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All the approaches have their merits and their drawbacks. The group- theoretical 

formulation is very transparent mathematically, which is very important in fonnulating 

the quantum theory of nuclei free from ad hoc assumptions typical of the TDHF a~­

proach. The latter approach however leaves much room for using phj •· ·cl intuition and 

is, in fact, quite effective in digesting the wealth of r~cent experimental data. 

By now it has become clear that the direct application of either of the approaches 

demands great cofi?puting power to obtain physical predictions. The FLDM meet; with 

difficulties when the restrictions arising from the antisymmetry of the wave-functions 

become important. The algebraic approach demands further development, especially in 

studying the collectiv~ motion which is related to the evolution of the higher moments 

of matter distribution. 

The aim of this paper is to study the relations between the fully microscopic theory 

[9-13,20-23] built on the group Sp( 6, R) x O(N -1) and theories based OIl the concept 

of the time-dependent mean field. 

In Section II the Hamiltonian and the equations of motion are presented in terms of 

Zickendraht-Dzyublik-Filippov coordinates. In essence, this section has an introductory 

character summarizing the formalism needed for the subsequent parts. However, the 

analysis of the phase-space corresponding to this parameterization and of the Poisson 

bracket structure of observables is given here in a more complete manner than elsewhere. 

This allows us to write down a complete system classical of dynamical equations. 

In Section III the classical equations of motion for the O( N - 1) invariant model 

are examined. Considering the geometric formulation of the dynamics we show that the 

evolution of the system is governed by the one-body time-dependent harmonic field. 

The correspondence i~ established between the collective motion of a nucleus and that 

of a clanical liquid drop. 

In Section IV the group-theoretical structure of the collective space is studied and 

the relation between the collective Sp(6, R) and intrinsic SO(N -1) invariants of the 

motion are discussed. 

In Section V the Sp(G. R}--dynarnics if; compa!ed with the dynamics described by 

th'~ Fenri-liquid droplet model (FLDM). 

In Section V a class of stationary solutions of the classical equations of the collectiv'e 
q, 

mOtion is examined. The single--particle motion corresponding to such solL.tiow:; i':J wm· 

pared with the lIlotion of particles in the cranked harmonic oscillator model (CHOM). 

The selfconsistency conditions of the nuclear CHOM are discussed. 

In Section VII the material of the paper is relriewed. 

SaInte additional formalism necessary for the understanding of the paper is given in 

the thref' Appendice3. The most important original resuLs are presented under the title 

of Propo.~ltion$. 

II. The Hamiltonian and the equations of motion in the overcomplde system 

of coordinates. 

The leading role of' the quadrupole (ellipsoidal) deformation in detennining the 

nature of nuclear structure is well established [3]. One expects that the main axes of 

the inertia tensor in heavy nuclei do not change much due to quantum dfeds. For this 

reason, we start with the introduction of a coordinate system in which the components 

of the nuclear inertia tt~nsor play the role of collective cotJrdinates, and we proceed to 

study the nudear motion within the classical mechanics. This is achieved by considering 

the Zic.kendraht-DzYllblik-Filippov -system of coordinates [4-7,9] which we use to intro­

duce the overcomplete parameterization of the elements of the 6N-6 dimensional phase 

space including the relative Jacobi coordinates ile and the momenta Fk of N nucleons 

tk=1,2, ... ,N-1). We have: 

xok = 2:'Dxo(O)AX'RXk('PI,'f'2, ... ,'f'N-9). (2.1) 
x 

The coordinates on the r.h.s. satisfy the conditions: 

3 N-l

L 'Dxa'DYo = OXY, 2: 'RX1<RYA; = °XY, (2.20, b) 
a==l 1<=1 
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Using the projection matrices: 

f~kl,lfJI = 60fJ LRnRxI' (2.3a) 
X 

f~k~PI = 60fJf~I' f~1 = 0kl - L RXkRXI, (2.3b, c) 
X 

we decompose the momentum space of the relative motion into two orthogonal sub­

spaces: P = pcoll ill pintr 

Pok = p~oil +p~nt, (2.4a) 

