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FORMULATION OF NUCLEAR | - ——
COLLECTIVE DYNAMICS

T~Hmtrgduction

Thg investigation of nuclear collective motion, which is currently a very important

field of fesearch, has been approached along several different lines.
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Th¢ first approach springs from the time-dependent Hartree-Fock theory (TDHF)
T T™AM-its pimplified versions in which a selfconsistent field is approximated by the time

. . ' “dependqnt (cranked) mean field. In particular the cranking model {1,2] has been suc-
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eessfully applied to describe the yrast states of nuclei.

. wu-Important mathematical developments have made it possible to arrive in a fully mi-

.groscopjc way at the unified Bohr and Mottelson Hamiltonian (Ref.[3],V.II). An elegant
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ABSTR A‘ CT i theory bf generalized hyperspherical wave functions (GHSF) (4] has been formulated

e ez e s

using tRe original set of many-body coordinates [5-7].

Assuming an O(N —1) symmetry for the interaction term in the N-bpdy Hamil-
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tonian we find a closed subsystem of equations describing the collective motion in a Other microscopic approaches based on the concept of dynamical groups G?¥" have

classical way. When studying, in the group geometric way, the mutual corespondency
of O(N-1) invariant approach with the Sp(6, R) collective model we find that the nu-
cleons move along trajectories determined by an effective one-body time-dependent
harmonic potential being a function of the collective variables. The relation between
the equations for the collective motion and the system of equations found elsewhere for
the second order moments of the Wigner distribution function is discussed. A class of
stationary solutions to the collective equations of motion leads to the cranking model

with the selfconsistency relations depending on the O(N—1) scalar part of the potential.
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been very intensively developed [9-13]. At the top of the considered group~dynamical
models there is the Sp(6, R) model introduced by Rosensteel and Rowe [8-10]. In the
work by Vanagas et al [11,12] the formulation of the nuclear dynamics is approached
within the context of an exact or approximate symmetry of the many-body Hamiltoniar;.
In this work the O(N —1) invariant model appears as a model for restricted dynamics.
The geometrical approach to this model has been developed in the papers by Kramer
[13].

During the last two decades important progress has been achieved using the concept
of nuclear fluid, whose dynamics could be described in terms of the Wigner distribution
function [14] or of quantities related to it [15-19]. This approach is closely related |
to the TDHF. Due to these investigations the nuclear hydrodynamic model has been
transformed into the Fermi-liquid droplet model (FLDM) by taking into account the

distortions of the nuclear Fermi surface accompanying the collective flow.
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All the approaches have their merits and their drawbacks. The group~ theoretical
formulation is very transparent mathematically, which is very important in formulating
the quantum theory of nuclei free from ed hoc assumptions typical of the TDHF ap-
proach. The latter approach however leaves much room for using ph;.. el intuition and
is, in fact, quite effective in digesting the wealth of recent experimental data.

By now it has become clear that the direct application of either of the approaches
demands great computing power to obtain physical predictions. The FLDM meet : with
difficulties when the restrictions arising from the antisymmetry of the wave-functions
become important. The algebraic approach demands further development, especially in
studying the collective motion which is related to the evolution of the higher mements
of matter distribution.

The aim of this paper is to study the relations between the fully microscopic theory
[9~13,20-23] built on the group Sp(6, R) x O(N —1) and theories based on the concept
of the time-dependent mean field.

In Section II the Hamiltonian and the equations of motion are presented in terms of
Zickendraht-—Dzyixblik‘Filippov coordinates. In essence, this section has an introductory
character summarizing the formalism needed for the subsequent parts. However, the
analysis of the phase-space corresponding to this parameterization and of the Poisson
bracket structure of observables is given here in a more complete manner than elsewhere.
This allows us to write down a complete system classical of dynamical equations.

In Section III the classical equations of motion for the O(N ~1) invariant model
are examined. Considering the geometric formulation of the dynamics we show that the
evolution of the system is governed by the one-body time-dependent harmonic field.
The correspondence is established between the collective motion of a nucleus and that
of a clacsical liquid drop.

In Section IV the group—theoretical structure of the collective space is studied and
the relation between the collective Sp(6, R) and intrinsic SO(N —1) invariants of the

motion are discussed.

In Section V' the Sp(6. F)-dynamics is compared with the dynarics described by
the Fermi-liquid droplet model (FLDM).

In Section V a class of stationary solutions of the classical equations of the collective
motion is examined. The single-particie motion corresponding to such solutions is comn-
pared with the motion of particles in the cranked harmouic oscillator model (CHOM).
The selfconsistency conditions of the nuclear CHOM are discussed.

In Section V1I the material of the paper is reviewed.

Seme additional formalism necessary for the understanding of the paper is given in
the three Appendices. The most important original resulis are presented under the title

of Propositions.

II. The Hamiltonian and the eguations of motion in the overcomplete system

of coordinates.

The leading role of the quadrupole (ellipsoidal) deformation in determining the
nature of nuclear structure is well established [3]. One expects that the main axes of
the inertia tensor in heavy nuclei do not change much due to quantuin effects. For this
reason, we start with the introduction of a coordinate system in which the components
of the nuclear inertia tensor piay the role of collective coordinates, and we prf;ceed to
study the nuclear motion within the classical mechanics. This is achieved by considering
the Zickendraht-Dzyublik-Filippov system of coordinates [4-7,9] wh’ich we use to intro-
duce the overcomplete parameterization of the elements of the 6 N-6 dimensional phase
space including the relative Jacobi coordinates I and the momenta py of N nucleons
(k=1,2,...,N-1). We have:

Tak = ZDXQ((?)/\me(w,W,---MN—?)- (21)
= .

The coordinates on the r.h.s. satisfy the conditions:

3 ’ N-1
Y DxaDya=6xy: Y RxRyx=6xy, (2.2a,0)
a=1 k=1



Using the projection matrices:

Fo¥pi=bap Y RxiRxu, (2.3a)
X

i = bapfley  fl=0k— Y RxaRxu, (2.3b,¢)
X
we decompose the momentum space of the relative motion into two orthogonal sub-
spaces: P = Peoll g pintr

Paok = p:;ak” + p;nktr, (240)

It is convenient to parameterize the terms in eq.(2.4a) as follows [9]:

o Lxydy +AxJx
P = E Dxo(6){ Rxkpx + Z 'Ryk( XY ;,+ : xy) ) (2.4b)
X Y(#X) M=

For the second termn in eq.(2.4a) we propose the form:
P =) Dxal®)AX 7k (2.4¢)

The overcomplete system of the momenta {7 x,} in eq.(2.4c) obeys the following linear

relations:
N

> Rximye =0. (2:5)

k=1
which we immediately obtain noticing that ) Rx.f.,=0 for X=A4,B,C, k=1,...,

N —1. Equations (2.1, 2.4a-c) allow the inverse transformation:

> QasDxs = iDxa, for X = 4,B,C. (2.6a)
B

1 .

