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Abstract

The basic assumptions concerning the Quasiparticle-Phonon Nuclear
Model are formulated and the mathematical apparatus is developed.
The Hamiltonian, containing a finite-rank separable isoscalar and
isovector multipole, a spin-multipole and a tensor particle-hole
as well as particle-particle interactions transforms to a form
containing quasiparticle, phonon and quasiparticle-phonon inter-
actions. The general RPA equation is derived and the particular
cases are discussed. The very complex interaction does not
complicate the description of the fragmentation one-phonon
states. It is shown that the three-~phonon terms added to the
one-and two-phonon terms in the wave function lead to an
additional small shift of the two-phonon poles in the secular

equation. The influence of the density-dependent separable

interaction on the vibrational states is small. A common

description of the collective, weakly collective and two-
quasiparticle states in doubly-even well-deformed nuclei 1is

obtained.
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& 1. Introduction
The energies and wave functions of two-qusiparticle and one-
phonon states in doubly-even deformed nuclei were calculated in

1960-1975.
1)

A sufficiently good enough description was
obtained of the available at that time experimental date;
predictions were made which were later experimentally confirmed
in many cases. It seems to us that new calculations of the
vibrational states in deformed nuclei are needed. This is
necessitated by the large amount of new experimental data in
addition to that involving the first quadrupole and octupole
states. Experimental data are available concerning the
ﬁexadecapole states as well as the higher-lying collective and
weakly collective states. Many experimental data are expected to

be obtained at the new generation of accelerators; further, the
results of calculations may turn out to be useful.

The vibrational states should be calculated on a new basis,
such as the Quasiparticle-Phonon Nuclear Model (QPNM).Z)'3)
The QPNM can be used for a microscopic description of the low-
spin, small-amplitude vibrational states in spherical nuclel not
far from closed shells and in well-deformed nuclei.

Let us consider the specific features of deformed nucleli.
In the transition from spherical to axial symmetry, the spherical
subshells split into twice-degenerate single-particle states.
This splitting of the subshells leads to a decrease in the matrix
elements of some operators between the single-particle wave
functions of the axial symmetric Woods-Saxon potential, compared

with the matrix elements of the same operators between the wave



functions of the pherical symmetric Woods-Saxon potential. Such
a decrease Iin the matrix elements considerably affects the
vibrational states of deformed nuclei.

We restrict our investigation to an internal wave function,
VV(K"o), with a good quantum number K, parity =, and o=t1. We do
not consider the Coriolis interaction that mixes states with
different K and the same n. It is possible to take the Coriolis
interaction into account in cases when it is necessary to do so.

The specific feature of deformed nuclei is that one-phonon
states with the same K" can be formed as the result of different
multipole and spin-multipole interactions. The one-phonon states
of the electric type or natural parity states with fixed X" can
be described by the multipole ru=KK, K+2 K, K+4 K, etc, and by
the spin-multipole AAu=KKK, K+2 K+2 K, etc, interactions. One-
phonon states of the magnetic type or unnatural parity states can
be described by the spin-multipole interaction A'LK with A'=Lgs1
and by the tensor interaction. If in deformed nuclei, as in
spherical nuclei, one introduces independent phonons of the
electric and magnetic type, the number of states will be doubled.
To avoid doubling, the phonon operator has been introduced in
u)'S)Hhich comprises the electric and magnetic parts.

In this paper the mathematical apparatus QPNM for a
microscopic description of the doubly-even well-deformed nuclel
are presented. The basic assumptions of the QPNM and Hamiltonian
are formulated in 2. The general RPA equation and several
particular vershions are given in 3. 1In 4 the wave function of

the non-rotational excited states are introduced and basic

equations of the QPNM are derived. The general propertes of the
low-spin, small-amplitude vibrational states in doubly-even well
deformed nuclei are formulated in 5, and a conclusion is made in

6.

§ 2. Basic assumptions concerning the QPNM.

The initial QPNM Hamiltonian for the nonrotational states of
deformed nuclei contains the average field of a neutron and a
proton system in the form of the axial-symmetric Woods-Saxon
potential, monopole pairing, isoscalar and isovector particle-
hole (ph), as well as particle-particle (pp) multipole, spin-
multipole and tensor interactions between quasiparticles. The
effective interactions between quasiparticles are experessed as a
series of multipoles and spin-multipoles. It is essential that
the interaction between qQuasiparticles is represented in a

6)

separable form, which was first introduced by Yamaguchi. A

separable interaction of finite rank nmax>1 is used in cases
where the results of calculations are more sensitive to the
radial dependence of forces, in compared with a calculation of
the structure of complex nuclei within the QPNM. It may be
assumed that the finite-rank separable interactions between
quasiparticles do not 1limit the accuracy of calculations.

We introduce a finite-rank separable interaction for
deformed nuclei. Consider, for example, the central spin-

independent interaction V(|r1—r2|) and expend it over multipoles,
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22+1 u=-2i

A
V(leymry|) - %n (ry.r,) -0, v, (8,0,)

We present the radial part, Rx(r1,r2), in the form

A nlEax
R*(r,,r,) =
1172 ne

RA by
can(r1)Rn(r2) . (2.1)
Most of the calculations used in the QPNM are performed using a

simple separable interaction,
A ApA A
R (rl,rz) = x"R (r1)R (r2) . (2.2)

We now transform the initial QPNM Hamiltonian. For this

purpose we perform a canonical Bogolubov transformation,

.
3 " UgBqo + APLI (2.3)

in order to replace the particle operators, aqo and a;O, by

quasiparticle operators, a and u' Let us introduce two

qo qao
types of phonon operators. If only interactions of the electric
type are taken into account, the phonon creation operator has the
following standard form:

+
Ki,o

Ki,
qQ,4,

Ki,

Q q.q:

= 12,00 g 4 AT(a,053K0) - o0 0 AlQyapiK-0)} . (2.4)

If the interactions of the electric and magnetic type are taken

into account, we obtainS)'7)

* 1 Ki -+ ) . ) )
%10 2/3 alq,¥q,q, (1 P10 TR (aqy5K0) + x(a795)h (919,5K0)]
~0g 4 (1-10)0R(a ap5K=0) + x(8;9,)K(qy53K-0)1f . (2.5)

The operator (2.5) comprises of the electric and magnetic
parts;the coefficients of the electric part are real and those of
the magnetic part are imaginary. This form of operator is more

4)

convenient than that given earlier. Here i=1,2,3,...1s the root

number of the RPA secular

K, _ Ki, Ki, _ ,Ki,

equation and . .
* Y419, 929 492 9294

The quantum numbers of the single-particle states are denoted by
qo, where o=11; q equals K™ and asymptotic quantum numbers an A

+ at K=A+1/2 and Nn, A + at K=A-1/2. The operators, A(q,q,iKo)

A
and K(q,q,iKae), are given in the Appendix and
x(q1q2)K(q1q2;Ko)--x(q2q1)K(q1q2;Ko)-x(q2q1)K(q2q1;Ko) .