It is convenient to paranleterize the terms in eq.(2.4a) as follows [9]: 

p~oll = L'Dxa(8){RXkPX + I: RYk (LXYAy +"\X]XY)} (2.4b) 
x Y(¥X) Ai - A~, ' 

For the second term in eq.(2.4a) we propose the foml: 

in Ir """' (8) \ -·1 (2.4c)'7'0Pok = L VXo AX 7rXk· 

The overcomplete system of the momenta {7r X k} in eq.(2.4c) obeys the following linear 

relations: 
N

I: R Xk 7rYk = O. (2.5) 
k=1 

which we immediately obtain noticing that L.n RXnf~k=O for X=A.,B,C, k=l, ... , 

N -1. Equations (2.1, 2.4a-c) allow the inverse transformation: 

'\--" 2
.L... Qoi3 'DX{3 = '\x'Dxo, for X = A,B,C, (2.6a) 

f3 

1 
RXk = - L'Dxoxok, for X = A,B,C, (2.6b)

/\x . 
o 

PX = I: 'DxonXkPok, fnr X = A,B,C, (2.7a) 
o,k 

LAB == Le = L EeXy"\xnxk'DYoPok = L EexyxXkPYk, cycl A,B, C, 
X,Y,C>',k X,Y,k 

(2.7b) 

5 

- "" ~ AXJAB == Je = L EeXyAXRYk'DXoPok = LJ Eexy Ay XYkPXk, cycl A,B, C, 
X, Y,o,k X,Y,k 

(2.7c) 

7l"Xm = AX L'Dxof:nnPon, for X = A,B,C. (2.7d) 
o,n 

In the equations (2.6a) we have used the quadrupole tensor QOfJ= 2:f==~1 XokXjJk. The 

matrix 'DAa which depends on the three Euler angles 91 ,92 ,93 describes the 50£(3) 

transformation from the laboratory (i-frame) to the body frame (b-frame) ofreference, 

the latter being defined as the frame where the matrix of the inertia tensor is diagonal: 

Qb=diag(,.\~, A~,"\h). The quantities AA, "\B,"\C characterize both the size and the 

quadrupole deformation of the system. Here we assume that AA > AB > AC' then 

the matrix 'D(8) is determined up to the transformations of the group D2 of rotations 

through the angle 7f around the principal axes of the inertia tensor. 

The quantity i is the angular momentum. We call the quantity J the vortex spin 

vector. This quantity appears in the Riemann equations of the classical gravitating 

liquid droplet [24,25]. In the microscopic theory it is introduced in several papers 

[4,26,27]. Our definition of the vortex spin coincides with that of ref.[27], however, let 

us note that some authors [26] use this name for the vector £=-1. 
Throughout the paper we use the characters a, (3, 'Y for the indices of the 50£(3) 

tensors in the I-frame, and X, Y, Z for their indices in the b-frame. When convenient, 

we use pseudovectors instead of antisymmetric tensors, and the summation convention 

for the repeated indices, such as Fz = %EzxyFxy. 

The condi tions (2.2a, b) are valid both in the classical and in the quantum mechan­

ics. The quantum analogue of (2.5) is obvious: 

N-1 

L [RXk7l"Yk +7l"YkRXk] = 0, for X,Y = A,B,C. (2.8) 
1.=1 

The momenta 7l"Yk which have been defined in eq.(2.7d) and also JA, JB, Je are 

the differential operators with respect to the factor space M == O(N -4)\0(N -1). 

This factor space can be parameterized by some angles 'PI, 'P2,'" ,'P3N-JJ [4]. One can 
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also u!"derstand the quantities iik=(nAk,nBk,'Rck), i k = (1l'Ak,1l'Bk,1l'Ck), end las 

functions of 6N-18 independent coordinates and momenta defined so that the relations 

(2.2a - b, 2.5) are sa~isfied identically. 

