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~ 1. Int~oduction 

A ve~sion of the Quasipa~ticle-Phonon Nuclea~ Model fo~
 

Doubly-Even Well-Defo~med Nuclei
 

v. G. SOloviev*) 

Institute fo~ Nuclea~ Study, Unive~sity of Tokyo,
 
Tanashi, Tokyo 188
 

Joint Institute fo~ Nuclea~ Resea~ch, Dubna, Russia
 

Abst~act 

The basic assumptions conce~ning the Quasipa~ticle-Phonon Nuclea~ 

Model a~e fo~mulated and the mathematical appa~atus is developed. 

The Hamiltonian, containing a finite-~ank sepa~able isoscala~ and 

isovecto~ multipole, a spin-multipole and a tenso~ pa~ticle-hole 

as well as pa~ticle-pa~ticle inte~actions t~ansfo~ms to a fo~m 

containing quasipa~ticle, phonon and quasipa~ticle-phonon inte~

actions. The gene~al RPA equation is de~ived and the pa~ticula~ 

cases a~e discussed. The ve~y complex inte~action does not 

complicate the desc~iption of the f~agmentation one-phonon 

states. It is shown that the th~ee-phonon te~ms added to the 

one-and two-phonon te~ms in the wave function lead to an 

additional small shift of the two-phonon poles in the secula~ 

equation. The influence of the density-dependent sepa~able 

inte~action on the vib~ational states is small. A common 

description of the collective, weakly collective and two

quasipa~ticle states in doubly-even well-defo~med nuclei is 

obtained. 

*)	 On leave f~om JINR, Dubna, Russia, Pe~manent add~ess: 
Joint Institute fo~ Nuclea~ Resea~ch, H.p.a.Box 79, Moscow, 
Dubna, Russia. 
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The ene~gies and wave functions of two-qusipa~ticle and one

phonon states in doubly-even defo~med nuclei we~e calculated in 

1960-1975. A sufficiently good enough desc~iption was 

obtained 1 ) of the available at that time expe~imental date; 

p~edictions we~e made which we~e late~ expe~imentally confi~med 

in many cases. It seems to us that new calculations of the 

vib~ational states in defo~med nuclei a~e needed. This is 

necessitated by the la~ge amount of new expe~imental data in 

addition to that involving the fi~st quad~upole and octupole 

states. Expe~imental data a~e available conce~ning the 

hexadecapole states as well as the highe~-lying collective and 

weakly collective states. Many expe~imental data a~e expected to 

be obtained at the new gene~ation of accele~ato~s; fu~the~, the 

~esults of calculations may tu~n out to be useful. 

The vib~ational states should be calculated on a new basis, 

such as the Quasipa~ticle-Phonon Nuclea~ Model (QPNM).2),3) 

The QPNM can be used fo~ a mic~oscopic desc~iption of the low-

spin, small-amplitude vib~ational states in sphe~ical nuclei not 

fa~ f~om closed shells and in well-defo~med nuclei. 

Let us conside~ the specific featu~es of defo~med nuclei. 

In the t~ansition f~om sphe~ical to axial symmet~y, the sphe~ical 

subshells split into tWice-degene~ate single-pa~ticle states. 

This splitting of the subshells leads to a dec~ease in the mat~ix 

elements of some ope~ato~s between the single-pa~ticle wave 

functions of the axial symmet~ic Woods-Saxon potential, compa~ed 

with the mat~ix elements of the same ope~ato~s between the wave 
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functions of the pherical symmetric Woods-Saxon potential. Such 

a decrease in the matrix elements considerably affects the 

vibrational states of deformed nuclei. 

We restrict our investigation to an internal wave function. 

~ (Kwo). with a good quantum number K, parity w. and o-±'. We do 

not consider the Coriolis interaction that mixes states with 

different K and the same w. It is possible to take the Coriolis 

interaction into account in cases when it is necessary to do so. 

The specific feature of deformed nuclei is that one-phonon 

Wstates with the same K can be formed as the result of different 

mUltipole and spin-multipole interactions. The one-phonon states 

of the electric type or natural parity states with fixed KW can 

be described by the mUltipole ~~-KK, K+2 K, K+4 K, etc. and by 

the spin-multipole U~-KKK. K+2 K+2 K, etc, interactions. One-

phonon states of the magnetic type or unnatural parity states can 

be described by the spin-multipole interaction ~ILK with ~'-L±' 

and by the tensor interaction. If in deformed nuclei. as in 

spherical nuclei. one introduces independent phonons of the 

electric and magnetic type, the number of states will be doubled. 

To avoid doubling, the phonon operator has been introduced in 

4) 5), which comprises the electric and magnetic parts. 

In this paper the mathematical apparatus QPNM for a 

microscopic description of the doubly-even well-deformed nuclei 

are presented. The basic assumptions of the QPNM and Hamiltonian 

are formulated in 2. The general RPA equation and several 

particular vershions are given in 3. In 4 the wave function of 

the non-rotational excited states are introduced and basic 
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equations of the QPNM are derived. The general propertes of the 

low-spin, small-amplitude vibrational states in doubly-even well 

deformed nuclei are formulated in 5. and a conclusion is made in 

6. 

§ 2. Basic assumptions concerning the QPNM. 

The initial QPNM Hamiltonian for the nonrotational states of 

deformed nuclei contains the average field of a neutron and a 

~roton system in the form of the axial-symmetric Woods-Saxon 

potential, monopole pairing. isoscalar and isovector particle

hole (ph), as well as particle-particle (pp) multipole, spin-

multipole and tensor interactions between quasiparticles. The 

effective interactions between quasi particles are experessed as a 

series of mUltipoles and spin-multipoles. It is essential that 

the interaction between quasiparticles is represented in a 

separable form, which was first introduced by Yamaguchi. 6 ) A 

separable interaction of finite rank n >' is used in casesmax 
where the results of calculations are more sensitive to the 

radial dependence of forces, in compared with a calculation of 

the structure of complex nuclei within the QPNM. It may be 

assumed that the finite-rank separable interactions between 

quasiparticles do not limit the accuracy of calculations. 

We introduce a finite-rank separable interaction for 

deformed nuclei. Consider, for example, the central spin-

independent interaction V(lr,-r21) and expend it over multipoles, 

- 4 



V(!r,- r 2 1) - IR~(r,.r2)~ 
~ 

I (-1)~y~ (e,,,,,)Y~_ (e 2"'2) 
< ~ 2~+1 ~--~ ~ ~. 

We present the radial part. R~(r,.r2)' in the form 

n 
~ max ~ ~ 

R (r" r 2) - I ~ n<R n ( r, ) R ( r 2 ) (2.1)nn -, 

Most of the calculations used in the QPNM are performed using a 

simple separable interaction. 