Rxe=7y, Y Dxatar, for X =4,B,C, (2.6b)

pPx = ZDXQRkaakq for X = A!‘B)C7 (270)

a.k
Lap=Lc= Y ecxy xRxiDyaPak = Y. coxvexipys,  cyel 4,B,C,
XYook XY,k
(2.7b)
5

5 A
Jap=Jc= Y eoxvyAxRyiDxoPak = Y. Ecxvl\—vawcpxt, cycl 4,B,C,
XYook XYk Y
(2.7¢)

TXm =AX ¥ DxafmnPan,  for X = 4,B,C. (2.7d)

an
In the equations (2.6a) we have used the quadrupole tensor Qng= Z,I:;—ll TarZgr. The
matrix Dgq which depends on the three Euler angles 61,6,,0; describes the SOL(3)
transformation from the laboratory (I-frame) to the body frame (b—frame) of reference,
the latter being defined as the frame where the matrix of the inertia tensor is diagonal:
Qy=diag(1%, 2%, )%). The quantities A, A, Ac characterize both the size and the
quadrupole deformation of the system. Here we assume that Ay > Ap > Ac, then
the matrix D(6) is determined up to the transformations of the group D, of rotations
through the angle = around the principal axes of the inertia tensor.

The quantity L is the angular momentum. We call the quantity J the vortex spin
vector. This quantity appears in the Riemann equations of the classical gravitating
liquid droplet [24,25]. In the microscopic theory it is introduced in several papers
[4,26,27]. Our definition of the vortex spin coincides with that of ref.[27], however, let
us note that some authors [26] use this name for the vector L=—1T.

Throughout the paper we use the characters a, 3,7 for the indices of the SO%(3)
tensors in the /-frame, and XY, Z for their indices in the b~frame. When convenient,
we use pseudovectors instead of antisymmetric tensors, and the summation convention
for the repeated indices, such as Fz = %ezxyﬁxy.

The conditions (2.2a, b) are valid both in the classical and in the quantum mechan-

ics. The quantum analogue of (2.5) is obvious:

No1
Z [Rxxmyr +7ysRxi] =0, for X, Y =A,B,C. (2.8)

k=1
The momenta wy; which have been defined in eq.(2.7d) and also J4,Jg, Jc are
the differential operators with respect to the factor space M = O(N —4)\O(N —1).

This factor space can be parameterized bsr some angles 1, ®a,-..,P3n-9 [4]. One can



also urderstand the quantities ﬁkE(RM,RBk,’RCk), Tk = (T Ak, TBE, TCk ), 2nd T as
functions of 6 N—18 independent coordinates and momenta defined so that the relations
(2.2a—b,2.5) are sauisfied identically.

In the following we use extensively‘the bracket notation {a,b}. The latter can be
understoc d either in the classical sense as the Poisson bracket, or quantum mechanically

as the commutator times the factor (iA)~3.
Proposition (2.1). The canonical Poisson bracket relations
{zak, 201} =0,  {par,par} =0,

{2 ok, a1} = bapbui,

hold if and only if the following relations are satisfied:

{zxe,7y1} = = fudxy + (Rxixyx — Rya7x1), (2.9a)
{7xe, Ry} = =bxyfu,  {Ix,7vr} = —exvzman, (2.9a,¢)

and [26]
{Jx,Jy} = —exszz-, {Jx,Ryr} = —exyzRzx, (2.94,¢€)
{Lx,Ly}==exyzlz, {Lx,Dya}=-€xyzDza, (2.91,9)
{Ax,py} = éxv, (2.9h)

with all the other omitted brackets {...} equal to zero.

In arriving to the nontrivial part of the Poisson bracket relations, namely (2.9a—c),

it is useful to mention the equivalent forms of the quantities introduced before
mxk=(R-j-f)xx,  JIxy =(R-j-'R)xvy, (2.7.¢,d")

where

JH = Z(Iaknpal — ZakPat), kJd=1,...,N-1, - (2.10a)

a

are the generators of the SO(N —1) group. The parameterization of the coordinates

and momenta introduced before allows us to write

ju=(Rx-'rR+'R-T-R)u. (2.106)

Let us also write the well known relations

{Gmnsthy,. ok} = Z (bmbiths,.n,.ky — Onkites,..m,.ky) s (2.11)

which are valid for an the SO(N-1) tensors #,..+,. The relations (2.9b) follow imme-
diately from eqs.(2.7d",2.11). Next, we have

Y {Ran,7BiYinm frp = 6an(f' -5 - f)ux =0

The first- equality is the consequence of the just proved relation (2.95), while the second
one is obtained from the first using eq.(2.10b) and the conditions (f'"R),x =(Rf')xn =0
following from eq.(2.2b). Since, we arrive at

{mar, 7B} = ZRAn ({jnm>7B1} ik + imn{frp>7BI}).

mn

Applying eq.(2.11) to the first term under the sum and noticing that (7- f'), =7, while
using eqs.(2.3¢, 2.9b) for the second term we recover the expression (2.9a). The equations
(2.9¢) we find applying eqs.(2.7c’,2.9a,b). The canonical relations follow immediately

(<) from the system (2.9a—h).

The expressions on the Lh.s. of the conditions (2.2a,b) and (2.5) are elementary
invariants for the Poisson structure (2.9a—g). This means that our constraints are
consistent with it.

In the new coordinates the Hamiltonian has the form:

H= Tvib + Trut + Tinlr + U, (212)



where

vi 1 intr 5
T =‘%;p§(, Timtr = Z ZZLZ* (2.13a,b)
2m Y. proay ,\2 Az {04+ 252 + Fap) + 2 arslasdan}, (214)
A>B .

The potential U contains the part U® which is a scalar with respect to the O(N —1)
group and the tensor part U‘"?:

U =U"(\4, 2B, Ac) + U™ (AaABAG; R(9)), (2.15)

In principle both terms here may be calculated once the particle—particle interaction
is known. The O(N —1) scalar potential has been calculated for the central nucleon—
nucleon interaction in ref.[28]. The role of the tensor two-body interaction is examined

- in ref.[29)].
Let us introduce the following definitions

def 1 O0H

Qx = — Ax = — s .
XZ3Ix M Ta YXT T (2.16a,b,)
| def X
Yay € ) mxarys, Lxy & (my)6xy, (2.16d,¢)
k=1

where §} and A are the pseudovectors of the angular rotation velocity and the vortex

rotation velocity [4,24] respectively, while ¥ will be called the Fermi-energy tensor. We

have

[90] 1 MatAh 2A4s [Lc] 1 4,B,C 2.17
= , 4,B,C. 17
Al T mOR OB | s azeaz) o) FF (2.17)

2 _ Yaa 1 ™ {(imx +Jax)? | (Lax — Jax)? }

wh = —=22 4 -
4 m2)4 2m2/\-AX=BC (A4 — Ax)? + Ga—=2xP [’ cycl A4, B,C,

(2.18q)
or when we express the momenta I_:, J by the velocities §1, A we get

Yau : .
wh = 2/\4 +92 +Qg+A% +A20_2(’\C//\A)QBAB-Z(AB//\A)QcAc, cycl A, B, C.

(2.18b)

Proposition (2.2). The Poisson bracket relations lead to the following system of equa-
tions (X =4, B,C):

d 1
X~ Px =0, (2.19a)
d
ZPX mwiAx +0U°/rx = —BU‘"" /0Ax, (2.196)
d .
Flx+ YZ; exyzQyLz = - (2,19)
DU‘Cﬂs
Jx + E exyz(AyJz + LyyYyz) = Z XYZ R zk, (2.19d)
Y.z Y, Z,k ,
- A ;C —
L I b
dt | 7k YL A-Jcll®| ~ |DU*"/DR:
d
F; Dxa t Z exyzQyDza =0, (2.199)
Y,z A

The r.h.s. of eqs.(2.19d, b, f) contains the SO(N-1) tensorial part of the interaction.