The RPA one-phonon state is described by the wave function

¥ (2.6)

+
%i,o¥0 °
where Yo is the ground-state wave function of a doubly-even
nucleus, determined as being a phonon vacuum. The normalization

condition of the wave function (2.6) has the form

1 KL, y2 _ (,Ki, y29 _
2atq,t Vg q,’ Gbgg) =1 (2.7)

One can easily show that the phonon operators, Q* and Q »
Ki,o Ki,o

obey the conditions which are usually imposed on RPA phonons.
By using formulae (2.4)},(2.5) and others, and after some

transformations the QPNM Hamiltonian becomes
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q

Hopnm . fa%ac%a0 T v T flvg

where the first two terms describe quasiparticles and phonons,
and qu describes the quasiparticle-phonon interaction. They

have the following form:

00 A0 K
Hy, = HOO + IH)O + gHb (2.9)
X K
K K +
Hy = =30y Wo 1, %, 0% ,0 (2.10)
K WKE KM KT
Wi, T Win, Y, Wi, o (2.11)
n
JKE 1p Smax(p (K AKy (AKL, AKE,
- |< + pky D +
L W, T Xt nel  pegl 1 nt nprt
AK, AKL, MK, AKi, LAKI . AK
+ G (DngT DngT v DnHTlDHWTz)] ! Hi.iz (2.12)
n t L A i ¥
wiMi . % §oy jmax (Ké LK pK¢ LK)D;TLKl‘D;p&Ki' '
102 Lt A'=L,L+1 nal p=z1
(2.13)

n
1 max LK LKy L-1LKi, L+1LK,
Wiy, mzl U0 L (kpg *opkqy )0, Dhpr (2.14)

Lt n=1 pagtl

00 A0 K
- HY + 1 H (2.19)
vag " fvq * E vq % vq '’
n 1
R T jmax (g HtKi, ) H:qLKi, . HbgTi,)‘
va 4/% 1,10 n=1 o va L,A'aLsl L
(2.16)
AKL -1 fAK(q q )V( ) (KAK + px?K)DAKi’ (2.17)
Hyq 6.q, M 172 aha, np™

+
« [€(1 - 10)¢( Ui, o * QKii_o)B(q1q2;K-o) + h.c.]

ALK, _ 51 ALK (+) , A'LK ALKy A'LKL,
qu Z f (q1q2)vqlqz('<o + OK1 )an‘l' i
2
N +
[(a - Dy Qg ,-o)Bla1 K o) + n.e.] , (2.18)
LKT1, T LK L-1LKi, L+1LK
Hyq ' =il (‘To MEAETIRI LSt SR CPE PO
q,q.
L+1LKi, L-1LK (+)
* Phpe My (q1q2)]vq.qz :
+
[(Qxi,o‘ QKil_o)B(q1q2;K-o) + h.e.] . (2.19)

Here, Eq is the quasiparticle energy with monopole and quadrupole

00 A0 00 A0 8)
Hv , Hv ' qu and H vq
AKL _AKI _AKi At LKi
functions DnT ’Dngr’DnW1a nd D

B(q1q2;Ko); and the matrix elements of the multipole and spin-
L+1LK

pairing ; are given elsewhere. The

; the operators B(q1q2;Ko).

multipole operators, (q 14,) and fn

(1) (&)
the Append . Further u =u v au .
PP Ix u € q9,Q, QIVtaUQ: q,' 'Q,9, 9q, tav(hv(h
Summation over single-particle states of a neutron and proton

system is denoted by ZT at T =nor 1 =« p,respectively; KSK and

AK
1

(q1q2), are given in

are the isoscalar and isovector constants of ph and

3
GA“-G§“+G:“ represents the pp multipole interactions; xé LK
1
r? LK and Kgg , x#f are constants of the isoscalar and isovector

ph spin-multipole and tensor interactions.
Most calculations of the structure of the excited states and

B(EA) values have been performed with a phonon operator (2.4) and

a simple n =1 multipole interactions with HK

t
nax vqin he form

R LT I I A CIE R I
T

va. o, oV ol, X p=t1 q,q,

K AK

N (KA + px) YD AKi

‘[(QKi o * Ui, -)B(ayapiK-0) + h.c.]



(2.20)

The Mi transition probabilities are calculated in a reference

7)

article with a phonon operator (2.5), but without a pp spin-

multipole interaction.

Calculations using the QPNM are made in four stages. The

first stage involves a calculation of the single-particle
energies and wave functions of the Woods-Saxon potential. The
parameters of the Woods-Saxon, potential are fixed so as to
obtain a correct description of the low-lying states in odd-A
nuclei, while taking account of the quasiparticle-phonon
interaction. Undoubtedly, one uses another form of the average
field potential or to calculates the energles and wave functions
of the single-particle states within the Hartree-Fock method in
order and to use them in calculations involves the QPNM.

The second stage is the canonical Bogolubov transformation

and the calculations involving the model of independent
quasiparticles., Taking simultaneously into account monopole

pairing with the constants GT and quadrupole pairing with the

constant 620 and under the condition which excludes 0" spurious

states, the following equations were derived in 8)

Tt C_ + £2°(qq)C,7
1 = 21 2 i C € : » (2.21)
q Tq
(+)
T rzo(qq)c T (fzo(qql)v |)z
1.6 (] =] Wy, (2.22)
q ZCzTeq qq’ eq
. $ (q)
and N, = T - < ] . (2.23)
q q

By neglecting the nondiagonal matrix elements fzo(qq') in

eq.(2-22) one arrives at the equations derived earlier in two

references. 9),10) Here,
2 2 1/2
gq = [ag + 5@ 1777, £(Q) = E(a)-r_ ,
20 I :
Aq =C o+ f (qq)C21 . C, = GTE UgVq (2.24)
and ¢, =627 £2%qq)u v
21 q qq”

Where E(q) Is the single-particle energy, and Ao is chemical
ﬁotential. The energies of the two-quasiparticle states are
calculated while taking the blocking effect into account.