~ ~ ~ ~ R (r"r2 ) - IC R (r,)R (r 2) . (2.2) 

We now transform the initial QPNM Hamiltonian. For this 

purpose we perform a canonical Bogolubov transformation, 

+ 
- uQa Qo + ovQa Qo • (2.3)a Qo 

in order to replace the particle operators. a and a+ • byQO QO 
Quasiparticle operators. a and a + . Let us introduce twoQO Q0 

types of phonon operators. If only interactions of the electric 

type are taken into account. the phonon creation operator has the 

following standard form: 

",Ki,Q~ilO • '/2Q~Q.I"'~~~.A+(Q,Q2;KO) ~QIQ.A ( Q,Q2;K-o)! (2.4) 

If the interactions of the electric and magnetic type are taken 

into account. we obtain5 ).7) 

+ , I" I Ki, -+ -+
QKi,o- 2/2 QiQ. "'Q,Q.('+iO)[A (Q,Q2;Ko) + X(Q1 Q2)A (Q,Q2;Ko)]

-<jl~~~.('-io)[A(Q1Q2;K-O) + X(Q,Q2)A(Q,Q2;K-o)]! • (2.5) 

-5

The operator (2.5) comprises of the electric and magnetic 

parts;the coefficients of the electric part are real and those of 

the magnetic part are imaginary. This form of operator is more 

convenient than that given earlier. 4 ) Here i-' .2.3 •..• is the root 

number of the RPA secular 

equation and Ki, ",Ki, • Ki, 41 Ki , . 
"'Q,Q2 Q2 Q, 41 Q,Q2 Q2 Q, 

The Quantum numbers of the single-particle states are denoted by 

nQO, where o-±'; Q equals K and asymptotic Quantum numbers Nn z A 

+ at K-A+'/2 and Nn z A + at K-A-'/2. The operators. A(Q,Q.iKo) 

and A(Q,Q.iKo), are given in the Appendix and 

X(Q,Q2)A(Q,Q2;KO)--X(Q2 Q, )A(Q,Q2;Ko)-X(Q2 Q, )A(Q2Q, ;Ko) 

The RPA one-phonon state is described by the wave function 

+ (2.6)QKi,o'l'O • 

where '1'0 is the ground-state wave function of a doubly-even 

nucleus, determined as being a phonon vacuum. The normalization 

condition of the wave function (2.6) has the form 

.!- I [{",Ki, )2 _ (41 Ki , )2] _ , . (2.71
2Q,Q. Q,Q. Q,Q. 

One can easily show that the phonon operators, Q~i,o and QKi,o' 

obey the conditions which are usually imposed on RPA phonons. 

By using formulae (2.4),(2.5) and others, and after some 

transformations the QPNM Hamiltonian becomes 
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HQPNM - L £Qa~OaQO + Hv + HVQ ' (2.8) 
Qo 

whe~e the fi~st two te~ms desc~ibe Quasipa~ticles and phonons, 

and desc~ibes the Quasipa~ticle-phonon inte~action. TheyHVQ 

have the following fo~m: 

HOO + LH AOH _ + LH K , (2.9)
v v A v K v 

HK _ - L WK Q+ Q (2.10)v iii, i, i, Ki, a Ki, a ' 

wK _ WKE KM KT 
(2. '1)+ Wi,i, + Wi,i, ' iii, i,i, 

n 
WKE _, L Lmax[L (K AK + PKAK)DAKi'DAKi, + 
iii, lj" \ n' , 0 , nT npT

AT - P-± 

+ GAK(DAKi'DAKi, + DAKi'DAKi,)] _ L WAK 
(2. '2)ngT ngT nWT nWT A i,i, 

,KM ~max L (KA'LK + pKA'LK)DA'LKi'DA'LKi, W - lj" L Liii, n-' P_±' 0 , nT npTLT A'-L,L±' 
(2. , 3) 

n 
WKT _ l L Lmax L (K LK + PK LK )DL-'LKi'DL+1LK" (2. , 4)
i,i, 2 LT n-' P_±' TO T' nT npT 

H _ HOO + L HAO + L HK (2. '5)
vQ vQ A vQ K vQ 

HK l-L Imax <L HAKi , + L HA'LKi, + L HLKTi,) ,
VQ 4/2 i,TO n-' A vQ L,A'-L±1 vQ L vQ 

(2. '6) 

HAKi I _ t T fAK( )V(-) (K AK + AK)DAKi I (2. '7)VQ L n Q, Q2 Q Q 0 PK, T 
Q ,Q, ' , np 

• [(1 - io)( Q~iIO + QKi _o)B(Q,Q2;K-o) + h.c.] ,, 

HA'LKi, _ LT fALK( )V(+) ( A'LK + A'LK)DA'LKi , •
VQ n Q,Q2 Q,Q, KO PK, npT

Q,Q • 

• [(a - i)(Q~i,o - QKi _o)B(Q,Q2;K-o) + h.c.] (2. , 8) , 

HLKTi, _ iL T (K LK + KLK )[DL-'LKi,fL+'LK( ) +
vQ TO P T' npT n Q,Q2

Q,Q, 

+ DL+'LKi'fL-'LK( Q )]V(+) • 
npT n Q, 2 Q,Q. 

• [(Q~ilO- QKi,-0)B(Q,Q2;K-o) + h.c.] . (2. , 9) 

He~e, EQ is the Quasipa~ticle ene~gy with monopole and Quad~upole 

pai~ing ; He o , H~O, He~ and H~~a~e given elsewhe~e.8) The 

AKi AKi AKi A'LKifunctions D ,D ,D and D ; the ope~ato~s B(Q,Q2;Ko),nT ngT nWT nT 

B(Q,Q2;Ko); and the matdx elements of the multipole and spin-

AK L±'LKmultipole ope~ato~s, f n (Q,Q2) and f n (Q,Q2)' a~e given in 

the Appendix. Fu~the~ u(±) -u v ±u v ,V(±) -u u ±V v .
Q,Q, Q, Q, Q. Q, Q,Q. Q, Q. Q, Q, 

Summation ove~ single-pa~ticle states of a neut~on and p~oton 

system is denoted by LT at T - n o~ T - p,~espectively; K~K andQ,Q, 
K~Ka~e the isoscala~ and isovecto~ constants of ph and 

GA~_G~~+G~~ ~ep~esents the pp multipole inte~actions; K~'LK, 

K~'LK and K~~ , K~~ a~e constants of the isoscala~ and isovecto~ 

ph spin-multi pole and tenso~ inte~actions. 

Most calculations of the st~uctu~e of the excited states and 

B(EA) values have been pe~fo~med with a phonon ope~ato~ (2.4) and 

a simple n -' multipole inte~actions with H~Qin the fo~m max
 

K AK T AK (-)
H _ L H - -* L L L L f (Q,Q2)V Q,Q,
vQ A vQ Toi, A P-±' Q,Q. 

AK AK AKi,[ + ]• (K O + PK, )D pT (QKi,o + QKi -o)B(Q,Q2;K-o) + h.c.. , 

- 7 - - I) 



(2.20) 

The MA t~ansition p~obabilities a~e calculated in a ~efe~ence 

a~ticle 7) with a phonon ope~ato~ (2.5), but without a pp spin-

multipole inte~action. 

Calculations using the QPNM a~e made in fou~ stages. The 

fi~st stage involves a calculation of the single-pa~ticle 

ene~gies and wave functions of the Woods-Saxon potential. The 

pa~amete~s of the Woods-Saxon, potential a~e fixed so as to 

obtain a co~~ect desc~iption of the low-lying states in odd-A 

nuclei, while taking account of the quasipa~ticle-phonon 

inte~action. Undoubtedly, one uses anothe~ fo~m of the ave~age 

field potential o~ to calculates the ene~gles and wave functions 

of the single-pa~ticle states within the Ha~t~ee-Fock method in 

o~de~ and to use them in calculations involves the QPNM. 