The derivative appearing there is defined as:

N-1
DF/DRxi = {7xt, F} = Y fim(OF/0RxXm).- (2.20)

m=1

Equations (2.19g) describing the orientation of the main axes of the nuclear inertia
tensor in the space are separated from the remaining equations (2.19¢— f). Thus,
noticing that the total angular momentum L?= L% +L%+L% is conserved and because
the matrices R, 7 introduce only 6 N—21 independent variables (see egs.(2.2,2.5)), we
conclude that the system (2.19a—f) contains 6 N-10 independent equatiéns of the motion

(L#0). The system reduces by two more equations in the case L=0.

II1. The Sp(6,R) classical collective dynamics

Drastic reduction of the system of dynamic equatidns takes place when the O(N-1)
tensorial part of the interaction vanishes (U'"*=0). The rest of the paper is devoted
to this particular case. Let us introduce 3-dimensional square matrices ¢, G,F, A and £

U=A+1 A0 (3.1)

10



Gxy = —(AA=QA)xy +(m2AY A2 oA A2 - 2 A 4200 A)xy,  (32)

F = —diag(dU°/0A4,8U°/0XB,8U° [8)c), A = diag(Aa,AB,Ac).  (3.3a,b)
E=2(20- XA A7) ~ (3.3¢)

Proposition (3.1). When Ut"* =0, the time derivative of the matrices & and ‘Y close

the system of the differential equations
d

—U = -1 R . : \
dtu G+m™F (3 4)
dy_ecveve (3.5)
dt™ ’ : ’

The closure of the above subsystem of the fifteen equations for the variables Ax, Qx,
Ax,Yxy, XY = A, B,C follows immediately from the Poisson bracket relations. In-
deed, all the terms of the O(N-1) invariant Hamiltonian are built on eighteen variables

Ax,px,Lx,Jx,Yxy, and the relations

{Lx,Yrz} = {Ax,Yyz} = {px, Yrz} =0, (3.6a,b,¢)
{Jx,Yrz} = —(exysYsz + exzsYys), (3.7
{Yxv,Yzs} = —JxzYys — IxsYzy — Jyz¥xs — JysYxz. (38)

together with eqs.(2.9a—d) close their Poisson algebra.
Proof of the Proposition (3.1). Using eqs.(2.19a—b) and noticing that

Gxx = Axwk, (3.9

we arrive at eqs.(3.4) for the diagonal elements of the matrix /. We get the equations

(3.4) for the oﬁ‘—diagonél terms considering the time derivative of the relations

AA=Q-Nxy =m™ 0% - A3 Axdxy + LxyAy), (3.10)

11

which follow from eq.(2.17). We have
m (A% =23) 2 [-200xAx —AvAy)Ox Ixy +LxyAr)+ (0% =23 )(Ax Ixy + Lxyiy)]
=__(,'\.f\_ﬁ.,'\)x,,, (3.11)

m=10% A2 A x Fxy +LxyAy) = (m™2A7 1Y A2 AR =022+ 200K xv, (3.12)

since, summing r.h.s. for both terms we obtain the required result. In establishing the

“relation (3.12) it is convenient to present eqs.(2.19¢,d) in the form

P=0L-L8, Si=Aj-ih+vi-cv. (3.13)

Q.ln_

t

This calculation shows that the nine equations (3.4) are equivalent to the twelve first
order differential equations (2.19a—d). Using the Leibnitz formula for the time derivative

of the definition (2.16d) and applying eqs.(2.19f,2.5) one arrives at equations

d . ~ - -
‘EYXY - E (Axzbzz — IxzLz2)Yzy + (Ayzézz — Jy2Lz2)Yx 2] = 0. (3.14)
z,2 A

Equations (3.5) follow immediately from the above, given the identity

E=A-J-L. (3.15)

The compact and elegant form of the equations of motion (3.4,3.5) follows from
their geometrical character. We show it in the following Qa.y. Let p be the 6 x N—1

dimensional matrix of the Jacobi coordinates and momenta

p={21 ....Z'N_l}, (3.16)

Pi...PN-1

and let us define the collective tensor:

L+52 -Q 0o -1
C(p) = p-p-Kee) = { P (L - 5)/2 } , where K = { L o } » (3.17)

12



" The elements of C(p) are the Poisson generators of the Sp(6, R) group:

N-1 N-1

Sap =Y (zakPsr +Pak@pk)y  Lap = D (TakPsk — Parzsk), (3184, b)
k=1 k=1
N-1 N-1
Pag =Y PakPpk, Qap = ) TakZpk- ' (3.18¢,d)
k=1 k=1

Let the six—dimensional block-diagonal matrix D(6(t))=D(6(t)) & D(6(t)) determine
the transformation of p to the b-frame p — p,=D(6(t))p. Using relations (3.10) and
eqs.(2.1, 2.4a—c) we find

X 0 Ry RN-1 o
P = . (3:19)
mid 71 7?1.‘.1?1\1_1

Applying the above and eq.(2.2b,2.5) we arrive at the formulas
mA-tU -2 }

. _ (3.20)
ALY AT+ m?U U —mU-)

C='D(6)-Cy-D(6), Cp»= {

The mutual correspondence between the O(N-1) invariant dynamics and the Sp(6, R)
model comes from-the last mapping and from the analysis of the evolution of the systenﬂ
in the phase space. Within the O(N-1) model the evolution is determined by the action
of the Sp(6, R) group and we have [13]:

p(t) = G(1)-p(0), ~ C(t) = Adg(y(C(0)),  Adg(X) = G-X-¢7%, (3.21a,b,0)
where G(t) is the 6-dimensional symplectic matrix:
Sp(6, R) = {G € GL(6, R); K()GK)~' ='6}. (3.21d)
It is convenient to fa»ct?rize the matrix G(t) as follows:
G(t) ="D(8(1))-Gu(t)-D(6(0)), (3.22)
where the matrix Gy(t) describes the evolution of the system in the b—frame:

pb(t) = Go(t)-p5(0), C(3.23)

13

Proposition (3.2). The Lee derivative of the matrix Gy(t)

Go(1)-G5 (1) = Ha(g(t)>"), (3.24)

has the form: Coa
Hy(g(t)*'") = { “ ﬁl } (3.25
e TlFEar o)’ ' )

where {? denotes the angular velocity tensor D(6)-'D(6).
Proof. Taking the time derivative of the equations (3.19) and substituting equations
(2.19e, f,3.15) we get

2 p(t) = B (), (3.26)
() ) e N e o)
H; = + ,
mid A mid A1 ~-Y.L € —mAU-A" N

(3.27

Next, calculating the matrix H; from the last formula and comparing the result

with eq.(3.25) we come to conditions

Q=A+XAAT—UA"Y, mTlr=AL0), (3.28a,b)
Fa = (iu QU+UA-mIXLY. z:) /\‘1 (3.28¢)
Q=AU 420 - XA (3.28d)

The equations (3.28a, b, d) follow immediately from the definitions (3.1-3.35,2.16¢) while
€q.(3.28¢) is obtained applying eq.(3.4), which finishes the proof.
Let us also examine the relations (3.21a, b, d). Formula (3.21a) results from (3.26).

The matrix H,,‘belongs to the sp(6, R) algebra:

Sp(6., R) = {X (< gl(G,T) : Xb'K(6)>+ K(G)‘txb = 0} .

"This enshure the simplecticity of the matrix Gy, hence also G € Sp(6, R) and finally the

matrix C € sp(6, R) evolves in time as follows: C=g(t) - C(0) - (K(e) G(t) - Kgy) =
G(t)- C(0)- G~(¢).

