d, n) . This means that Q (d, n ) and Q(d, n ) differ in 
their first homotopy (fundamental) group only : n 1 (Q) :f.: n 1 = (Q) {O} (it is of 

course possible that Q = Q ,which corresponds to a simply connected space Q ). 

General arguments [3] indicate that the wave function '\P satisfies the composition 

rule 

'\l' ( yx) =U( y ) '\P(x) (5) 

where xe Q(d, n ), y is an element of the fundamental group n 1 (Q) and U(y) is a 
unitary representation of n 1 (Q). 

If M (d, n ) is simply connected, then n 1(Q) = no(Sn) = Sn as follows from 

the exact sequence between homotopy groups [5] 

(6)
 

For d ~ 3 it is in fact n1 (Q) = Sn . U then P e Sn denotes a permutation, the 

unitary representations of n1(Q) are either 

U(P) =(-I)P =± 1 according to an even 

or odd permutation (7.a) 

or 

U(P) =+1 for all P (7.b) 

It is now clear from (5) that '\l' carries a representation of n1 (Q) and, thus, for the 

configuration space under consideration the particles' can either be fermions (7.a) 
or bosons (7.b). This is the usual case. For d=2, however, it is II 1(Q) =Bn, the braid 
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group of n objects, which, because the space of periodic trajectories has an infinite 
number of distinct one-dimensional representations, can be parametrized by a 
continuous statistics parameter s (defined modulo 1). For s=O or II 2 we again 
obtain bosons or fennions, but for other values of s we have a quantum system of 
particles with fractional statistics, i.e. anyons. This precisely corresponds to the 

infinitely connected space of periodic trajectories there. 
So far, little attention has been paid to multiply connected spaces for d~3 . 

However, as we will argue below, in general relativity there can easily exist 
configuration spaces, which can be multiply connected. In that case, instead of (6) 
the sequence between homotopy groups is 

(8)
 

and thus IT 1(Q)=-=Sn. As a result, there is room in general relativity for particles 

which are neither bosons nor fennions, but can obey a generalization of the usual 
spin-statistics connection, where a statistics factor ei(Phase) implies spin equal to 
(phase)1 2n. 

An important figure of anyon systems is that they generically violate parity 

and time-reversal invariance. This is due to the fact that either a P or a T 

transfonnation reverses the sign of the relative phase between two trajectories. 

Thus, a system of anyons with statistics phase e is transfonned into a system with 
statistics phase -8 and this is inequivalent except for e = 0 or n (bosons or 
fermions). 

The most interesting dynamical mechanism up to now in which fractional 
statistics arises is through the coupling of point particles to electrodynamics with a 

Chern-Simons action [6]. The fractional statistics is then explained by a two

dimensional Aharonov-Bohm effect. Such a model of dynamically realized anyons 
in d = 2 dimensions is now thought to play a role in high Tc superconductivity [7]. 

Coming to gravity, it has been discovered [8] that gravitational anyons in d =2 
dimensions arise by coupling massive point particles to topologically massive 
gravity [9], where a topological gravitational Chern-Simons term is added to the 
usual Einstein action. Moreover, the spin and statistics connection has been 
calculated [10] in the same framework. Actually, a massive point particle with spin 
in Einstein gravity gives rise to the same asymptotic gravitational field as a 

massive spinless point particle in topological massive gravity [8,11], something 

which suggests that the same mechanism which makes massive point particles have 

fractional statistics in topologically massive gravity should induce fractional 
statistics for massive spinning particles in Einstein gravity. The same issues were 



5 -. 

subsequently [12] clarified in the context of the Chern-Simons-Witten formulation 

of (2+I)-dimensional Einstein gravity, where the Einstein action is replaced by an 

equivalent 150(2,1) Chern-Simons action and gravity is thus reexpressed as an 

150(2,1) gauge theory. There is also another construction of a gravitational anyon 

[13] without Chern-Simons interaction. 