The second stage is the canonical Bogolubov t~ansfo~mation 

and the calculations involving the model of independent 

quasipa~ticles. Taking simultaneously into account monopole 

pai~ing with the constants G, and quad~upole pai~ing with the 

G20constant and unde~ the condition which excludes 0+ spu~ious 

states, the following equations we~e de~ived in 8) 

G, ,C, + f 20 (qq)C z' 
1--2-L Ce: (2.21 ) 

q , q 

, (fZO(qq')v(+»Z1 _ G20 { i fZ'(qq)C, 
+ L qq 1 I. (2.22) 

q 2C2 £ qq 1 £q, q 

, 
and N - L [1 - ----.l.9l) (2.23), e: 

q q 

By neglecting the nondiagonal mat~ix elements f20(qq.) in 

eq.(2·22) one a~~ives at the equations de~ived ea~lie~ in two 

~efe~ences. 9),10) He~e. 

£ q - [6q 
2 + C2 (q»)1/2 , c(q) - E(q)-A, • 

, 
6 - C, + f 20 (qq)C 2,' C - G L u V (2.24)q , 'q q q 

and C - G20L 
, 

f 20(qq)u v
2, q q q 

Whe~e E(q) Is the single-pa~ticle ene~gy, and A, Is chemical 

potential. The ene~gies of the two-quaslpa~ticle states a~e 

calculated while taking the blocking effect into account. 

Then, the RPA phonons, (2.4) o~ (2.5), a~e int~oduced and 

RPA secula~ equations a~e solved. In the QPNM, the one-phonon 

states (2.6) with the ope~ato~s (2.4) a~e used as the basis. 

The~efo~e, the thi~d stage involves calculations of the one-

phonon basis. The phonon basis fo~ calculating of the low-lying 

states comp~ises ten (i 1 -1 .2, ····.10) phonons of each 

multipola~ity: quad~upole (A~-20,22). octupole (A~-30,31 .32,33) 

and hexadecapole (A~-43,44). The calculated states above 3MeV 

have been pe~fo~med with a la~ge~ phonon basis with A>4 and 

twenty phonon of each multipela~ity. The phonon space co~~esponds 

to the full space of the two-quasipa~ticle states in doubly-even 

defo~med nuclei. 

The QPNM Hamiltonian is t~ansfo~med to (2.8). The fou~th 

stage takes into account the quasipa~ticle-phonon inte~action. 

- ~ - -10



The wave functions of the excited states a~e exp~essed as a 

se~ies ove~ the numbe~ of phonon ope~ato~s; in odd nuclei each 

te~m is multiplied by a Quasipa~ticle ope~ato~. The 

aPP~oximation involves a cut-off of this se~ies. In calculations 

the Pauli p~inciple is taken into account by using the exact 

commutation ~elations between the phonon and Quasipa~ticle 

ope~ato~s. To calculate the cha~acte~istics of highly excited 

states, the st~ength-function method is used. By using a ve~sion 

of the st~ength-function method one can di~ectly calculate the 

~educed t~ansition p~obabilities, spect~oscopic facto~s, 

t~ansition densities, c~oss sections and othe~ nuclea~ 

cha~acte~istics without having to solve the ~elevant secula~ 

equations. 

The Quasipa~ticle-phonon inte~action is ~esponsible fo~ the 

f~agmentation of Quasipa~ticle and collective motion and, thus, 

fo~ the complication of the nuclea~ state st~uctu~e with 

inc~easing excitation ene~gy. 

§ 3. RPA equation . 
We now obtain the RPA equation fo~ ene~gies as well aswKi , 

the wave function (2.6) of the one-phonon states. To desc~ibe 

the Kn~ 0+ state we use the following pa~t of Hamiltonian (2.8), 

and (2.9): 

+ K	 (3.n-	 r EQQQaQQa + HvHRPA Qa 

We dete~mine the ave~age value (3.1) ove~ state (2.6), and using 

the va~iational p~inciple we get the following equations: 

Ki, Ki, nmax AK (+) AK
EQ Q gQ Q - wKi wQ Q - r r f n (Q1 Q2)[U Q Q r (K O + 

1. ,. ". n-1 A ' • p-±1 

KAK)OAKi, + v(-) aAKo AKi ,] _ 0 <3.2)p 1 n p t Q,Q • ng t 

n 
E wKi , - W gKi, - rmax Ir fAK(Q Q )v(+) aAKoAKi, + 

Q,Q. Q,Q. Ki, Q1Q. n-1 A n 1 2 Q,Q. nWt 

+,	 r r [r (K~'LK + PK~'LK)O~p'~Kilf~'LK(Q1Q2)uQ(-Q) X(Q1 Q2) + 
L p-± A' , • 

LK LK (-) ( L-1LK L+1LKi,
+	 (K TO + PK T1 )u Q,Q.X(Q1 Q2) f n (Q1 Q2)Onpt + 

+ fL+1LK( Q )OL-1LKi,)] I • 0 <3.3)n Q1 2 npt 

He~e, 

gKi, • ljIKi, + ljlKi, and wKi, • ljIKi, _ ljlKi,
EQ,Q •• EQ,+ EQ., Q,Q. Q,Q. Q,Q. Q,Q. Q,Q. Q,Q. 

F~om eQs. (3.2) and (3.3) we obtain the functions gKi and wKi ,Q,Q. Q,Q. 
and then substitute them into the fo~mulae fo~ OAKi" OAKi"nt ngt 

OAKi, and oA'LKi,. Taking into account that t·n,t·p and A'·L-1,
nWt nt 

L, L+1 we de~ive the secula~ equality fo~ the ene~gies of the 

one-phonon states, as an equality to ze~o of a dete~minent of 

~ank 12.n ' The use of a sepa~able inte~action of ~ank nmaxmax 
inc~ease the dete~minate n times, in compa~ed with a simplemax 

sepa~able inte~action, n ·1. If we neglect the spin-multipolemax 

te~ms with A'-L, then the ~ank of the dete~minant is 10.nmax · 

-]1-	 -12 



Most of ou~ calculations11 ),12)have been pe~fo~med with n ·l max 

multipole inte~actions with the mat~ix elements (A.13) with the 

~adial dependence R~(~).av(~)/a~, whe~e v(~) is the cent~al pa~t 

of the Woods-Saxon potential. 