Then, the RPA phonons, (2.4) or (2.5), are introduced and
RPA secular equations are solved. In the QPNM, the one-phonon
states (2.6) with the operators (2.4) are used as the basis.

Therefore, the third stage involves calculations of the one-

phonon basis. The phonon basis for calculating of the low-lying
states comprises ten (11-1,2,--0-,10) phonons of each
multipolarity: quadrupole (Au=20,22), octupole (Au=30,31,32,33)
and hexadecapole (Au=43,44). The calculated states above 3MeV
have been performed with a larger phonon basis with A>4 and
twenty phonon of each multipelarity. The phonon space corresponds
to the full space of the two-quasiparticle states in doubly-even
deformed nuclei.

The QPNM Hamiltonian is transformed to (2.8). The fourth

stage takes into account the quasiparticle-phonon interaction.



The wave functions of the exclited states are expressed as a
series over the number of phonon operators; in odd nuclei each
term is multiplied by a quasiparticle operator. The
approximation involves a cut-off of this series. 1In calculations
the Pauli principle is taken into account by using the exact
commutation relations between the phonon and quasiparticle
operators. To calculate the characteristics of highly excited
states, the strength-function method is used. By using a version
of the strength-function method one can directly calculate the
reduced transition probabilities, spectroscopic factors,
transition densities, cross sections '‘and other nuclear
characteristics without having to solve the relevant secular
equations.

The quasiparticle-phonon interaction is responsible for the
fragmentation of quasiparticle and collective motion and, thus,
for the complication of the nuclear state structure with

increasing excitation energy.

$ 3. RPA equation

We now obtain the RPA equation for energies wgy as well as
the wave function (2.6) of the one-phonon states. To describe
the K"# 0% state we use the following part of Hamiltonian (2.8),

and (2.9):

K
. A
Hppa §U€q°qo qo * Hy (3.1)

We determine the average value (3.1) over state (2.6), and using

the variational principle we get the following equations:

Ki S Tmax AK (+) AK
3 o= o7 ( )[u ( +
9.49: 9.9, w 1 Q|Qz E 1 E q1 2 [ 9.9, E'i] KO
AKi (=) ~AKAKi,
D ! G""D = . .2
Ky * V4.4, ngt 1] o] (3.2)
Ki, Ki fmax AK (+) LAK AKi
W - vo- r v G"'D 1o+
€0,0."0,a, ~ “Kk1,%q,q, ~ I {1 o (9192)v4,q,% Pnus
A'LK A LK y,A'LKi, A'LK (-)
*’E Z [ z'("o + px )an.[ lf (Q1q2)uq qIX(Q1qZ) +
p=t A
LK LK, (-) L-1LK L+1LK1i
+ (kgg *+ pxpydug o x(ayad (£ (aga)Dp =00
L+1LK L-1LKi
+ £ ey g ) . (3.3)
Here,
Ki, Ki, Ki, Ki Ki Ki
= ’ d W 1. . 1
“9.q:" %a,* %a,’ 8a,0." Ya,a." %qia. 2 Yg,0." Ya.a.” fa,a.
Ki Ki,
From eqs. (3.2) and (3.3) we obtain the functions g and w
9.:9. Al?ilq’
and then substitute them into the formulae for DAKi', Dngr"
Dzsi' and D; LK1, Taking into account that t=n,t=p and A'=L-1,

L, L+1 we derive the secular equality for the energies of the
one-phonon states, as an equality to zero of a determinent of

rank 12.n . The use of a separable interaction of rank n
max max

increase the determinate Noax times, in compared with a simple

separable interaction, nmax'1' If we neglect the spin-multipole

terms with A'=L, then the rank of the determinant is 10-nmax.



11),12)

Most of our calculations have been performed with n 1

max
multipole interactions with the matrix elements (A.13) with the

radial dependence Rx(r)-av(r)/ar, where V(r) is the central part
of the Woods-Saxon potential.

The secular equation for describing the O+ states with a simple

(n x-1) interaction was obtained ina)

na as an equality to zero of

a determinant of rank 10. By including a separable interaction

of rank Noax? the rank of the determinant for the energiles w201,

+
of one-phonon 0 states is ‘4+6nmax .
1)

of the 0’ states have shown the that the role

of the pp interactions is essential. Upon increasing GZO the low-

Investigations1

lying poles of the RPA secular equations are change. As a

result, the B(E2) value for an excitation of the first I“K1 -2*01
1

state and the energies of the 0+, 0+, 0! etc states are decrease
2 3 ]

2 xgo, in compared with GZO-O. Further, the structures

of the 0% states change. Inclusion of the pp i{nteractions, on

at 629-0.9

the whole, improves the description of the o' states.

238U and

Calculations of the superdeformed 0% excited states in
zuoPu are being performed with A. V. Sushkov. The calculated
energlies of the first excited 0" states are close to the
experimental ones, and the EO transition probabilities to fission
isomers are in reasonably good agreement with the experimental

238U and 21‘Olf’u

data. The second and several others 0" states in
are of the isovector type. Quadrupole pairing plays an important

role in the description of the superdeformed states.

We now obtain RPA equations for several particular cases. First
of all, we derive RPA equations for the multipole interaction

with the following radial function:

avir,) 3V(r,) 1
v, ° ar, * c:TV(‘\)V(”z) :

0

A
R (r1r2)

This equation contains the surface- and density-dependent
parts, where [ is, new free parameter and ro-l.zrm. We denote
corresponding matrix elements (A.13) as fAK(q1q2) and féK(q1q2) .
The connection between the separable multipole interaction and

the Skyrme force was investigated, 13).

in which a separable
fnteraction containing a density-depedent part, which is
equivalent to the zero-range Skyrme force in framework of RPA was
derived. The equivalent separable forces can be written in terms

of the transition densities for the vibrational states.