14



Proposition(3.2) says: the O(N-1) invariant classical system 1s dynamically equiva-
lent to the system of independent particles moving in the local time dependent harmonic
field. The evolution of this field is described by the closed subsystem of equations of
motion for the collective variables {g°"}.

Indeed, let ué consider the field—frame ( f-frame) p sz_f (a(t))p and let the particles

move in the specific time dependent (translational invariant) single-particle field:

U =m Y ad(t)(=fe)?, (3.29)
Y,k
Noticing that the transformation-generating function has the form:
S(z,ps,t) = 2 zanDﬁu(a(i))pﬁn, (3.30)

a,An

we obtain the time dependent Routhian function R(py;t)
R(pyi1) = H(plps)) - 0S(ploy), )/t =

2 27 eh) + @0 /2 - Gs(0)- L, (3:310)
Y ok
‘or in more compact form

R(prit) = 5tr [H(t)-Clop)]. (3.315)

where Oy = DI DY, If ;(t)=a;(t) and md% (t)= —(FA~")xx(t) then £5(t) =§(¢), the
matrix Hy = H; and the canonical equations of motion for p s generated by Routhian
R(py;t) coincide with equations (3.26) for py. .

-In this approach the angle functions c;(t) are assumed to be>k‘nown and indepen-
dent of the canonical variables p; thus the variables p; are canonical too. Then, denoting
C: = C(ps) we find that generators {Qy, S5, Py, Ly} and {Q, S, P,L} obey the same
Poisson bracket relations. On the other hand, the system of time—independent coordi-
nates py does not obey the canonical relations (see the equations in Propositiorz(2.1)).
The cranking term —- I should be added to the Hamiltonian function to compensate

in equations of motion for the differences between the structure of the py and ps Poisson

15

relations. Applying the Leibnitz formula for the time derivative of the definition (3.21)

and using eqs.(3.23,3.24) one gets

d
5Cs = HiCy — G, (3.32)

The physically most important configurations are those (i) for which the matrices H,
and C, commute and (ii) which are stable in regard to small variations of the collec-
tive variables. Such configurations distinguish the physical domain in which the stable
effective mean field exists. We will return to the discussion of point (i) in Section VI.
Formally, eqs.(3.4,3.5) admit the trivial solution Yxy=0. In this case the above
equations and egs.(2.19¢) become equivalent. with the Riemann equations of motion
to the Dirichlet Liquid Droplet (DLD). The dynamics of DLD was studied for more
than a century by great mathematicians and astronomers (sec ref.[24,25}). In applica-
tion to the nuclear dynamics [26,27,30-34] this model has been formulated in a fully
microscopic way using the semisimple group GCM(3). The Lie algebra of this group
is hspa.nned by fifteen elements {@, S, L} and constitutes the dynamical algebra of the
DLD. This allows us to render the quantum-mechanical form to the DLD model and to
study its place in the microscopic nuclear theory. One obtains an another model based
on the group G#¥"=8p(4, R) reducing the particle motion to a single plane [35,36]. The
two—dimensional dynarr;ics leads to a great simplification in the structure of the collec-
tive space. In Appendiz A we show that the four variables Y44,Yap,YnB,Jc can be

expanded in terms of the generators of the u(2) algebra.

IV. The collective space

We begin this section with the discussion of the reduced collective space (see ref.[13]
by Kramer) on which the Sp(6, R) group acts as a transitive group of canonical trans-
formations. On the grounds of Section III we define the reduced collective space as the

manifold of the orbits Ox:

Ox = {C € sp(6,R): c-= Adg(X), G € 5p(6,R)} . (4.1)
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A useful classification of these orbits is given by the identification of an orbit Ox vith

the coset space of the Sp(6, R) group modulo the stability group Gx:
Gx = {G € Sp(6,R), Adg(X) = X}

Hence:

dim Ox = dim(Sp(6, R)/Gx) = dim Sp(6, R) — dim Gx

Within the orbit Ox =0 7 we may choose the representative point p 5o that the matrix
C(p) with elements given in % units is of the form

0 -f . )
Cf=C(ﬁ)={ £ o }; f=dia'g(f11f2’f3)7 fl SfZ Sf3 <0. (42)

Leaving aside the classes of the orbits with f; = 0, which are physically interesting only
for N < 6, we distinguish the following four classes of Of, f:(fl,fg, f3):

12 lff] = f2 = f37 (A)l
16 if fi > f2 = fa, (B);
16 if fi=foa> fs, (C);

18. i fy > f2 > fu, (D).

dimO; = (4.3)

The _tability groups Gx C Sp(6, R) corresponding to these classes are isomorphic with
the groups U(3), U(1) x U(2), U(2) x U(1) and U(1) x U(1) x U(1), respectively [13].

Further reduction of the collective space follows due to SOX(3) rotational symme-
try. We may exclude the three Euler angles from the collective space by introducing
the space denoted as Oj-/SOL(3) of the elements conjugated by the SOZ(3) group
(see eqs.(3.19)). Then, the factor space Of/SOL(S) should be decomposed into the

subspaces O ., enumerated by the value of the angular momentum L. We get

8, (6) if fi=fo=fz, L>0,(L=0), (A case);
12,(10) if o= fs, L>0,(L =0), (B case);
dm 0, = (10) iffr>fa=fs, L> (‘ ); (B case) (4.4)
' 12,(10) if fi = f2 > f3, L > 0,(L = 0), (C case); v
| 14,(12) i fi > f2 > fa, L>0,(L = 0), (D case).
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The physical meaning of the above classification is contained in the following Proposi-

tions.
Proposition (4.1). On the manifolds O, the eigenvalues y of the Fermi-energy tensor

are found in the intervals fy 291 > fo, 12 ¥22 v3, 22 u3 2 fs.

Proposition (4.2). For the degenerate orbits (A), (B) and (C) the tensors ¥ and J take

the following general forms

Y, =f%1, J,=0, for case 4, (4.5)

Y, ='Dy Yin-Dy, Jp='Dyj, for case B, (4.6a)

Dy € 50(3), Yin =diag(yi,y2,¥3), H1=42=0, ja=Jj, |jlI<fi—f

w =T+ 7 -7A22 3 (A + R)?-7hH - £2) -5, (4.6d,¢)
ys = fi, : (4.6d)

while in case (C) Y, and y; are found as in case (B) after exchanging f; with f; and
assuming |7 |< f1 — f3.