The secula~ equation fo~ desc~ibing the 0+ states with a simple 

(n .1) inte~action was obtained in 8 ) as an equality to ze~o of max 
a dete~minant of rank 10. By including a separable inte~action 

of ~ank n ' the ~ank of the dete~minant fo~ the ene~giesmax w20i , 

+of one-phonon 0 states is 4+6n •max 

Investigations 11 ) of the 0+ states have shown the that the ~ole 
20

of the pp inte~actions is essential. Upon inc~easing G the low-

lying poles of the RPA secula~ equations a~e change. As a 

~esult, the B(E2) value fo~ an excitation of the fi~st I 
11 

Ki ,·2
+
01 

• + + 
state and the ene~gies of the O2, 0 , 0 etc states a~e dec~ease

3 4 

at G20 .O.9 KO
20 ' in compa~ed with G20.0. Fu~the~, the st~uctu~es 

of the 0+ states change. Inclusion of the pp inte~actions, on 

the whole, imp~oves the desc~iption of the 0+ states. 
+ 238

Calculations of the supe~defo~med 0 excited states in U and 

240 pu a~e being pe~fo~med with A. V. Sushkov. The calculated 

ene~gies of the fi~st excited 0+ states a~e close to the 

expe~imental ones, and the EO t~ansition p~obabilities to fission 

isome~s are in ~easonably good ag~eement with the expe~imental 

data. The second and seve~al othe~s 0+ states in 238 u and 240 pu 

a~e of the isovecto~ type. Quad~upole pai~ing plays an impo~tant 

~ole in the desc~iption of the supe~defo~med states. 

We now obtain RPA equations fo~ seve~al pa~ticula~ cases. Fi~st 

of all, we de~ive RPA equations fo~ the multipole inte~action 

with the following ~adial function: 

R~(~ ~ ) • ~ ill.!:..J. + I;+V(~1)V(~2)1 2 a~, a~ , 
~O 

This equation contains the su~face- and density-dependent 

pa~ts, whe~e I; is, new f~ee pa~amete~ and ~0-1.2fm. We denote 

co~~esponding mat~ix elements (A.13) as f~K(Q1Q2) and f~K(Q1Q2) . 

The connection between the sepa~able multipole inte~action and 

the Sky~me fo~ce was investigated, 13). in which a sepa~able 

inte~action containing a density-depedent part, which is 

equivalent to the ze~o-~ange Sky~me fo~ce in f~amewo~k of RPA was 

de~ived. The equivalent sepa~able fo~ces can be w~itten in te~ms 

of the t~ansition densities fo~ the vib~ational states. 

KEWe put the function w (2.12) in the fo~mi I i , 

KE 1 ~Wi,i,- ~I II (K K + PK~K)[D~Ki'D~Ki, + 
1: p.±l O 1 1: p1: 

+ D~Ki'D~Ki'J + G~K[D~Ki'D~Ki, + D~Ki'D~Ki, 
I; 21: 2p1: g1: g1: W1: W1: 

+ I;(D~Ki'D~Ki, + D~Ki'D~Ki')JI <3.4)
2g1: 2g1: 2w1: 2w1: 

~Ki ~Ki ~Ki ~K 
whe~e D2 1: ' D2g 1: and D2w 1: have mat~ix element f 2 (Q1 Q2) instead 

AKof f (Q1 Q2)' In this case RPA eQs. (3.2) and (3.3) have the 

following fo~m: 

Ki, Ki, '" ~K ~K (+) [ ~K ~Ki, 
E: Q gQ Q - w - L (K O + PK 1 )uQ Q f (Q1 Q2)D p +Q wKi 
I' " 'p-±l ' , 1: 

-13- -14 



+ fAK( )OAKi.] _ GAKV(-) [fAK(q q )OAKi, + 
~ 2 q,q2 2PT q,q. , 2 gT 

AK AKi ]
+ ~f2 (q,q2)02gT' - 0 <3.5) 

and 

~ wKi , _ w gKi, GAKV(+) [fAK(q q )OAKi, + 
q,q. q,q. Ki, q,q. q I q. , 2 WT 

AK AKi,]+ ~f2 (q,q2)02WT - O. <3.6) 

The ~ank of the secula~ equation dete~minant is equal to '2. 

The calculation of KW-2+states in,68 E~ using eqs. (3.5) and 

(3.6) shows that the effect of the density-dependent pa~t of the 

inte~action is small at ~-O,'-o.2. The quad~upole st~ength 

shifts f~om the fi~st 2; state to highe~ ene~gy at ~>O.4 in 

cont~adiction with expe~imental data. This means that the ~ole 

of the density-dependent sepa~able inte~action is not impo~tant 

ro~ desc~ibing the vib~ational states. The t~ansition densities 

a~e most sensitive to density-dependent inte~actions. 

The most collective low-lying vib~ational states a~e the 

quad~upole and octupole ones. Any desc~iption of these states 

should be given in te~ms of the phonon ope~ato~ (2.4), while 

taking the ph and pp multipole inte~actions into account. The pp 

inte~actions imp~ove the desc~iption of the ene~gies, the B(EA) 

values as well as the st~uctu~e of these states. If we conside~ 

the E' t~ansitions to Kw-0 - o~ the states, they should be 

desc~ibed in te~ms of the ph and pp octupole as well as the ph 

dipole inte~actions. Fo~ calculating the E4 o~ E5 t~ansitions to 

the KW_2+ o~ KW.O-,' -,2-,3- states the wave functions of these 

states should be desc~ibed in te~ms of the ph and pp quad~upole 

and ph hexadecapole inte~actions o~ the ph and pp octupole and ph 

A-5 inte~actions. The RPA equations fo~ such cases have the 

following fo~m: 

Ki , Ki , AK [ (+) ~ AK PKA,K)oAKi, +~q q gq q - - f (q,q2) L (K O +wKi wq q uq q pT1:1: 1:1: 1 1:1: 1 :I: p-±l 

+ v(-) GAKOAKi,] - fA±2K(q q )u(+) L (K A±2K + PK A±2K)OA±2Ki, 
q,q. gT , 2 q,q. P_±' 0 , pT 

- 0 <3.7) 

~ wKi , _ w gKi, _ GAKfAK(q q )v(+) OAKi, _ 0 <3.8),q,q. q,q. Ki, q,q. , 2 q,q. WT 

Calculations of the E' t~ansitions f~om the g~ound state to 

the IW-'-states with K-O and' in doubly-even well-defo~med 

nuclei with dipole and octupole inte~actions have been 

pe~fo~med'4). The ene~gies, w3Ki ,' B(E3) values and the la~gest 

components of the wave functions a~e mainly dete~mined by the 

octupole inte~action. The isovecto~ dipole inte~action slightly 

influences the ene~gies, B(E3) values and state st~uctu~e, but 

st~ongly influences the B(E') values. 

Fo~ a desc~iption of the magnetic MA t~ansitions f~om the 

g~ound to one-phonon states one should use the phonon ope~ato~ 

(2.5) and take into account the multipole ph and pp as well as 

magnetic spin-multipole ph inte~actions. The RPA equations fo~ 

such cases has the following fo~m: 

~ gKi, _ w wKi , _ fAK(q q )u(+) L (K AK + PKAK)OAKi, 
q,q. q,q. Ki, q,q. , 2 q,q. P_± 0 , pT 
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- fAK(q q )v(-) aAKDAKi _ 0 (3.9)1 2 q, q, gl 

and 

£ wKi , _ w gKi. _ fAK(q q )v(+) aAKDAKi. _ 
q,q, q,q, Ki, q,q, 1 2 q,q, Wl 

_ t (L-1LK L-1LK)DL-1LKi'fL-1LK(q q )u(-) (q q ) _ 0 
L KO + PK 1 Pl 1 2 q,q,X 1 2 . 
p-t 

(3.10) 

An investigation of the magneti~ M2 and M3 t~ansition 

p~obabilities in defo~med nuclei has shown 7 ) that the spin

mUltipole A'LK-L+1LK and tenso~ inte~actions weakly influence the 

st~uctu~e of states with excitation ene~gies below 6 MeV and M2 

and M3 t~ansition p~obabilities. The~efo~e, we do not take them 

into account in equations (3.9) and (3.10). The ene~gies and 

st~uctu~e of the vib~ational states below 6 MeV in doubly-even 

defo~med nucle~ a~e mainly dete~mined by multipole inte~actions. 