We put the function wai (2.12) 1in the form
1 2
KE _ _1 AK K\ [ o AKL , oAKL,
Hiniz —F—E {5-11(K0 + pK) )[DT Dpr +
AKL , K1 AK¢ - AKi, AKi, KL, K1
CDZT lDZpTl] + G [Dgr Dsr * Dwr lDw1 :
+ ;(D;gilnggil . D;Si‘D;Ei‘)]} , (3.4)
AKL AKL AKL

AK
where D2T , ngT and D have matrix element rz (q1q2) instead

2wt
of fAK(q1q2). In this case RPA egqs. (3.2) and (3.3) have the

following form:

+) AKL,
192 pT

€ gKi‘ - W
9,492 9.9 K1,

W ué [fAK(q1q2)D +

Kiv oy (KgK + pK:K)
1

p=z



AK KL, 1 _ oMK, (5) oK AKL
+ 5fy (q1q2)szT‘] Va.2, [f (q1q2)D bos
AK pAKL,
+ ey Q9,005 1] - (3.5)
and
Ki, _ Ki _ pAK () AKL,
®q,0."a,a, ~ “ki,8q,q, ~ © vq.q,[f “(agapimpett -
AK AKL,
+ tfy(aga,)D5, 00 ] - o. (3.6)

The rank of the secular equation determinant is equal to 12.

168 Er using eqs. (3.5) and

The calculation of K"=2'states in
(3.6) shows that the effect of the density-dependent part of the
interaction is small at ;=0.1-0.2. The quadrupole strength
shifts from the first 2;

contradiction with experimental data. This means that the role

state to higher energy at £>0.4 in

of the density-dependent separable interaction is not important
for describing the vibrational states. The transition densities
are most sensitive to density-dependent interactions.

The most collective low-lying vibrational states are the
quadrupole and octupole ones. Any description of these states
should be given in terms of the phonon operator (2.4), while
taking the ph and pp multipole interactions into account. The pp
interactions improve the description of the energies, the B{EX)
values as well as the structure of these states. If we consider
the E1 transitions to K"=0 or the 1 states, they should be
described in terms of the ph and pp octupole as well as the ph
dipole interactions. For calculating the E4 or E5 transitions to

the K"=2" or k¥=0,17,27,3  states the wave functions of these

states should be described in terms of the ph and pp quadrupole
and ph hexadecapole interactions or the ph and pp octupole and ph
A=5 interactions. The RPA equations for such cases have the

following form:

Ki, _ K1, _ .AK (+) AK AKy o AK1,
®a,9.%q,0,7 “kt,%,q, (97920 [uq,q, E_t,(‘ * ey )D '
(=) GAK AKi, pre2K (+) r:2K 222K, A$2K1,
* Ve, ] - (ay9)ug o 5_11(x0 + oy D0T
-0 , (3.7)
Ki, _ Ki, _ gAKp)K (+) AKi,
®q,0,"a,a, ~ “Kki,8q,q, ~ © (2492)v¢"q,Dur o . (3.8)

Calculations of the El1 transitions from the ground state to
the I"=1 states with K=0 and 1 in doubly-even well-deformed
nuclei with dipole and octupole interactions have been

14)

performed The energies, B{E3) values and the largest

“3Ki,’
components of the wave functions are mainly determined by the
octupole interaction. The isovector dipole interaction slightly
influences the energies, B(E3) values and state structure, but
strongly influences the B(E!) values.

For a description of the magnetic M) transitions from the
ground to one-phonon states one should use the phonon operator
(2.5) and take into account the multipole ph and pp as well as

magnetic spin-multipole ph interactions. The RPA equations for

such cases has the following form:

i oy K

+) (K MKy pAKE,
®3,9.%4,a. “ki,"q,q, )

K
(q1q2)“q a4 5., "0 TP e

—16—



(- ) AK AKL

g av{T) Mokt L g (3.9)
and
Ki, Ki, K (+) MK M1,
- - A
®9,4."9,9,  “k1,%q,q, (4492)v¢ q,
) L-1LK. _ L-1LK,.L-1LKi, L-1LK (-)
g.,(‘o v ¥y W M (4350uq q,%(249,) = ©

(3.10)

An investigation of the magnetic M2 and M3 transition

probabilities in deformed nuclei has shown7)

that the spin-
multipole A'LK=L+1LK and tensor interactions weakly influence the
structure of states with excitation energies below 6 MeV and M2
and M3 transition probabilities. Therefore, we do not take them
into account in equations (3.9) and (3.10). The energies and
structure of the vibrational states below 6 MeV in doubly-even
deformed nuclei are mainly determined by multipole interactions.
The inclusion of a spin-multipole magnetic interaction in
addition to the multipole interactions leads to a shift of part
of the M2 and M3 strength from the low-lying states to the region
of giant isovector magnetic resonances. The spin parts of the M2
and M3 transition dominantes and the orbital part contribution to
the B(M2) and B(M3) values equal (10-40)%.

We do not include in the QPNM Hamiltonian terms comprising
) and

+ +
the operators (QKi,qui,—o + QKi,-oQKi,o

B(q1q2;Ko)B(q1q2;K—o) . For the roots of the RPA equation the

following conditions must be fulfilled:

i1, o{z Eq“qo q " 2 M1, 00 ka0 1% 0% 7wy, (3410)
2 3

i,i,0'
and
K
< -
QKil {Z Equqo qoa Ezi'wizil

1 +
Z09%4,0%1,-0 * %1,-0%1,001%i,0” = O - (3.1

If we take the Pauli priciple into account for the phonon
operators, eq. (3.11) does not equal zero. The terms of

Hamiltonian, consisting of operators (Qi1 o )
1

14)

°§1,—o * %i,-0%1,0
3are used in the Multi-phonon Method for describing the
two=phonon state in deformed nuclei.

The role of the terms of the Hamiltonian containing the
operators B(q1q2;Ko)-B(q1q2;K~o) is investigated. Numerical
estimations by perturbation theory show that their influence on
the vibrational states in well-deformed nuclei is small. 1In
nuclei of the transitional region is important these corrections.

The average number of quasiparticles in the ground states of
doubly-even deformed nuclei has been calculated15). The ground
state correlations increase with increasing collectivity of the
first one-phonon states. In nuclei lying at the boundaries of
the deformation regions, and especially in the transition nuclei,
the number of quasiparticles increase up to 0.5, and, thus, RPA
cannot be used. In well-deformed nuclei the average number of
quasiparticles in the ground states is small. Inclusion of the

pp interaction in addition to that of ph improves the appli-

cability RPA.



It is possible to conclude that the RPA when it takes into
account ph and pp interactions can be used to calculate the
states in well-deformed nuclei in the regions 150<A<186
(90<N<112, 60<Z<86) and A>232. The one-phonon states can be used

to forming the phonon basis of the QPNM.