For the class (D) the eigenvalues y; = y;( f,;) may be found by solving a sixth
order equation which could be obtained using formulas presented below. We skip the

detailed discussion of this case.
Proposition (4.3). The invariants of the symplectic Sp(6, R) action in the orbits space
Of
Cop = (=1)Ptr C(p)*?,  p=2,4,6, (4.7)
are expressed by the collective variables as follows
Cy = tr (2Y - J?), (4.8a)

Cy = tr {(2Y - J?)? - 2v?}, (4.3b)
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Ce = tr {(Y — J2)° +3YJ* —3YJY] -3Y2J2 + Y3}, (4.8¢)

while for the two other invariants

1 1 1 1 1
C; = ngz - :1'04 Cé = EC% - -8-0204 + ECG, (4.9a,b)
we have
Ci=Y (YxxYvy —Yiy)+ > JxYxvly, . (4.8¢)
X,Y X>Y

Ch=det Y (4.8¢')

Proof of Propositions (4.1-4.3). Let us consider the transformation p — p'=G~!.p and
let G € GCM(3) C Sp(6, R) be of the form G ='D(8)-) - X where

_ Do) o _ A0 ~ 1 0
D(o)':{ }7 ’\:{ }’ X={ }1 (4'10)
0 ’D(O) 0 X! X 1

and where the symmetric matrix X chosen is X = —m(*Y - A + X-U)/2. Noticing that
J=—m(U-) = A-U), we find

{ 1j -1
C—C' =Adg(C) = } (4.11)

|
=
ey
N
+
~
o=

The relations (4.8a—c) are arrived at applying formulas (4.7) for the matrix C'. Then
eqs.(4.8b',c') follow after long but elementary calculations. Next, using formula (4.2)

we determine the values of the invariants

3
Cop=2) %, Ci=Y fiff Ci=fififl. (4.12)
i=1

i>j
and using eqs.(4.8a—¢,4.12) we get the following equations for the eigenvalues y;:

(y2—w)is + (s —n)i3 =F(n),  cycl1,2,3 (4.13a,b,¢)
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with F(y) = IIi(y — f?)/y. If we choose the order y; > y2 > y3, the Lh.s. of eq.(4.13a)
(eq.(4.13c)) becomes negative (positive). Noticing that y; > y; and that F(y) is nonneg-
ative for f; > y > f; and for y > f, we obtain Proposition (4.1). Applying it to case B
in the Proposition (4.2) we conclude that y3=f2. Thus, using eqs.(4.8a,4.95,4.12,4.13¢)
we have

ntwn+) f=fi+f wne=H1 G-RDit+e-3)0=0

which entail the result in eqs.(4.6a—d). The proof for case (C) is quite similar and
equations (4.5) (case (A)) immediately follow from the formulas in case (B).

Another class of invariants of motion constitute the generators j(p) (see eq.(2.10))
of the SO(N-1) group. Let us consider the following functions (Casimirs of the
SO(N-1) group)

Dy, = (-1)"tr j(p)?*, p=1,2,3, (4.14)

In the classical N-body problem these functions and the functions C2, are dependent
and coincide. We verify it substituting into formulas (4.14) the expressions (2.10).
Then applying eqs.(2.2b,2.5) we find for D,,, p=1,2,3 the same relations which have
been established already in eqs.(4.8a—c) for the invariants Cyp. Latter result expresses
in the classical mechanics an important fact well known from quantum investigations.
Considering the space of the quantum N-body states SV and a chain of the subgroups
Sp(6N —6,R) C Sp(6, R) x SO(N —1) one shows [37] that: (i) the even and the odd
parity states form the two Sp(6N —6, R) multiplets < £(1)N¥=* >, g=1,3 respectively
and (ii) the groups Sp(6, R), SO(N-1) are a complementary pair in respect to the above
reduction, which means that the reduction for both representations is multiplicity free.

One has
sV= > sahamY, (4.150)

f25320320
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e SLAFN =< fifafs >PER @(f] f f3 00D 2yelN-1),
P N—z——lh. (4.15b)

The eigenvalues of the Casimir invariants of the so(N —1) algebras are well known
[38,39). The domain of validity of the classical approximation given by eqs.(4.12) is
examined in Appendix B.

To apply the a.bo've results to the nuclear system, the selection of the states al-
lowed by the Pauli principle should be made. We say that the Sp(6, R) representation
< f1, f2) f3 > is allowed when the set of the antisymmetric wave functions with the
O(N ~1) orbital structure (f] f3 f40...0) is not empty. Due to the group reduction
O(N-1) D S8, where S is the symmetric group of the spatial particle coordinates
permutations, the latter problem may be solved in a purely group-theoretical way [40].
We also say that the O(N—1) invariant classical model is prequantized when the initial
conditions are chosen so that‘ the part of the phase space associated with the forbidden

values of the invariants C3,, is truncated.

V. Relation between the collective dynamics in O(N-1) invariant model and

in the FLDM

Equation (3.4-3.5) may be deduced from the TDHF theory formulated in terms of the
Wigner distribution function [14] which is the Fourier transform of the one-body density

matrix. The relations obtained by integrating the equation for the Wigner distribution

function f(r,p,t) over momenta (p) with the weights 1, Pi,» Pipj, etc., constitute an infinite-

set of equations for various local fields: for density, collective velocity, pressure, etc. [19].
This set includes the continuity equation.

" The analogy of these- equations with equations of the classical hydrodynamics opens
the way to the use of well-developed mathematical methods. One way to do it is realized

in ref.19, where the method of "virial theorems” by Chandrasekhar and Lebovitz [24] is
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generalized to the description of the collective motion in the droplet of a Fermi liquid. Fol-
lowing this way, one establishes the generalized virial theorems, i.e. the relations between
the integral characteristics appearing after taking the moments from the equation for the
Wigner function over the full phase space of a nucleon. Then one introduces ap;;roxi-
mations leading to physical models parameterizing the collective velocity field u(x,t)=
m™! [dpPpf(x,p,t)/p(x,t) (p(x,t)= f dp®f(x,Pp,t)) and other local fields.

When the collective velocity is approximated by a linear function of coordin;ttes, the

following moments of the distribution function are involved in the equations of motion:

< zTxTy >, < TXxpy >,< pPXPy >, where < ¢(x:p1t) >= ff dp3d:z:3¢(x, P,t)f(x;PJ)-

These moments constitute a set of collective variables identical to the one discussed in
Section III. In particular, ﬁhe Fermi .energy tensor Y and the vorticity vector J appear in
FLDM, and equations (3.5) follow exactly.

In the FLDM the same expression for the kinetic energy is obtained as in the formulas
in Section II. No explicit statement of the invariance properties of the nucleon-nucleon

interaction is made. The potential and its gradients entering into the dynamical equations

~for the collective variables are related to the nucleon-nucleon interaction following the

selfconsistency rules of the HF theory. Their dependence on the collective variables is
obtained using these rules and the continuity equation to adjust variations of the integrals
entering equations of the motion with collective currents. In applications the selfconsistent
potential is often substituted by empirically defined one describing the properties of nuqlea.r
matter [42,43], e.g. by using the surface tension plus Coulomb potential. Disregarding the
difference in the definition of the potential functions U°(A4, Mg, Ac), one may say that
€q.(3.4). and with it the collective dynamics considered before is satisfied exactly in.the
FLDM as well. _

The parallels between the description of the O(N —1)-invariant system given in the
previous sections and in the hydrodynamical picture rest on the properties of the single-

patticle orbits: as follows from €q.(3.16b), the particle collective velocity p®/m is a linear
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W i'unction in its coordinates with the same coefficients for all particles. Thus, the velocity
field corresponding to the O(N-1) invariant system is a linear function in the coordinates.
It is precisely this property of the collective flow which underlies the Dirichlet-Riemann
theory embodied in FLDM.

As is known from studies by many authors (see ref.[19,42] and the references quoted
there), the Fermi-energy tensor Y plays a decisive role in the description of the nuclear giant
qua,drupolg resonance: it determines the part of the elasticity coming from the quadrupole
deformation of the Fermi-surface. In quantum systems the deformation of the geometrical
surface is accompanied by the distortion of the Fermi-surface. The stresses due to the
deformation of the Fermi-surface turn out to be much more important for the descrip.tion
of the energy of the giant resonances than those which are originated by the potential
energy.