The inclusion of a spin-multipole magnetic inte~action in 

addition to the multipole inte~actions leads to a shift of pa~t 

of the M2 and M3 st~ength f~om the low-lying states to the ~egion 

of giant isovecto~ magnetic ~esonances. The spin pa~ts of the M2 

and M3 t~ansition dominantes and the o~bital pa~t cont~ibution to 

the B(M2) and B(M3) values equal (10-40)~. 

We do not include in the QPNM Hamiltonian te~ms comp~ising 

+ + )
the ope~ato~s (QKi,lQKi,-o + QKi,-oQKi,o and 

B(q1 q2;KO)B(q1 q2;K-o) . Fo~ the ~oots of the RPA equation the 

following conditions must be fulfilled: 

+ K + +I t
<QKi 0 L £qlXqOlX qO - L Wi i QKi o,QKi o,IQKi > - wKi (3.10)

• qo i,i.o' ,., • .0 , 

and 

<QKi olr £qlX~OlXqO -iL i W~,i. 
, q 0 , • 

1 + + ] I + (J .11 )• 2[QKi.o QKi.-o + QKi.-oQKi,o QKi,o> - 0 

If we take the Pauli p~iciple into account fo~ the phonon 

ope~ato~s. eq. (3.11) does not equal ze~o. The te~ms of 

Hamiltonian, consisting of ope~ato~s (Q~i,oQ~i,-o + QKi,-oQKi,o) 

~~e used in the MUlti-phonon Method 14 ) fo~ desc~ibing the 

two-phonon state in defo~med nuclei. 

The ~ole of the te~ms of the Hamiltonian containing the 

ope~ato~s B(q1 q 2;Ko).B(q1 q2;K-o) is investigated. Nume~ical 

estimations by pe~tu~bation theo~y show that thei~ influence on 

the vib~ational states in well-defo~med nuclei is small. In 

nuclei of the t~ansitional ~egion is impo~tant these co~~ections. 

The ave~age numbe~ of quasipa~ticles in the g~ound states of 

doubly-even defo~med nuclei has been calculated 15 ). The g~ound 

state co~~elations inc~ease with inc~easing collectivity of the 

fi~st one-phonon states. In nuclei lying at the bounda~ies of 

the defo~mation ~egions. and especially in the t~ansition nuclei, 

the numbe~ of quasipa~ticles inc~ease up to 0.5, and, thus, RPA 

cannot be used. In well-defo~med nuclei the ave~age numbe~ of 

quasipa~ticles in the g~ound states is small. Inclusion of the 

pp inte~action in addition to that of ph imp~oves the appli

cability RPA. 
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It is possible to conclude that the RPA when it takes into 

account ph and pp inte~actions can be used to calculate the 

states in well-defo~med nuclei in the ~egions 150<A<186 

(90<N<112, 60<Z<86) and A>232. The one-phonon states can be used 

to fo~ming the phonon basis of the QPNM. 

~ 4. QPNM Equations 

Ou~ aim is to desc~ibe within the QPNM the low-lying, low-

spin non-~otational states in well-defo~med doubly-even nuclei. 

We take into account the ph and pp simple multipole 

inte~actions. Usually, ou~ wave function comp~ises of one- and 

two-phonon components. We investigated the cont~ibution of the 

two-phonon components to the wave functions of the low-lying 

states. To investigate these cont~ibutions,since we take into 

account the th~ee-phonon te~ms, the wave function of the excited 

state has following fo~m: 

(1+6 )1/2 
1T {tRvQ+ +L g,g. 

'I' (KoOo o) - t i o gooo g,g. 2[1+6 (1-6 )]1/2 
v 0 0,0. KoO IJ,O 

• 6 pV Q+ Q+ + 
O,IJ,+o.IJ.,ooK o g,g. g,o, g.o. 

+ L b 6 FV Q+ Q+ Q+ 1'1'0 
g,g.g, g,g.g, O,IJ,+o.IJ.+o,IJ"ooK o g,g.g, g,o, g.o. g,o, 

0.0 1 °. 
(4.1) 

He~e g-AlJi, 1J0-K and bg,g.g, is a numerical factor; v-1,2,3 ... • 

is the numbe~ of K~Ostate. To take the Pauli principle into 

account rega~ding the two- and three-phonon terms of the wave 

function (4.1), we int~oduce the function 

1 -1 L 
k o(g1 ,g1 1g 1 ,g2) - (1 + 6g ,g.) o,o.6 0 ,IJ,+0.1J.,00K o 

• <Qg ° [[Qg ° Qg+ ° ], Qg+ ° ]> (4.2) 
I 2. lit I 1 2 I 

,/0(g1 ,g2) ==- ,/0(g2,g1Ig,g2) ( 4 • 3 ) 

It's explicit form is given in 3 ). The normatization condition of 

kKothe wave function (4.1) in the diagonal of the approximation 

has the fo~m 

L (R()2 + L (P~ g )2[1 + kKo(g,g.)] + L (F~ g g )2
i o 0 g,>g. ,. g,>g.>g, ,., 

(1 + }[kKo:l:IJ'(g.,g,) + kKo:l:IJ'(g,.g,) + kKo:l:IJ'(g"g.)]j _ 1 

( 4 • 4 ) 

We now find the average value of 

+ HAoKoHAo Ko _ L E a+ a - L WAo Ko Q+ Q
QPNM q qo qo i i i,i. AoKoi,o AoKoi.o vq 

q° , •° 

over the state (4.1): 

('I'~(K~OOo)H~p~M 'I'v(K~OOo» 

_ L w (R~ ) 2 + L (P~ g ) 2[w + W + 6w(g1 g2)] [1 + kKo(g,g.)] 
g g g.i 0 0 0 g, <g. ,. , 
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i 

+ l:	 (F v )2 Ko
g,<g2<g, g,g2g, [(W g, + llW g ,)(1 + k ±\I'(g2,g,» + 

K
(w2 +11w2 )(1 +	 k ,±\l2(gl,g3» + (w

3
+11w

3
)(1 + kKo ±\I'(g1,g2»] 

(1 + 6 ) 1 12 
l:	 g,g2 RV pV Ug (1 + kK'(g"g2»

,1-6 ,,1/2 i o g,g2 g,g2
o g,g2 

K00 \1,,0 

(1+6 )1/2g ,g 2l: l:	 b I "pV FV
, I ,Ug:g~ , , 

g,g2 gi g2g3 [1 6 (1-6 )]1/2 gl g2 g3 g,g2 g1 g2 g 3 gl g2 g3+ KoO \I, ,0 
(4.5) 

where 

llw(g1 g2) - -l: (kKo(g2,g;lgl,g2)W~'r: + kKo(g2,g1Ig1g2)W~2r~1 ,
i , 2	 , 

(4.6) 