& U, QPNM Equations

Our aim is to describe within the QPNM the low-lying, low-

spin non-rotational states in well-deformed doubly-even nucleli.
We take Into account the ph and pp simple multipole
interactions. Usually, our wave function comprises of one- and
two-phonon components. We investigated the contribution of the
two-phonon components to the wave functions of the low-lying
states. To Investigate these contributions,since we take into
account the three-phonon terﬁs; the wave function of the excited

state has following form:

1/2
(146 )
(Kan + (VG ] nel
-] o 0 -
f 8182 20100y o(1-6, o))
2
pV + +
* 6°)U1+01U1100Ko gxnggxol 820,
FV + + + v. .
* g é g’nggzgsdqlu:+°zUz’°nU:vOoKo g.,8:8, 8.0, 8,0, 8:03} °
182
0,020,

(4.1)
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Here g=Aui, u,=K and b is a numerical factor; v=1,2,3,.--

£.8:8,
is the number of Kf’state. To take the Paull principle into
account regarding the two- and three-phonon terms of the wave

function (U4.1), we introduce the function

-1

1
k°(81'81|g1'82) - (s 68182) 0.01601U1*01Ua-OoKo
+ +
x < , > ., 4.2
anuz[[leoqugxox] ngO:] ¢ )
Ko(gy .80 2 Kog,8,08,8,) - (4.3)

It's explicit form is given in3). The normatization condition of
the wave function (4.1) in the diagonal of the kK° approximation

has the form

)2[1 + kKo(gxgz)] + Z 2

2 2 v v
T (RY DS+ 1 (P (F
8181 81>8;)8. 81818!

{, 1o 8.8,

{1 * %[kKotUI(gzvgs) + kKotuz(gllgl) * kKOtu'(gl'gz)]} = 1.
(4.4)

We now find the average value of

+ _ oK +
abnd = L €q%e%e T L L Mitil U k.1, 0% K,t,0 T P
qo 11,0

over the state (4.1):

* T AoK, L
(vh(KTo0 o) HA2Re ¥ (KT00,))

Ko
. E wso(Rro)z ! gz<g (PZ,81)2[”8.+ ug,* Bw(B;8;)] [1 + k7e(8,8,)]

-20—



+ I (FY

Kotu
Y1+ ke EFa(
g.<g,<g, B:18:8, BarBa))

2
) [(wgl+ Awgl

(m2+Aw2)(1 + kK°1u3(g1,g3)) + (w3+Aw3)(1 + kK°iu'(g1.82))] -

(1 +8 )72
- 2 8,8, R\) pY Ug (1 + kK"( )
- 172 "1,°g,8, B,8 81.8,;
i.,8,8;, [1 + 5K°o(‘| Gu“o)] ° 182 182

(1 +5 /2
= L, e 172 bz'z‘z’P; g F;’s's‘ugggfs'
1 -
€82 818383 [1 + & o(1-6, )] 15253 5152 518283 518283
(4.5)
where
- - K, Au K A,u
du(g,8,) El[k (gz.g;|g1,32)w1:1; + K °(gé.g1|g1gz)wi:i}} ,
(4.6)

Here, g{ = A1u1i'. gé - Azuzi' and wif is determined by using

(2.12) and H¢§K° by using (2.20);

Au Kotnp Koty .
wi:j_}[k ° ‘(g203{|8182) + k ° 1(83181'D 81182)31 (u-7)

uBe (1 + 1o (gy8y0) = 5 I

[
8.8, 0,0, O, u3*0,U,,00K,

=K + +
* {<Q8°00 HV:I leong,o,> * h.C.] ! (ll.8)

g2

K
H - U 1 2 ' 1
Jay 7 SgaiUley( KM EpEp ¢

g2 K,
U 1 k L8 rese 4,
. 68185 3i3§( + (8],83)) + (4.9)
Using the variational principle in the form

SLCYL(KTo0,) Hyphey (KT200)) = E L(¥L(KI®0,)¥ (KI%,) - 13) = 0,

(4.10)
we obtain a set of three equations for the energies, Ev. and the

Wwave function (4.1). The first one is

-1/2
(1 + 6
(w, - EDRY - § 8.8 pY
Bo v, _ 1/2 "g,8
g.>8.[1 + éxo,o(‘ 5u‘0)] 1%2
g K -
x Ug:g,(1 + Kk °(31»32)) o . (4.11)

If we find FY from third equation and Rr from (4.11) and
L]

818:8,
substitute it into second one we obtain the following equation:

K
I Py {lw, + w_ + Aw(gy8,) -~ E_J(1 + k" °(g,,8,)6 8 -
g.>8, 5182 By & 172 v 17727781.87 82183
-1/2
-1/2 (1 + 8§ o)
. (0 + 80 o) _, 8183 -
bo [0+ 8y, 00178y,,,000 7 T1 + 8k 01 -8,0 )]
U5585U§;82(1 + k5oge,e8 01 + kR, )
wgo— Ev
-1/2
-1/2 (1 + 8_0.,)
. (18 0) 8183 b2
_ 172 ~ 172 “glgigs
Bjgzey [1 + 8¢ (16, o)) (1 v 8¢ o0 Gu;,o)] 18283
83183 8,8,
gigies Uslgis! .
x T T ] - ’
I8 83.8)-Evl1+K " i(gae) ek *P2(giay) k" V3 (g8Y)] )
(4.12

Kol K 'zvl
T(8] 84, 83) - (g, *8ug ) (12K *“*(gésé>>+(mgé+Amgé><1+k °tMi(giel))



+(mg1,+Amgé)(1+k"°*‘*‘(g;gé)) X

For description of the fragnentation of the two-phonon state
must be a diagonalised set of eq.(4.12) in the space of the two-
phonon states. In this case we cannot neglect the non-diagonal
terms in eq.(4.12), due to the appearance of extraneous solutions
(6). We investigate the influence of the three-phonon terms in
the wave function (4.1) concerning the contribution of the two-
phonon configuration to the low-lying states. We can therefore
neglect the non-diagonal terms in eq.(4.12), and take the terms
with g1-g? and gz-gg into account, In this approximation the
influence of the three-phonon states is reduced to a shift of the
two-phonon poles, which we denote as A(g1g2) (1+kK°(g182)). This
shift is positive and differs from zero if the Pauli principle is
not taken into account in the three-phonon terms of the wave
function (4.1).