The low—energy excited states are quite sensitive to the potential. The rules of FLDM
é.re quite flexible and much simpler than those obtained by, the direct application of al-
gebraic methods. A number of potentials have already been tested in different physical
problems in the framework of FLDM [19,41-44]. However, the field of applications of this
method is limited by the fact, that an information on the properties relevant to the noncol-
lective motion is missing here. This drawback may be overcome using equations described

in the previous sections with simple but realistic potential functions.

VI. Model of S-bands

Among the solutions to the differential equations (3.4-5) of special importance are
the stationary ones describing the states of equilibrium of atomic nuclei. Within the DLD
model one distinguishes the two families of the stationary solutions which are called in
the literature § and P-Riemann ellipsoids. The problem of classification of the stationary
solutions of Sp(6, R) model is more complicated, and it will be discussed in a forthcoming

paper. Below we restrict our attention to a family of stationary solutions which generalize
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the concept of the S—Riemann ellipsoids. We define them stating the following set of

conditions:
LA=LB=JA=JB=0,_ (6.1a—d)
YAB = YBC = YCA = 0, (6.2(1—6)
pa=pB=pc =0, ' (6.3a—c)
2 2
Ac = JoYaa/Xy —YBB/Ap , (6.4)
m Yia—YsE -
vk = (mAx)"N(8U°/A)x), (X =A,B,C), (6.5a,b,¢)

where the frequencies wx (see eq.(2.20)) can be rewritten in the following form:

Y,
wh= m%/& + Q% + AL —2(AB/ A a)0cAc, , (6.6a)
Y,
wh = m——f/\‘;; + Q'é +AL - 2(/\,4//\?)901\0, (6.60)
Yec
wé = mz/\é' (660)

It is straightforward to verify that the above set of conditions describes stationary so-
lutions to the system of motion equations (3.4 -5). However, the relations (6.1a—6.5¢)
are insufficient to determine the elements of the matrix C(p). On the grounds of Section
IV the extremes of the Hamiltonian function should be searched in the orbit space Of.
Since, using the Proposition (4.3) and eqs.(4.12) we find the following expressions for the

diagonal elements of Fermi-energy tensor

) 1 1
Yansmy =5(Wa+hh = J8) £ 53/[(ha+ ho)? = J2](ha— ho)? = JBl,  (67aD)

YCC = hzc. (676)
where the vector b = (hahphc) can be chosen in the three nonequivalent ways:

kL = (fus for fo)s hy = (fl,fs,fz), Ry = (fay f1, f2)- (6.8)
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\ Now, for piven values of L2, k the equations (6.1a—6.7¢) provide a complete set of algebraic
equations. The fact that Yy x are positively de_ﬁned restricts the range of the variable J¢
(see eqs.(6.7a,b)) to the interval | Jo K hg—hp. The transformation Lo-L, Jo-J
admitted by the Hamiltonian symmetry allows us to use only the nonpositive values of
Jc from the above interval. In Appendiz C the equilibrium conditions (6.4,6.5a,b,c) are
presented in a form more convenient for calculations. For given values R, Jc the equations
eq.(C.4a, b, c) supplemented by expressions (6.7a—c) allow us to calculate the principal
axes /\A,Aé,/\c, while L =| L¢ | is calculated from eq.(C.1).

In the space O 7 the stationary solutions form one parameter families. The three
vectors h appearing in eq.(6.8) divide the solutions into the three subfamilies. We will
denote them as S(k)-bunds.

Due to equations (3.25,6.5a —c) the matrix Hy depends on the four parameters
w = (wawpwclle), (4 = Cp = 0) in exactly the same way as the matrix Hy in the
standard CHOM. Furthermore, since for the equilibrium configurations the matrixes C,
and Hy commute (see eq.(3.32)), thus under a symplectic transformation G(w) known from
Valatin work [45], we might simultaneously represent both matrices at the canonical form
H(—&")=Adg(,)(H(w)), C(ﬁ):Adg(w)(C;,), i.e. in the same form as we used in formula
(4.2). Gwing to the conditions (6.7a—c) the vector / remains unchanged throughout the
band. Let us note that the same is true for the CHOM bands. Hence for the equilibrium

band we can write Cy =Cy(k,w) =Cy. The eigenvalues of Hy(w) are already known [47,48)

; 1
Wiimy = (W4 +wh) /2405 F 51/ — wB)? +8- 05wl +uh), whp=wo. (69)

Noticing the canonically invariant character of expression (3.31b) for the Routhian func-
tion we immediately find R="% - &'. Inserting here ' from eq.(6.9) and comparing the
derivatives 8/0w% of R obtained from the last expression with the derivatives of R found

from expression (3.31a) we restate the standard formulas of C‘HOM [47,48]
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2 2 2
A§=L{(h4+h_8\iw(h_fﬂ_h_s)}, X=A,B;
wa

2:‘ wa/ Wi-wf o\l (6.10)
A2, = ¢
mwe’

Using the formulas (3.1,3.17,3.20) and (6.1a —6.4,6.6a—c) we arrive at the following

equations for the remaining elements of matrix Cs:

Xac = Xoa=Xcp=Xpc=0, for X=5,L,P, (6.11)

Saa=Spp =Scc =0, (6.12)

Pan = ml(wh — 02N, + 053], Pan =m¥l(wh — O2)AL +O2ALL  (6.13a,0)
Poe = m2wiAL, - (6.13¢)

Sap=m(4 —=25)Q¢c, Pap=0, (6.14a,b)

Lap = m(34 + 2\5)Qc —4m(w? - wh) TN (W] - QF) — A (wh — Q8)10. (6.14¢)

Within the frequently used semiclassical approach for CHOM [46-51] under the Valatin
transformation G(w) one writes R= Y w'hx, where hx are commuting elements of the
sp(6,R) algebra. The quantum solutions are found as the eigenstates of the Routhian

operator R

R(w)|f,ﬁ;w,t>=Zw’xhx|f,7z;w,t> (6.15)
X

In this férmula hx denote the eigenvalues of the operators hx, f is the lowest weight vector
of the IUR of the sp(6, R) algebra, while the other quantum numbers distinguishing the
state are omitted. From the above we conclude that the stationary solutions constituting
the three bands S (ﬁ x),X = L,M, H are represented as the coherent vector states. In

particular, the solutions consist of the S(%1), (and forming the yrast line within sp(6, R)
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multiplet), are associated with lowest weight vector state |f, fiw,t >. Moreover, since
the formulas (6.10-6.14c) remain valid in the semiclassical level as expectation values of
sp(6, R) observables, the bridge between the S(I-;) bands and between the bands of the
~CHOM eﬁsum the consistence of the semiclassical rules sf&ted at the epd of Section IV
with the semiclassical CHOM approach.