Here, gi -	 ).1\11 i ', g2 - ).2\12 i ' and w1r is determined by using 

(2.12) and H;gK o by using (2.20); 

llwg - -l: W~'r:[kKo±\I'(g2,gi Ig 1g 2 ) + k Ko ±\l2(g3,g,; gl,g2)], (4.7> 
, i' I
 

K
 
Ugo (1 + k	 '(g1,g2» - -~ l: 6 01 \l,+02\12,OoKg,g2	 0,0 2 o 

• «QgoOo H~q Q;,O,Q;2 0 2> + h.c.] , (4.8) 

Ug ,g 2 _ 6 ug 2 (1 + kK2(' , ) 
gi g 2 g3 g,g; g2g3 g2,g3 + 

+ 6 g,ugg~g,(l + kK2 (g"g3'» + ••••• (4.9)g
1 2 1 3 

Using the variational principle in the form 

6{(f:(K~'0,)H~p~MfV(K~00,» - Ev[(f:(K~OOo)fv(K~'O') - 1]) - 0 • 

-21

(4.10) 

we obtain a set of three equations for the energies, E ' and the 
v 

wave function (4.1). The first one is 

(1 + 6 )-1/2
g,g2( - E )R v - l: pV 

wgo v i o g,>g2[1 + 6 0(1-6 )]172 g1 g2 
K0' \1,0 

• U
g 

, (1 + kKo (g1,g2» - 0	 (4.11)
g,g2 

FV	 RVIf we find from third equation and from (4.11) andg,g2g, i , 

substitute it into second one we obtain the following equation: 

l: P~ g lCwg + w + llw(g1 g2) - E)(l + k
K

'(g1,g2)6 ,g,6 ,gOg	 g g.g, >g 2 1 2 1 2 1 1 2 2 

(1 + 6 )-1/26 ) -1/2(1 + g,g2g,g2- l: 
i, [1 + 6 0(1-6 )]172 [1 + 6 (1-6 )]1/2


K0' IJ I to Ko'O \1,,0
 

Ugo gou (1 + kKo(g' gO»(1 + kKo(g g»
g,g2 g 1g 2 1'2 "2 

W - E 
go v
 

(1 + 6 )-1/2

(1 + 6 )-1/2 g,g2g,g2	 2 ,- l: 

g,g2 g3 [1 +	 6 0(1-6 )]172 [1 + 6 (1-6 )]172 b g ,g2g 3 
K0' \1,0 KO'O \1,,0 

Ug ~ g ~ Ug , g 2 
g 'g'g' g'g'g'1 2 J 1 Z	 J I 
K ± '	 K' K + ' - 0,J(g' g' g')-Ev[1+k 0 \l1(g'g')+k 0±\l2(g'g')+k 0 \l3(g'g')]

1'2'3	 23 13 13 
(4.12) 

J(g' g' g')-(w +llw )(1+k Ko ±\I\(g'g'»+(w +llw )(l+kKo±\I~(g'g'» 
l' 2' 3 gi gi 2 3 g2 g2 1 3 
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+(W +~W )(l+kKo±~I(glgl»gi g3 1 2 

Fo~ desc~iption of the f~agnentation of the two-phonon state 

must be a diagonalised set of eq.(4.12) in the space of the two

phonon states. In this case we cannot neglect the non-diagonal 

te~ms in eq.(4.12). due to the appea~ance of ext~aneous solutions 

(6). We investigate the influence of the th~ee-phonon te~ms in 

the wave function (4.1) conce~ning the cont~ibution of the two

phonon configu~ation to the low-lying states. We can the~efo~e 

neglect the non-diagonal te~ms in eq.(4.12). and take the te~ms 

with gl·g~ and g2·g~ into account. In this app~oximation the 

influence of the th~ee-phonon states is ~educed to a shift of the 

two-phonon poles, which we denote as ~(glg2) (1+kK·(gl g2»)' This 

shift is positive and diffe~s f~om ze~o if the Pauli p~inciple is 

not taken into account in the th~ee-phonon te~ms of the wave 

function (4.1). 

By taking into account eqs. (4.11) and (4.12) in the 

diagonal app~oximation we obtain the following equation: 

[W + w + ~w(glg2) - ~(g1g2) - E ]p\I g g1 2 \I gl g2 

(1 + 6 )-1/2
 
g, g. ug • R\I
- L ·0. (4.13)

[1 + 6 (1-6 )]1/2 gl g2 i.i 0 K.,O ~IO 

Hence, we get the secula~ equation 

1+kK·(gl,g2) 
det II (wg - E\I)cS ii' - L 

o 0' 0 g 1 >g. 1+6g ,g. 

ugo ug~ 
g,g. g,g. • 0 . (4.14)II

+ W + ~w(gl ,g2) - ~(gl,g2) - E\IWg I g. 

This secula~ equation diffe~s f~om the one used in 3),11),12) due 

to an additional shift ~(glg2)' Now we can neglect the th~ee

phonon te~ms in (4.1) and (4.4) and f~om (4.4), (4.11) and (4.13) 

find Ri\l and p\I fo~ each value of E 
o g,g. \I 

The ~ank of the dete~minant (4.14) equals the numbe~ of one-

phonon te~ms in the wave function (4.1). Inclusion of the Pauli 

p~inciple in the two-phonon te~ms (4.1) gene~ates in (4.14) a 

facto~ of (1+k Ko (gl g2») and a shift of ~w(glg2) of the two-phonon 

pole. The th~ee-phonon te~ms in (4.1) lead to an additional 

shift of ~(glg2)' 

The fo~m of equations (4.11) and (4.13) and the ~ank of the 

dete~minant (4.14) a~e independent of what ph and pp mUltipole 

and spin-multipole inte~actions a~e taken into account, and a~e 

independent of the ~ank. n ' of the sepa~able inte~actions. max 
Equations (4.11), (4.13) and (4.14) coincide in fo~m with the 

equations in p~evious pape~sl),3) in which only the ph multipole 

inte~actions we~e taken into account. All of the complications 

caused by the fo~m of the inte~actions we~e concent~ated on the 

RPA equations. This means that calculations using the QPNM can 

be made with any complex inte~actions p~eseted in a sepa~able 

fo~m. 
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~ 5. General Properties of Low-lying Vibrational States in 

Deformed Nuclei 

The energies and structure of low-lying non-rotational 

states of doubly-even deformed nuclei are mainly determined by 

single-particle energies and wave functions of the Woods-Saxon 

potential, monopole pairing and isoscalar ph multipole 

interactions. Inclusion of the pp multipole interactions 

improves the description, especially 0+ states. By including the 

isovector ph spin-multipole magnetic interactions, the energies, 

B(EA) values and largest two-quasiparticle components of the wave 

functions of the one-phonon states change slightly. 