By taking into account eqs. (4.11) and (4.12) in the

diagonal approximation we obtain the following equation:

A"

[mg + wg + Aw(g182) - A(8182) - Ev]Pg g

1 2 182

-1/2
(1 + 6
- g8,8 8 v
E 0+ 5, (1 177288, e "0 (413
° Ke»O u,0

Hence, we get the secular equation

1"kK°(81 182)
detll(wgo - E\))Gio'i; -

>, 1
8:28: 1+8g o,
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Bo Bs
U U
N 28,8, 8,8, || - 0 . (4.14)

wgl + mgz + Aw(g1.82) - A(81782) - E

Y
3),11),12)

This secular equation differs from the one used in due
to an additional shift A(g132). Now we can neglect the three-
phonon terms in (4.1) and (4.4) and from (4.4), (4.11) and (4.13)
find RY and P’ for each value of E_ .

i, 8.8, v

The rank of the determinant (4.14) equals the number of one-
phonon terms in the wave function (4.1). Inclusion of the Pauli
principle in the two-phonon terms (4.1) generates in (4.14) a
factor of (1+kK°(g1gZ)) and a shift of Au(g1gz) of the two-phonon
pole. The three-phonon terms in (4.1) lead to an additional
shift of A(g182).

The form of equations (4.11) and (4.13) and the rank of the
determinant (4.14) are independent of what ph and pp multipole
and spin-multipole interactions are taken into account, and are

independent of the rank, n of the separable interactions.

max'
Equations (4.11), (4.13) and (4.14) coincide in form with the
equations in previous papers1)’3) in which only the ph multipole
interactions were taken into account. All of the complications
caused by the form of the interactions were concentrated on the
RPA equations. This means that calculations using the QPNM can

be made with any complex interactions preseted in a separable

form.



$§ 5. General Properties of Low-lying Vibrational States in
Deformed Nuclei

The energlies and structure of low-lying non-rotational
states of doubly-even deformed nuclel are mainly determined by
single-particle energlies and wave functions of the Woods-Saxon
potential, monopole pairing and isoscalar ph multipole
interactions. Inclusion of the pp multipole interactions
improves the description, especially o' states. By including the
isovector ph spin-multipole magnetic interactions, the energies,
B(EA) values and largest two-quasiparticle components of the wave
functions of the one-phonon states change slightly.

Regarding the general properties of the vibrational states
of doubly-even deformed nuclei with an excitation energy of up to
6 MeV, we can make the following conclusions: 1) For states with
energies up to (2.5~3.0) MeV the anharmonicity of nuclear
vibrations is small. This indicates that the contribution of a
one-phonon component to the normalization of the wave function
exceeds 90%. The states with fixed K" values are mainly of the
one-phonon type corresponding to the first, second, etec.,
solutions of the RPA secular equation. A small anharmonicity
involves the essential feature of the vibratlional states in
deformed nuclei, compared with spherical open-shell nuclei. 2)
At excitation energles higher than 2.5 MeV, in the energy region
of two-phonon poles, there is fragmentation of one-phonon states.

The small anharmonicity of the low-lying vibrational states

of deformed nuclel is due to two factors: first, the numerical

values of the function US“S are small; second, due to a shift of
1 2

the two-phonon poles their energies become larger than 2.5 MeV.

The function Ug°g is a non-coherent sum of many terms
1 1
containing the matrix elements rXK(q,q,), forward wgiq and
1 2

backward ¢§1q RPA amplitudes. In deformed nuclei, terms with
1 2
different signs suppress each other. As a result, the numerical

values of the function Ug°8 range from 0.01 to 0.20 MeV, and
1 2

only in some cases, Ué“g » takes valus larger than 0.2 MeV. In
182
A

spherical nuclei the largest terms in U t have the same
Alilvxxil

sign for the first roots of secular equations the numerical

Al
Ailyaad,

Ehe open-shell spherical nucle{ compared with the deformed ones.

values of U are one or two orders of magnitude larger in
To investigate the influence of a density-dependent
{nteraction on function US® we estimate the U&° values using
818, 8182
the RPA wave functions calculated with interaction HfEi in the
142
form presented in (3.4). We take into account the surface- and
density- dependent separable interactipn. According our

calculation the numerical value, Ug:: 221 in 168
r

Er increases by
10% at ¢=0.1, compared with g=0. This means that the density-
dependent separable interaction only weakly Influences the low-
lying vibrational states in well-deformed nuclel.

The terms of Hamiltonians containing operators

+ +
Qs o%i1,-0 * Ui,-0%t,0

do not change the poles of a secular eq.(4.40), but do affect the

function Ué“g . According to our estimation this influence is
1652 :

small.



The calculated eneries of the low-lying states described by
wave functions (Y4.1) are slightly smaller compared with RPA
calculations. The wave function has a dominating one-phonon
component and several small two-phonon components. The
contribution of a one-phonon component to a wave function
normalization condition is more than 80% for states with energy

up to 2 MeV. Such structured excited states are exemplified by

five K™=2", four K"=0* and four K™=3" states in '°%Er

Let's consider the contribution of the two-phonon components
to the wave function of low-lying states. According our
calculation, these contributions to the nérmalization condition
13 less than 10§ for most states with energies less than 2 MeV.
If the contribution of the two-phonon components to the wave
function normalization exceeds 50%, this state is determined as a

two-phonon state. Based on QPNM calculations of the energy

centroids of two-phonon states, it has been concluded in17)'18)

that collective two-phonon states cannot excist in deformed

14)

nuclel, According to the Multiphonon Method sdg IBM

calculations19) and the Selfconsistent-Collective-Coordinate

20) 168

Method the first 1(3-141+ state in Er should be a collective

two-phonon state. A new QPNM calculation of the first K:-z;, 3:

168 21)

and H; states in Er has been performed It has been shown

that the contribution of a double gamma vibrational component to

the normalization of the wave function of the 4; state can be

achived up to 20% by fitting constants ng and 622.

22)

A new experimental investigation has established a large

double gamma vibrational component in the first K:-N; state 1in

168Er\ Accordingly a multi-Coulomb-excitation experiment on
16l‘Dy 23) concluded that a two-phonon gamma vibrational state
with large collectivity does not exist in the energy region
between 1.5 and 2.0 MeV in 16uDy. We can state that the
available experimental data do not contradict the conclusion
concerning the absence of collective two-phonon states in
deformed nuclei. Additional experiments aré needed to establish
the contribution of two-phonon configurations to the wave
functions of low-lying states in deformed nuclei.