The gravitational Aharonov-Bohm effect [14] arises from considering tne 

quantum mechanics of a gravitating point particle in a gravitational field and 

appears to induce a phase to a massive point particle turning it into an anyone This 

is by no means restricted to d = 2 space dimension. It is our purpose here to 

present a d = 3 situation , which precisely realizes the appropriate topology we 

have previously presented for having an anyonic system. The gravitational field 

contribution to the total angular momentum will induce a fractional spin, a 

gravitational analog of previous discoveries [15]. 

Let us· consider a test point particle moving in an arbitrary gravitational 

background . The best way to understand the relationship between the quantum 

Aharonov-Bohm effect and gravity is through the lagrangian formulation for a 

nonrelativistic test particle in a weak gravitational field. The equations of motion 

are derived from the action 

S = - mc Jds = J L dt (9) 

where ds =(-glJ.v dxlJ. dxv )1I2 is the length of a line element and L = - mc~: is 

the lagrangian. In the limit of a weak gravitational field glJ.v= lllJ.v +hlJ.v and small 

velocities , the lagrangian is given by 

(10)
 

where ~ = ~ ifi 6ati ,}p = ~ta , Q,f}=1,2,3. The canonical momentum p is 

aL .
Po. = axo. =rmu + mchoa (11) 

and the hamiltonian of the system is [16] 

(12)
 

The mechanical angular momentum 1m is 
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(13) 

while the canonical angular momentum is given by 

(14) 

From (11) it becomes clear that there exists a difference between the two types of 

angular momentum equal to 

(15) 

The difference between the canonical and the mechanical angular momentum is of 

course due to the fact that the gravitational field carries its own angular 
momentum. It should be noted that hoa is not uniquely determined. Under a 

diffeomorphism xI! --+ X' I! = xI! + E;I! generated by ;I! =(;0' ~), hoa is 

transfonned as [17 ] 

(16) 

The wave function 'W(x) of the system satisfies the equation 

H 'V(x) =E 'V(x) (17) 

We may write "p(x) as 

1I'(x) = { exp (i ~ Jhoa (x ' ) dx ' Q)} 11'0 (x) (18) 

where the integral is taken along a path y with end point x and "Po (x) satisfies the 

equation 

(19) 

The above equation is the equation for a nonrelativistic particle moving in a 

potential V(x) =- ~ mc2 hoo (x). Thus, 'Vo(x) will be single-valued. As a result, 'V(x) 
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as follows from (5) will be multivalued and under a round trip in a closed path y it 

will acquire a phase factor 

(20) 

which will correspond to a unitary representation 

U(y) = exp (i ~c ~v hoo dxa) (21) 

The integral <f>v hoa dxa above is identically zero if hoadxa is an exact form. 

This corresponds to a static spacetime. For a stationary one, however, hoadxa is 

not exact. Of course, using the gauge freedom as expressed in (16), one may SWitch 
off hoa so that boa' =~.a will correspond to an exact form. However, this is a 

local expression and cannot be valid everywhere in the manifold. As a result, we 

expect a different than zero phase for a stationary spacetime. In the follOWing we 

will illustrate the above discussion exactly for such a case. 

Let us consider a stationary axially symmetric spacetime with energy 

momentum tensor of the form 

(22) 

where the energy density is given by 

(23) 

As a result, the energy flows around a cylinder of radius a with velocity 

ulL = (c , u ), U = U ~ (24) 

(see fig. 1). In the weak field Oinear) approximation and in the limit of small 

velocities, the components of the energy momentum tensor can be read [18] 

Too =IJ. c2 , T 11 = T 22 =T33 = 0 

T01 = IJ. C ul = -IJ. C u sinq> 

T02 = IJ. C U 2 = IJ. C U cos<p (25) 
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In the approximation we consider here, the field equations reduce to 

- 163tG TV2h
00-- c4 00 (26) 

V2h - - 83tG T (27)00- c4 00 

where, in order to remove the freedom of making diffeomorphisms, the gauge 
condition V. ho = 0 has been imposed. Employing the boundary conditions 