Regarding the general properties of the vibrational states 

of doubly-even deformed nuclei with an excitation energy of up to 

6 MeV, we can make the following conclusions: 1) For states with 

energies up to (2.5-3.0) MeV the anharmonicity of nuclear 

vibrations is small. This indicates that the contribution of a 

one-phonon component to the normalization of the wave function 

exceeds 90%. The states with fixed KW values are mainly of the 

one-phonon type corresponding to the first, second, etc., 

solutions of the RPA secular equation. A small anharmonicity 

involves the essential feature of the vibrational states in 

deformed nuclei, compared with spherical open-shell nuclei. 2) 

At excitation energies higher than 2.5 MeV, in the energy region 

of two-phonon poles, there is fragmentation of one-phonon states. 

The small anharmonicity of the low-lying vibrational states 

of deformed nuclei is due to two factors: first, the numerical 

values of the function U~:g. are smal~ second, due to a shift of 

the two-phonon poles their energies become larger than 2.5 MeV. 

The function U~:g. is a non-coherent sum of many terms 

containing the matrix elements fAK(q,q.), forward ",Ki and 
q ,q • 

backward ~Ki RPA amplitudes. In deformed nuclei, terms with q,q. 

different signs suppress each other. As a result, the numerical 

Ugvalues of the function • range from 0.01 to 0.20 MeV, andg I g. 
only in some cases, Ug • ,takes valus larger than 0.2 MeV. In g,g. 
spherical nuclei the largest terms in U~ii \ i have the same 

1\ 1 1 t 1\ 2 2 

sign for the first roots of secular equations the numerical 

values of U~ii A i are one or two orders of magnitude larger in 
1 1 :z a 

the open-shell spherical nuclei compared with the deformed ones. 

To investigate the influence of a density-dependent 

interaction on function Ug • we estimate the ug • values usingg,g. g,g. 
the RPA wave functions calculated with interaction w~Ei in the 

I • 

form presented in (3.4). We take into account the surface- and 

density- dependent separable interaction. According our 

calculation the numerical value, U~~~,221 in 168 Er increases by 

10% at C-O.l, compared with C-O. This means that the density-

dependent separable interaction only weakly influences the low

lying vibrational states in well-deformed nuclei. 

The terms of Hamiltonians containing operators 

(Q~i oQ~i -0 + QKi -oQKi 0 
I 2 2 1 

do not change the poles of a secular eq.(4.40), but do affect the 

function Ug • . According to our estimation this influence is 
g,g. 

small. 
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The calculated eneries of the low-lying states described by 

wave functions (4.1) are slightly smaller compared with RPA 

calculations. The wave function has a dominating one-phonon 

component and several small two-phonon components. The 

contribution of a one-phonon component to a wave function 

normalization condition is more than 80~ for states with energy 

up to 2 MeV. Such structured excited states are exemplified by 

11 + 11 + 11 - 168five K ·2 , four K·O and four K.3 states in Er. 

Let's consider the contribution of the two-phonon components 

to the wave function of low-lying states. According our 

calculation, these contributions to the normalization condition 

is less than 10~ for most states with energies less than 2 MeV. 

If the contribution of the two-phonon components to the wave 

function normalization exceeds 50~, this state is determined as a 

two-phonon state. Based on QPNM calculations of the energy 

centroids of two-phonon states, it has been concluded in 17 ) ,18) 

that collective two-phonon states cannot excist in deformed 

nuclei. According to the Multiphonon Method 14 ) sdg IBM 

calculations 19 ) and the Selfconsistent-Collective-Coordinate 

Hethod20 ) the first K~.4; state in 168 Er should be a collective 

11 + +two-phonon state. A new QPNM calculation of the first K ·21 , 31v 

and 4; states in 168 Er has been performed 21). It has been shown 

that the contribution of a double gamma vibrational component to 

the normalization of the wave function of the 4; state can be 

22 22achived up to 20~ by fitting constants IC O and G • 
22)A new experimental investigation has established a large 

double gamma vibrational component in the first K11 ·4 1 
+ state inv

168 Er • Accordingly a multi-Coulomb-excitation experiment on 

164 Dy 23) concluded that a two-phonon gamma vibrational state 

with large collectivity does not eXist in the energy region 

between 1.5 and 2.0 MeV in 164 Dy . We can state that the 

available experimental data do not contradict the conclusion 

concerning the absence of collective two-phonon states in 

deformed nuclei. Additional experiments are needed to establish 

the contribution of two-phonon configurations to the wave 

functions of low-lying states in deformed nuclei. 

The collectivity of the first quadrupole and octupole states 

and its absence in higher-lying states up to giant resonances 

undelie phenomenological models including IBM. In ref. 24 ), for 

the first time it was experimentally shown that the most 

collective is not the first, but higher lying states K11 ·34
- in 

v 

168 Er the largest part of the E2 strength is concentrated in 

172 yb • not in the first and second quadrupole states, but, within 

the 2-3 MeV energy interval. A non-standart distribution of the 

E3 strength in several deformed nuclei has been predicted 

in 12),25) 

According to RPA calculation there exist states within the 

energy range 3+4 MeV which may be strongly excited by 1

transitions from a ground states with B(E2»0.5 s.p.u. and 
26

B(E3»O.8 s.p.u .. It has been experimentally observed ) in 

150 Nd the octupole collective states with B(E3»O.6 s.p.u. with 

energies up to 3.4 MeV. 

At excitation energies of 2.5-4.0 MeV there are many two

phonon poles of the secular eq. (4.14). At these energies there 
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exist states with la~ge one- o~ two-phonon components in thei~ 

wave functions. The one-phonon st~ength is f~agmented ove~ two 

o~ th~ee states. In some cases mixing of two one-phonon states 

is obse~ved. F~agmentation of the one-phonon st~ength p~oceeds 

in a diffe~ent way fo~ va~ious states; it is st~onge~ fo~ 

collective states with la~ge B(EA) values fo~ t~ansitions to the 

g~ound state. It is possible to expe~imentally obse~ved the 

elect~ic and magnetic collective states within this ene~gy 

~egion. 

The discove~y of the o~bital M1 t~ansitions in defo~med 

nuclei 27 ) c~eates inte~est in sea~ching fo~ collective 1+ states. 

As a ~esult. many collective 1+ states have been obse~ved in 

defo~med nuclei. Acco~ding to QPNM calculations these 1+ states 

in	 164 Dy a~e weakly f~agmented. The concent~ations of the M2 and 

M3 st~engths in na~~ow ene~gy inte~vals below 4 MeV in 164 Dy and 

168E~ have been p~edicted in7). 

Expe~imental investigation conce~ning the EA and MA st~ength 

dist~ibutions within the ene~gy ~ange (2+6) MeV is ve~y useful 

fo~ unde~standing nuclea~ st~uctu~e. 

Collective vib~ational states a~e not limited by quad~upole 

and octupole states. It has been shown 28 ) that in some cases 

multipole inte~actions with A-5-9 lead to a mixing of two

quasip~oton and two-quasineut~on configu~ations in those states 

with la~ge K. Pe~haps the necessity of including high

multipola~ity inte~actions is ~elated to the inclusion 29 ) of 

high-multipola~ity defo~mations with A-5. 6 and 7. which have 

been found to be impo~tant in the ~egions of ba~ium and ~adium. 