The collectivity of the first quadrupole and octupole states
and its absence in higher-lying states up to giant resonances

24)

undelie phenomenological models including IBM. 1In ref,. for

the first time it was experimentally shown that the most

collective 1s not the first, but higher lying states K:-3; in
168Er the largest part of the E2 strength 1sAconcentrated in
172Yb, not in the first and second quadrupole states, but, within
the 2-3 MeV energy interval. A non-standart distribution of the
E3 strength in several deformed nucleil has been predicted
in 12),25)

According to RPA calculation there exist states within the
energy range 3+4 MeV which may be strongly excited by Y-
transitions from a ground states with B(E2)>0.5 s.p.u. and

26)

B(E3)>0:8 s.p.u.. It has been experimentally observed in

150Nd the octupole collective states with B(E3)>0.6 s.p.u. with

energies up to 3.4 MeV.

At excitation energies of 2.5-4,0 MeV there are many two-

phonon poles of the secular eq. (4.14). At these energies there



exist states with large one- or two-phonon components in their
wave functions. The one-phonon strength is fragmented over two
or three states. In some cases mixing of two one-phonon states
is observed. Fragmentation of the one-phonon strength proceeds
in a different way for various states; it is stronger for
collective states with large B(EA) values for transitions to the
ground state. It is possible to experimentally observed the
electric and magnetic collective states within this energy
region.

The discovery of the orbital M1 transitions in deformed

27)

nuclei creates interest in searching for collective 1* states.

As a result, many collective 1% states have been observed in

deformed nuclei. According to QPNM calculations these 1* states

in 16uDy are weakly fragmented. The concentrations of the M2 and

164

M3 strengths in narrow energy intervals below 4 MeV in Dy and

168Er have been predicted 1n7).

Experimental investigation concerning the EA and MA strength
distributions within the energy range (2+6) MeV is very useful
for understanding nuclear structure.

Collective vibrational states are not limited by quadrupole

28) that in some cases

and octupole states. It has been shown
multipole interactions with A=5-9 lead to a mixing of two-
quasiproton and two-~quasineutron configurations in those states
with large K. Perhaps the necessity of including high-

29) ¢

multipolarity interactions is related to the inclusion
high-multipolarity deformations with A=5, 6 and 7, which have

been found to be important in the regions of barium and radium.

Quasiparticle-phonon interactions lead to a rather strong
fragmentation of the one-phonon states with energles larger than
4 MeV. This makes experimental detection of the EA and MA
strength concentration to the discrete levels difficult at

excitation energies of (lU+6) MeV.

§ 6. Conclusion

The investigation concerning the framwork of the QPNM for
the vibrational states in doubly-even well-deformed nuclel has
shown that they can be treated as smail—amplitude collective
Qtates in regions 150<A<186 and A>230. In the QPNM common
descriptions of the collective, weakly collective and two-
quasiparicle states has been obtained. All non-rotational states
up to fixed energy in well-deformed nuclel can be calculated
using the QPNM.

The basic ideas found in the investigation of the
vibrational states in the doubly-even well deformed nuclei with
an excitation energy up to 6 MeV were as follows:

1) One-phonon states with energies below 2.5 MeV are slighty
fragmented due to quasiparticle-phonon interactions. The
wave function of those states have a dominant one-phonon
component. Many states at excitation energies in 2.5-3.5 MeV
range also have a large one-phonon component of their wave
function.

2) The many collective states up to 4 MeV have B(EA) and B(Mi)

values and can be observed experimentally.



3) The quasiparticle-phonon interactions lead to a fragmentation
of the one-phonon states with energlies greater than 4 MeV.
This makes their experimental observation difficult.

The non-standart behavior of the several most collective
states, the collective vibrational states in the (1+4)MeV energy
range and the necessity for a description of the Y-transitions
between exclited states shows that should not divided in the well
deformed nuclel the non-rotational states on the collective and
non-collective ones. Extraction of a collective subspace led to
a limitation of all non-rotational states. The common descrip-
tion of the collective, weakly collective and two-quasiparticle
states allowed us to calculate the Y-transitions probabilities
between all nuclear states. In many cases the Coriolis interac-
tion should be taken into account in a description of the Y-
transitions between rotational bands.

The QPNM can serve as a basis for calculating the energies
and wave functions of the excited states in well-deformed nuclei.

It is reasonable to expect that an experimental study of the
excited states of well-deformed nuclel within the 2+4 MeV energy
range will be carried out at a new generation of accelearators

and detectors with high energy resolution.

In conclusion I would like to thank A. V. Sushkov and N. Yu.
Shirikova for their joint investigations, some results have been
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my stay at INS of the University of Tokyo. I am very thankful to

professor B. Imanishi and physicists of the Theory Department of
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INS for his hospitality. I also acknowledge the financial support
of the Reserarch fellowship of Ministry of Education, Science and
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Appendix
The operators, matrix elements and functions entering into the

QPNM Hamiltonian are

A’(Q1QZ;K0) -

~ 4 + +
A" (q,9,:K0) = E,ﬁo'(K1-K2),oK°'“q,o'“q1-o' ooAf K- K| = K
- (A.1)
+ + +
T (q,q,:Ke) = g,ao'(K1+K2).oKaq,o'aq,o' . Ir K+ Ky = K;

A" (a;q,iK0) =

-+ + +

a (q1q2;Ko) " 5,60'(K1-K2),oKaq,o'aq,-o' TR |K1 K2I - K

- (a.2)

— + +
309y %iK0) = 1 80 (k 4K,), 0k ®q 000,00 ¢ T K1 Ko = K

5+(Q1q2;K0) - 0X(q1q2)ﬁ*(q1q2;Ko)' ( |
A.3

—_— -—

a (q,q,:Ko0) - ok (q,q,:Ko).