(28) 

for the in «) and out(» of the cylinder solutions (tJLV is the energy momentum 

tensor on the surface 5 of the cylinder), the equations (26,27) are solved by 

163tG 8G J3 
hoa «) =cr~u Ea13 x ~ - c3 az Eaf3X~ (29) 

163tG 2 x ~ 8G 3 x ~ 
hoa (» =cr JJ.ou a E~ -rn: - c3 J E~-rn: (30) 

hoo «) =const. (31) 

83tG Q
hoo (» = -7 t.Lo a In a + const (32) 

J3 is the angular momentum density along the X3-axis as measured at spatial 

infinity and it is given by 

J3 = ~ J(x1T02-x2T01)dS (33) 
5 

Let us now investigate the motion of a test particle in the above space. The 

configuration space is R3/D, if the particle cannot penetrate the region D. Since 

R·3/D is multiply connected, one may expect particles which are neither bosons nor 

fermions, but can obey a generalized spin-statistics connection, as we have 

discussed at the beginning. According to that general treatment, the phase factor 

acquired by the wave function 1P(x) will be 
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. mc 8G 3 
eie =exp( 1 fi C3 J 21tn) (34) 

It should be noted that the phase e is a very small quantity due to the presence of 

Newton's constant G. 
Moreover, as we have already pointed out, a necessary condition for 

obtaining a phase e different than 0 or 2n is P and! or T non-invariance. In our 

case, this P or T non-invariance comes from the dipole structure of the energy 
momentum tensor ( TJ1V is not invariant under the substitution <p --+ -<p). As a 

result, the solutions (29-32) correspond to a stationary spacetime, which 

necessarily is not P or T invariant. 

There is a non-gravitational analog to the above discussion, namely cyons 

[19], which also exist in 3+1 dimensions and make the properties of anyons much 

more intuitive. A cyon is a composite object of a charged particle orbiting around 

an infinitely thin, infmitely long solenoid (magnetic flux tube). For a winding angle cp 

there is an Aharonov-Bohm phase induced in the wave function [2] 

'V' (cp) =eiq~ ~12rt 'V (cp) (35) 

where q is the charge and <I> is the flux. These phases can simulate fractional 

statistics and the field contribution to the total angular momentum can simulate 

fractional spin [15]. The two types of angular momentum relevant to the discussion 

of the cyons are the mechanical and the canonical one. The total angular 

momentum is equal to the canonical angular momentum and this is always inegral 

[19]. It is divided into the piece of mechanical angular momentum localized near the 

cyon which is fractional [2] and a piece located at spatial infinity which is also 

fractional, thus providing a consistent point of view [21]. Actually, the difference 

between the canonical and the mechanical angular momentum is that contained in 

the electromagnetic field. 

Here, we have an analogous situation.The difference between the canonical 

and the mechanical angular momentum is given by the expression (15) and , in the 
specific example we have considered, h o is given by the expressions (29,30).The 

difference is precisely the angular momentum carried by the gravitational field to 

spatial infinity. 

Of course, according to the representation theory of the Poincare group 

[22],we have unitary representations which correspond either to massive particles 

with discrete values of spin s=O,1,2,... , or to massless particles with s=O,1/2, 1,... , or 

to massless particles with continuous spin, which however seem not to be realized 

in nature. What we contemplate here is a physical picture in which , due to gravity, 
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we have a very small violation of Poincare invariance by an amount, which is 

reflected in the very small phase e of equation (34). If a generalized spin-statistics 

connection is really valid [2,10],this corresponds to a very small departure from 

discrete values of spin even for massive point particles. We should underline the 
local character of this effect and the role played by the asymptotic region Oarge 
distances). 

There is a limitation in all these due to the used linearized approximation to 

gravity. It is an open problem if these results will survive a transition to the full, 

non-linear generization of our (and any other similar) gravitational model, where 

self-field effects will be important. It is also an open problem to discuss the 
quantum field theory with fractional spin and statistics [23] in a gravitational 
background [24], as well as to find interesting cosmological implications of anyonic 
systems. 
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FIGURE CAPTION 

Fig. 1 A stationary axially symmetric spacetime. 
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