Quasipa~ticle-phonon inte~actions lead to a ~athe~ st~ong 

f~agmentation of the one-phonon states with ene~gies la~ge~ than 

4 MeV. This makes expe~imental detection of the EA and MA 

st~ength concent~ation to the disc~ete levels difficult at 

excitation ene~gies of (4+6) MeV. 

§ 6. Conclusion 

The investigation conce~ning the f~amwo~k of the QPNM fo~ 

the vib~ational states in doubly-even well-defo~med nuclei has 

shown that they can be t~eated as small-amplitude collective 

states in ~egions 150<A<186 and A>230. In the QPNM common 

desc~iptions of the collective. weakly collective and two

quasipa~icle states has been obtained. All non-~otational states 

up to fixed ene~gy in well-defo~med nuclei can be calculated 

using the QPNM. 

The basic ideas found in the investigation of the 

vib~ational states in the doubly-even well defo~med nuclei with 

an excitation ene~gy up to 6 MeV we~e as follows: 

1) One-phonon states with ene~gies below 2.5 MeV a~e slighty 

f~agmented due to quasipa~ticle-phonon inte~actions. The 

wave function of those states have a dominant one-phonon 

component. Many states at excitation ene~gies in 2.5-3.5 MeV 

~ange also have a la~ge one-phonon component of thei~ wave 

function. 

2)	 The many collective states up to 4 MeV have B(EA) and B(MA) 

values and can be obse~ved expe~imentally. 
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3) The quasiparticle-phonon interactions lead to a fragmentation 

of the one-phonon states with energies greater than 4 MeV. 

This makes their experimental observation difficult. 

The non-standart behavior of the several most collective 

states, the collective vibrational states in the (1+4)MeV energy 

range and the necessi ty for a description of the y-tr'ansitions 

between excited states shows that should not divided in the well 

deformed nuclei the non-rotational states on the collective and 

non-collective ones. Extraction of a collective subspace led to 

a limitation of all non-rotational states. The common descrip

tion of the collective, weakly collective and two-quasiparticle 

states allowed us to calculate the y-transitions probabilities 

between all nuclear states. In many cases the Coriolis interac

tion should be taken into account in a description of the y

transitions between rotational bands. 

The QPNM can serve as a basis for calculating the energies 

and wave functions of the excited states in well-deformed nuclei. 

It is reasonable to expect that an experimental study of the 

excited states of well-deformed nuclei within the 2+4 MeV energy 

range will be carried out at a new generation of accelearators 

and detectors with high energy resolution. 

In conclusion I would like to thank A. V. Sushkov and N. Yu. 

Shirikova for their joint investigations, some results have been 

presented in this paper. This work was party undertaken during 

my stay at INS of the University of Tokyo. I am very thankful to 

professor B. Imanishi and physicists of the Theory Department of 

INS for his hospitality. I also acknowledge the financial support 

of the Reserarch fellowship of Ministry of Education, Science and 

Culture. 
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Appendix Afte~ simple t~ansfo~mation we exp~ess the ope~ato~ A(q,q2;Ko), 

The ope~ato~s, mat~ix elements and functions ente~ing into the A(q,q2;Ko) and a(q,q2;Ko) th~ough the phonon ope~ato~s (2.5) 

QPNM Hamiltonian a~e - + ), - i 0 I" Ki. + Ki. +
A (q,q2,Ko - ------- L [~q q 0 + ~q q _ ],QKi QKi 0/2 i o '2· '2. 

A+(q,q2;KO) 
-+ , - i 0 I" Ki • + Ki • +

A (q,q2;Ko) • ------- X(q,q2) L [~q q QKi 0 + ~q q _ ], (A.4)-+ I" + + QKi12 i • , 2· , 2 • 0A (q,q2;Ko) - ~I60l(K,-K2)'OKo'aq,Olaq.-ol' if IK,- K21 - K 

(A .1) + 0 - i I" [Ki. + Ki. Q+ ] 
....+ I" + + a (q,q2;Ko) • ------ X(q,q2) L ~q q QKi 0 + ~q,q2 Ki.-o . 
II (q,q2;Ko) - L 6 '(K +K) Kaq ,a " if K,+ K2 - K; /2" i.' 2 •0' 0 , 2,0 .0 q,o 

L 6 +0' o'(K,- K2),oKaq,0,aq20'. if IK,- K21 - K;A+(q,q2;KO) 
seq, q2 ;Ko) - (A.S) 

+ + L 6 ' +- +( . K ) - I" 6 ) Ka Ia _ I ,0 if IK,- K21 • K 0' o'(K,+ K ),oK o a q ,O,aq2 - 0'. if K,+ K2 - K.a q,q2' L o'(K -K ,0 q,o q.o 2,0 2' 
(A.2) 

+ + 
a+(q,q2;Ko) - L 60' (K +K2),oKolaq.o,aq,O' , if K, + K2 - K; 

0 , - K,' L 6 '( K K) K0' a + a , if lK,- K21
0' 0 , - 2' 0 q, 0' q2° • 

seq, q2 ;Ko) - (A.6) 
+ if K,+ K2 • K.a+(q,q2;KO) - oX(q,q2)A+(q,q2;Ko), ~,60'(Kl+ K ),oK a q ,0,aq2 - 0 ,2

(A.3)
 

a+(q,q2;KO) - oA+(q,q2,Ko).
 
OAKi. (+) Ki, (A.7)n, - L' f~K(q,q2)Uq,q2gq,q2

2 q ,q.
X(q, q2) • " X(q,q2) - -', X (q,q2) • "
 

OAKi, _ (-) Ki,
 (A.B)
ng, L' f~K(q,q2)Vq,q2gq,q2 

X(q,q2)a+(q,q2· KO ) a +(q, q2 ;Ko). q,q.
 

AK (+) Ki.
 (A.9)X(q2 q , )a+(q,q2;Ko) • -a+(q,q2Ko ) • a+(q2 q , ;Ko); OAKi, - L' f n (Q,Q2)VQ,Q2WQ,Q2
nw, Q, Q. 

,, OA'LKi. 1"' A'LK (-) Ki,if 0, K, + 02K2 • oK, L f (Q,Q2)uQ Q wQ Q X(Q,Q2) • (A. '0)n, - nQ,Q. , 2 , 2
t5 

0,K,+02K2,oK 
0, if o,K, + 02K2 " oK, whe~e 

wKi, _ ~Ki, _ ~Ki.with all K>O, 0 • ±,. gKi, _ ~Ki, + ~Ki. , 
Q,Q2 Q,Q2 Q,Q2 Q,Q2 Q,Q2 Q,Q2 
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The mat~ix elements of the multipole and spin-multipole ope~ato~s 

a~e exp~essed th~ough 

~K ~ -~K -~K
f (q1 q 2) • <q1IRn(t)Y~K(e~)lq2) • f (q1 q2) + X(q1 q2)f (q1 q2)n 

f~K(q1q2)' if IK 1 - K21 • K; (A.11) 

f~K(11q2) • 

?~K(q1q2)X(q1q2)' if K + K • K:
1 2 

fL-1LK(q1q2) • <q1IR~(~){oYL-1(e~)}LKlq2) (A .12)I 

f~K(q1q2) • <q113V(d Y~K(e~)lq2) • (A. 13) 
3~ 
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