2
x(a,25) = 1, x(ayqy) = -1, x"(qqa,) = 1,
+ +
x(q2q1)a'(q1q2;Ko) - -a*(q1q2Ko) - a"(q,q,iKe);
T, Af o,K; + oK, = oK,

K

6 -
9 1+o Kz,oK

0, (if °1K1 + 02K2 # ok,

with all K>0, o = 1.
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After simple transformation we express the operator R(q1q2;Ko),

K(q1q2;Ko) and a(q1q2;Ko) through the phonon operators (2.5)

_— 1 - 1o Ki, ~+ Ki, ~+
A (q,q9,iKe) = ———— ] [v_"° + 40 Q,, _1
192 i, ,9, Ki,o q,a, Ki,
o+ . _ 0 Ki Ki, ~+
A (q,q,:Ko) x(a,q,) Z Ew : QK1 o * %q,q, Ki,-olr (A-4)
+ . . Ki, Ki, .+
a (qy9,iKo) x(q,q5) Z Ew QK1 0 * °q152QKio-
+
E.“o'(x1- K,)»o0k%q 0" %qm0t, f IKy= Kol = K;
B(q1qz;Ko) - (4.5)
6 ‘ot Lf Ky+ K= K.
E. o'(K1+ Kz).oKo aq1o'aq2-o'. 1" F2
ral if K, - - K
5.60'(K1- K2).0Ko aq1°'aq2°, | 1 K2| '
B(q-IQZ:KO) - (A-6)
+
5,60'(K1+ K5) 40K clq.lo'“qz-o' Lt Ko+ Ky = K.
AKi T AK (+) _Ki
DIt -« 1T £77(q,q,)u g (A.7)
nt 4.4, n 172 q1q2 q1q2
AKi T AK (=) Ki
D e 1Y £0Mq,q,)V ! (A.8)
ngt a, t 1?49 q1q2
AKi 1 ( ) JKi
) (q Q,)v v, (A.9)
nwt qlq‘ 132 2 q1q2
A'LKi T JATLK (=) ki
Dpr 1 . g q £, (q1q2) a,d, q1 x(ayq5) (A.10)
1 2
where
Ki, _ Ki, , ,Ki, ST ¢ BN S T

g ’
9:9; 94z 492 9,9, 9 "9,



The matrix elements of the multipole and spin-multipole operators

are expressed through

AK A ZAK +AK
£ (a,0,) = <qq R ()Y, (08 ]ay> = £7 (q9,5) + x(ay0,)T" " (a,q,)

#*%(q,q,), iIf |K - K| = K; (A.11)
2K 172 1 2
£ (1,0,) -
+AK
"7 (q,9,)x(q,4a,). if Ky *+ Ky = K:
L-1LK
e (q ay) = <ay|RA(R) Lox | _ (00} ]y (8.12)
AK 3V(r)
£77(a,0,) = <q,| Yg(ed)|ay> . (A.13)

ar

References

1):V. G. Soloviev, Theory of Complex Nuclei (Pergamon Press,

2)
3)

)
5)
6)
7)
8)
9)

10)

11)

12)

13)

14)

15)

16)

Oxford, 1976).

V. G. Soloviev, Prog. Part. Nucl. Phys. 19(1987) 107.
V. G. Soloviev, Theory of Atomic Nuclel. Quasiparticle and
phonos. (Energoiz dat, Moscow, 1989) [English transition to
be published by IOP publ. LTD, Bristol, England].

V. G. Soloviev, Z. Phys. A-Hadrons and Nuclei 338 (1991) 271.
V. G. Soloviev, Prog. Part. Nucl. Phys. 28 (1992).

Y. Yamaguchi, Phys. Rev. 95 (1954) 1628.

V. G. Soloviev and N. Yu. Shirikova, Yad. Fiz. 55 (1992).
V. G. Soloviev, Z. Phys. A-Atomic Nuclei 334 (1989) 143,

D. Karadjov, V. G. Soloviev and A. V. Sushkov, Izv. AN SSSR
53 (1989), 2150.

I. Ragnarsson and R. A. Broglia, Nucl. Phys. A263 (1976),

ser. fiz.

263, 315.

V. G. Soloviev, A. V. Sushkov and N. Ya. Shirikova, Yad. Fiz
53 (1991), 101.

V. G. Soloviev and N. Yu. Shirikova, Z. Phys. A-Atomic
Nuclei 334 (1989) 149,

T. Suzuki and H. Sagawa, Prog. Theor. Phys. 65 (1981) 565.
R. Piepenbring and M. K. Jammari, Nucl. Phys. A481 (1988) 81,
V. 0. Nesterenko, V. G. Soloviev and A. V. Khalkin, Sov. J.
Nucl. Phys. 32 (1980), 625.

V. G. Soloviev and L. A. Malov, Nucl. Phys. A196 (1972), u33.



17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

V. G. Soloviev and N. Yu. Shirikova, Z. Phys. A301 (1981)
263.

V. G. Soloviev and N. Yu. Shirikova, Yad. Fiz. 36 (1982)
1376.

N. Yoshinaga, Y. Akiyama and A. Arima, Phys. Rev. C38 (1988)
¥19.

M. Matsuo and K. Matsuyanagi, Prog. Theor. Phys. T4 (1985),
1227; 76 (1986) 93.

V. G. Solovigv. A. V. Sushkov and N. Yu. Shirikova, Proc.
Workshop on Nuclear Shape and Nuclear Structure at low
excitation Energies, 1991 ed. M. Vergnes (Plenum Publ. Co.)P.
H. G. Borner J. Jolie, S. I. Robinson, B. Krusche, R.
Piepenbring, R. F. Casten, A. Aprahamian and J. P. Draayer,
Phys. Rev. Lett 66 (1991) 691.

M. Oshima, H. Kusakari, M. Sugawara, T. Imamura, A.
Hashizume, H, Kumagai, S. Ichikawa and H. Iimura, RIKEN
Accel, Prog. Rep. 24 (1990) 21,

I. M. Govil, H. W. Fulbright, D Cline, E. Wesolowski, B.
Kothinski, A. Backlin and K. Gridnev, Phys. Rev. C33 (1986)
793.

V. G. Soloviev, V., A. Sushkov and N. Yu. Shirikova, Izv.
ANSSSR ser. fiz. 55 (1992)__ .

M. Pignanelli, N. Blasi, S. Micheletti, R. Deleo, M. A.
Hofstee, J. M. Schippers, S. Y. Van der Werf and M. N.
Harakeh, Nucl. Phys. A519 (1990), 567.

D. Bohle, A. Richter, W. Steffen, A. E. L. Dieperink, N. Lo

Iudice, F. Palumbo and 0. Scholten. Phys. Lett 137B (1984)

27.

28) V. G. Soloviev and A. V.

Phys. 16 (1990) L57.

29) A. Sobiczewski,
A485 (1988) 16.

Z.

Patyk,

S. Cwiok and P.

Sushkov, J. Phys. G:

Rozmej,

Nucl.

Nucl.

Part.

Phys.