The algebraic model of the collective bands presented above extends the range of the
application of the CHOM model. The new element is contained in the formulas (6.5a—c).
They cxpr;ess the selfconsistency conditions generated by collective pdtential U®, which
connect the distribution of matter with distribution of the mean field. v

Let us consider, as an example, a very simple form of the isotropic volumé—dependent
potential:

2
U(Aa, 2B, Ac)* =3/p- («\Az\az\c/xa)plam- (6.16)

In eq.(6.16) the parameter p fixes the compressibility of a nucleus, while the length pa-

rameter X fixes the value of the geometrical nuclear radius Ry = (R4RBRc)!/? in the
ground state, i.e. for Jo = Lc = 0. Assuming nuclear surface having an ellipsoidal
form Y,z%/R% =1 and a homogeneous distribution of the nuclear matter we obtain
A =NR}/5. Here the ‘ground state value of Ay = (AgApAc)!/? is given by eqs.(C.10a,b)
and we get

LR =NRF"D 5 F= (L) (6.17a,b)

Equations (6.5a—c) take the form
WiN —widh =0, WAL+ wBAy - 2wiAL = 0 (6.18g,b)
2T = pU®, (6.18¢)

and from relations (6.17a,6.18¢c, C.9a, b) we find for the total ensrgy E

15 _,

= va (6.196,b)

E= (}’,+2)(F/Fo)2’/(’+2)a, a
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The function F is defir.ed in eq.(C.8) and depends only on the invariants of motion f
and Jo (Lo =Lc(Jc))- The parameter a determines the noncollective part of the kinetic
energy Tm*r,

It is interesting to consider the following function:
Foy(2,N) = m}nFo( ) o (6.20)

where the minimization is done by taking into account the Pauli principle for fixed proton
and neutron particle numbers Z, N'. The weight vector f;, corresponding to F determines
the ground Sp(6, R) multiplet of collective states. The estimate of the smooth part of Fy
may be found using equations given in [3] (Vol:2,Ch.6,eq.(6. 510)). One has: Fg™(Z,N)
[(32)*/3 4+ (3N)*/3]/12 ~ (3N/2)*/3 /6. Then a establishes the Fermi-energy and one finds

for the smooth part of this quantity

@™ ~17.7- N - MeV, (6.21)

Notice that the Fermi-energy tensor is important for the description of the nuclear shape.
In particular, the shape in the ground state is determined by this tensor. This could
be seen even without calculation by considering eqs.(6.5a—c) and (6.6a—c). Assuming
that the potential energy U°%(\4,Ap,Ac) is a symmetric function of its arguments one
concludes that eq.(6.5a—c) could be fulfilled at Ay =Ap=A¢ only if Yaa=YBp=YcC.
For the volume dependent potential Ax ~ fx. Thus, only those nuclei are spherical in
their ground states which have the ground-state vector f with three eqﬁal fx indices. The
Pauli principle .admits equal values of fx for the lowest configurations only in doubly magic
nuclei. In other words, the O(N—1) invariant model explains the spherical symmetry of the
ground states of nuclei with closed harmonic oscillator shells and the loss of the spherical
symmetry in nuclei with open shells.

The influence of the Fermi-energy tensor on the nuclear shape is particularly important

in the case of a volume dependent potential. Such potential considered within the DLD
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model leads to a quadrupole instability of the nuclear shape for L > 0. Notice, however,
that in nuclei the surface and Coulomb forces play an important role in establishing the
shape.

The equilibrium conditions (6.18a,b) have been dete.nnined earlier for two particular
submodels diszussed in detail by Troudet and Arvieu [47,49]. The first results from assum-
ing that the product of oscillator frequencies w wpwc is constant through all the band. We
leave out the proof that substituting p = 2 we will reproduce this model. Considering' the
limit p— oo (or p— —00) we arrive at the second model, for which the geometrical radius
Ry is common for all values of L. The equilibrium relations to this model have been found
in ref.[49). A simplified version of the selfconsistent CHOM bands based on the approxi-
mation suggested by Bohr and Mottelson (Ref.[3},Vol.2,Ch.4.§3) has been investigated in
{50] (see also Appendiz C).

From equations in Appendiz C it is easy to notice that the functional dependence
of L,z = (A} = A})/()% + A%) and A4)rp/)% on the vortex spin J is given by universal
functions. This means that the results of this Section reduce the investigation of the model
of S-bands for all the potentials belonging to the class (6.16), i.e. for all values of p, to a
problem that has already been worked out [47,49].

VIIL. Summary

The content of previous sections sheds light on the interplay of nuclear collective and
individual-particle phenomena. '

The nuclear dynamics is approached in this paper using the mathematically transpar-
ent parameterization of the complete set of the N-body coordinates in which the compo-
nents of the inertia tensor are taken as the six collective coordinates. A rather formal way
of introducing the complementary coordinates and the complexity of N-body eigenfunc-
tions musk the individual-particle motion and create a gap between this formulation of the

theory and alternative microscopic approaches. The token remains true in the case when
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the assumptions of the O(N —1) invariance of the Hamiltonian is introduced. However,
in the classical limit of exact solutions of the O(N-1)-invariant model the nature of the
collective and single-particle motions as well as their mutual dependence are amazingly
transparent. It is precisely this limit what is examined in a detailed way here. Our findings
may be summarized as follows:

1) The nuclear collective motion is described by the system of equations including in
addition to the inertia tensor and the angular momentum vector two additional elerents:
Fermi energy tensor Y and vorticity (circulation) vector J. These two quantities depend
on the coordinates and on the momenta conjugated to the coordinates complementary to
the inertia tensor components.

2) The motion of individual particles is determined by the time dependent h&monic
field. The parameters of the field are unambiguously given by the collective variableé and
by general invariants of the collective motion. In the other words, in the classical limit to
the O(N-1) invariant model, the motion of the nucleons is governed exactly by the time
dependent selfconsistent field.

3) The variables describing the collective motion may be expressed in terms of the
generators of the Sp(6, R) group, which allows the geometrical a.nallysis of the model. The
evolution of the system is d:wcribed/ by the Sp(6, R)-group action in the s'p(6, R) vector
space spal.nned by the collective vaﬁables algebra. Due to the participation of ¥ and J
in the enveloping field of this algebra, this space is larger than the collective space of the
most existing models considering the quadrupole deformation of nuclei. This is true, in
particular, in respect to the unified model where neither of these elements participates in
the collective dynamics. | ’

4) Considering the Sp(6, R) orbits in the phase space one finds explicit relations for
invariants of the motion in terms of Y and J. Some important geometrical constraints
on these quantities are obtained in the general case. A detailed analysis is given for the

classes of orbits with dimensions lower than the maximal one.
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5) Equations of the collective motion allow the stationary solutions. Hereabout a {am-
ily of such solutions called as S-bands is examined. The S-bands establish a link between
the theory of S-Riemann stationary solutions and the selfconsistent CHOM. Properties of
S-bands manifest an important role which play the circulation of the collective velocity
(J) and the anisotropy in the distribution of the nucleons in the momentum space (Y') in
determining the shapes and inertial properties of rotating nuclei. \

6) It turns out that in the case of a one parametric family of the volume dependent
potentials including two limits considered in the literature the solutions for S-bands admit
a scaling which reduces the problem to the one investigated before. ‘

7) Parallels are established between the description of the collective motion in the
O(N. - 1) invariant model and in the FLDM. In the latter the same equations of ‘the
collective motion as derived in this paper appear as approximate solutions of the TDHF
theory without any constraints on the local part of the selfconsistent field. The FLDM is
successfully applied to the description of the bulk properties of the distribution of strengths
of the multiple transitions. This may serve as a test of applicability of the model described
in this paper.

We hope that the material presented before will be useful for a number of future
investigations, for example, for the classification of all stationary solutions and for the
description of nuclear collective rotational and vibrational bands. The need of the general-
ization of existing models for such an analysis is cleariy manifested by the recent discovery

of the SU(3) multiplets in the superdeformed rotating nuciei [52).
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Appendiz A

The algebra of variables Y4 4,Ypp, Yap and J4p becomes transparent after mapping
onto the four-dimensional algebra u(2) {00, 01,02,03} with the structural constants giVen

by the equations

f.‘kj=2€ijk fg.~=f.~’;,=f?,-=0 fori,j,k =1,2,3, -

The realization of the quantities Jxy, Yxy(X,Y € {4, B}) reads

.

‘Y =Yaa+YsB= %(ag + 02 -0 +ad), (A;la)
AY =Yau —Ypp = 01 x (0% — 02)'12, (A.1b)
Yap = 03 x (08 — 03)/2, . (A.lc)

Jap = 0. ' B (A1d)

In fact, using the relation

{F,G} = (B'F)(@G)fkon,
we recover the Poisson brackets
{jAB’Y} = 0, - {;jABy AY} = _4YAB, {jAB’Y} = AY’ (A2a - C)

- A{Y,AY} = SjQBYAB, {Y,Yap} =274pAY,  {Yap,AY}=2J4pY, (A.2d-])

identical with those in eqs.(3.3,3.4).

" The relations (A.la—d) may be used to quantise the Hamiltonian of the two dimen-
sional vérsion of the O(N —1)-invariant model. It is achieved by mapping {¢} onto the set
of the self-adjoint operators of the algebra u(2). A remark should be added concerning
the generalization of the theory to the three-dimensional case. In [22] the formulas are -
developed for the matrix elements of the operators J defined as operators in the many

body subspaces SN (f1 f2f3) (see eq.(4.13b)). 1t is found that the dimension of the matrix
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representation of the J obtained in this way coincides with that of the irreducible repre-
sentation of the u(3) algebra. However, no explicit relations are known for J, Y operators

in terms of the generators of the u(3) algebra.

Appendiz B

Some comments are necessary to establish the domain in which the classica.l expres-
sions (4.12) for the eigenvalues of the Casimir invariants C, and semiclassical relations
(6.7a—c) are valid. We are going to show that the approximation (4.12) works much
better than one might think, looking at the exact formulas for these invariants, and that
eqs.(6.7a—¢) can be applied even if the number of nucleons is not very large. To discuss
this problem, we apply the quantum expression for the Hamiltonian [9]

i A2 2 N-49 ]
A= N o ot (B.1)
2m & {&\ﬁ\ X4 Ora B(;A % /\7 ,\2 A4 }

The transformation
B = fEf, (B.2)

F=0arsro) W 0210% — 25N, - A)(AG - L))V, (B.3)

affects only the term H*®* which transforms into

H 82 rquan ‘rquan
(HY®Y = 2 av 4 Uguen 4 ggren, (B.4)
- R (N -5)2—1 1
. Uqu.an - - -
! 2m 4 ; A (B:5)

N 2 A2 42 PVRDY.
frauen _ _ { A B i+ 4 & }
2. om zA: (% =232 7 (A4 —2L)2

+32—ZA2{ LI }2 (B.6)
el (CVEPYA N PURS YR Y B ’
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The term Uf**" proportioral to N? is much more important than U§*®*. Neglecting 3"
and adding U**" to the intrinsic kinetic energy one obtains (B.7) with Y’ being given by
(B.8) ;
) 1
(I) = o XXJ Yix /X%, (B.7)

1
Y)’(Y =Yxy + Z[(N -—5)2 — 1]h2§xy. (B.8)

The Y’ tensor has a slightly different meaning as compared with the definition given in
the principal part of this paper. For IUR (f}fsf30...0) of the algebra so(N—1) we have
Cy =2Y0, fi(f! + (N=5)R)+4(fi — f)h. Hence, using eq.(4.8a) and noticing from the -
formula 4.16b) that f{ = f,-—(N—l)h/? we arrive at

Y (Vhx + %) = 5Co+ SN =8 = D w f2 + 13 + 2. (B.9)
2 >

For the same reason the eigenvalues of the quantities C; and C§ should be renormalized as
well. In quantum mechanics the change of the order of j-operators in eqs.(4.14) changes
the invariant operators and their eigenvalues. One may use this ambiguity and choose

undefined terms such that the relations (4.12) become valid also for Cj, Cj.

Appendiz C

It is useful to rewrite the system of equations (6.4), (6.5a—c) in a somewhat different

way. Equation (6.4) may be written in the form

1 272
Lc=—JC‘/1‘——22 1-— 1- 22 (I—ZY/AY) 5 (Cl)
where
/\2 _ /’\2 .
= /\2 /\2 P Y= YAA + YBBa AY =Ys4 - Ys, (.C'zav b)c)
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while eqs.(6.4a—c) read

(mAarB)~ 1(1—27)-5/22A z" _(AAdA ABdA) (C.3a)
n=0
Tas + Ton — 2T, (,\ it —aed o (C.3b)
AA BB cc =3 Ad)\ BdAB Cd)‘c 9 o
== 0
Taan+Tp+Tcc = Zz\x d/\xl . (C.3¢c)

In egs.(C.3a) the coefficients A, are found to be:
AO=AY, A1=gJé—Y, Ay = —2AY — 6B, _
Ay =-241+4B;, A =AY +2B;, As=A —2B,, (C4)
B, =JiY/AY, B, =Ji1+(Y/AY)Y.
The quantities Tx x in egs.(C.3b,c) are the components Qf the kinetic energy tensor cor-

responding to the stationary solution

'S
.TAA +Tgp = (mAA/\B)-l(l - 4”.2)"5/2 Z E, 2", (C.5)

n=0

Tec = Yeo/(2mAL). (C.6)
where
Eog=J%/44+Y/2, E =-AY/2, E;=-2E,,
(X))
E3=—Bl+AY, Ey=B, + Ey, Es=-B —AY/2

The left-hand side of eq.(C.3c) is the total kinetic energy ¢f a nucleus.
Let us examine the above system choosing the potential U° in the form given in

€q(6.16). Let 2., Ay denote equilibrium values of z,(A4AgAc)!/3 respectively and
1/3
= [ fe(t =)™ E,.z:,] - (C8)
n
From eq.(C3.b) we get Ty4+Tpp=2Tcc, thus for the total kinetic energy T we find
_3 a1/3 _ 3 2
T= §[2TCC(TAA+TBB) J = E(F//\q) /m,
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and using eq.(C.3c) we get Aeg = X(F/R)?/(P+2). Let Ao, Fo,zo denote values of Ay, F
and z in the ground state i.e. at the point Jo=Lc=0. From eq.(C.3qa,C4,6.7) we get

z9=(h% —h%)/(h% +h%) and by simple calculation we arrive at the following relations
T = a(F/Fp)®I0+D, 4= 2—31;(1«}, /3o)?, (C.9a,b)
Fo=(fafsfc)'?,  do = M(Fo/h)H#+D, © (C.10a,b)

Let us assume also that | z., [ 1. Keeping the first two terms in the polynomial of
z on Lh.s. ‘of eq.(C.3a) and using eqs.(6.7a, b, 6.8) we find

™ +32),/ “/Ga—Fa)E, S= E:A +:"; ii=hg, G=L,M,H. (C11)

Hence, the parameter S must be small too. For these assumptions the range of angular
momentum within the nuclear band is limited: O < L¢ < (ha—hp). Indeed, from eq.(C.1)
we get Lc = —Jg, so that we may assume J¢ to be negative |(ha—hg) < Jo < 0.
Consideting the above equations, while preserving the lowest terms in the power of Lc,

we obtain

% [ho(hahp + LE/9)]°. ' (C12)

Substituting this factor into the energy formula (6.19a) and choosing the parameter p = 2
we arrive at the result which coincides with an approximation which has been discussed in

[50].
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