In the following we use extensively the bracket notation {a, b}. The latter can be 

understocj either in the classiLal sense as the Poisson bracket, or quantum mechanically 

as the commutator times the factor (in )-1. 

Propo8ition (2.1). The canonical Poisson bracket relations 

{Xak,X.st} =0, {Pak,P.st} == 0, 

.{Xak,P.st} = 8ap8k1 , 

hold if and only if the following relations are satisfied: 

{-,,"Xk,ll'yl} = - Ik,ixy +(Rxl'''"Yk - RYk,,"Xl), (2.9a) 

{ll'Xk, Ryt} = -8xy Ikl, {JX,ll'yt} = -~XyzToZk, (2.9a, c) 

and [26] 

{Jx,Jy} = -~XYZJZ, {Jx, RYk} = -~XYZRZk, (2.9d,e) 

{Lx, Ly} == -=-~Xy zLz, {Lx, VYa} = -~XYZVZa, (2.9/, g) 

{Ax,py} =CXy, (2.9h) 

with all the other omitted brackets {... } equal to zero. 

In arriving to the nontrivial part of the Poisson bracket relations, namely (2.9a-c), 

it is useful to mention the equivalent forms of the quantities introduced before 

1l'Xk = (R·j·f)Xk, JXY = (R·j·1{)xy, (2. 7.c', d') 

where 

are the generators of the BO(N -1) group. The parameterization of the coordinates 

and momenta introduced before allows us to write 

ikl = (~'1T _t7('.'R +t'R·j·'R)kl. (2.10b) 

Let us also write the well known relations 

{jmn, tkl •... ,k,} = 2:: (Dmk; tk1 ,••••n,... ,k, - Dnk; tk1 , ••• ,m,...k,) , (2.11) 

which are valid for an the BO(N-I) tensors tk 1 ...k,. The relations (2.9b) follow imme­

diately from eqs.(2.7d',2.1l). Next, we have 

I)'RAn,7('Bt}inml:nk = fJAB(f' . i . !')lk =o. 
n,m 

The first-equality is the (".onsequence of the just proved relation (2.9b), while the Second 

one is obtained from the first using eq.(2.IOb) and the conditions (f'·'R)nX =(Rj')xn =0 

following from eq.(2.2b). Since, we arrive at 

{1l'Ak,1l'Bt} = 2:: 'RAn ({inm, 1l'Bl}f:nk +imn{/~k' 7('Bl}). 

Applying eq.(2.11) to the first term under the sum and noticing that (i· I')n=in, while 

using eqs.(2.3c, 2.9b) for the second term we recover the expression (2.9a). The equations 

(2.9c) we find applying eqs.(2.7c',2.9a, b). The canonical relations follow immediately 

(¢::) from the system (2.9a-h). 

The expressions on the l.h.s. of the conditions (2.2a, b) and (2.5) are elementary 

invariants for the Poisson structure (2.9a - g). This means that our constraints are 

consistent with it. 

In the new coordinates the Hamiltonian has the form: 

H = T vib +Trot +T intr +V, (2.12) 

h'l = 'L)XaknPal - XakPa!), k, 1= 1, ... , N -1, (2.lOa) 
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where
 

1 2 intr 1I"kA:
'L ~ 
Tva" = - LJPx, (2.13a, b)

-2m X T = L Lzro\2 ' 
X k X
 

Trot _ 1 ~ 1 {( 2 2 - 2 -2 - - }

- 2m LJ (A2 _ A2 )2 AA +AB)(LAB + JAB) +4AAABLABJAB , (2.14) 

A>B A B _ 

The potential U contains the part UO which is a scalar with respect to the O( N -1) 

group and the tensor part utens: 

U = UO(AA' AB, AC) + u'ens(..\AABAC; R(cp)), (2.15) 

In principle both terms here may be calculated once the particle-particle interaction 

is known. The O( N -1) scalar potential has been calculated for the central nuc1eon~ 

nucleon interaction in ref. [28]. The role of the tensor two-body interaction is examined 

, in ref.[29]. 

Let us introduce the following definitions 

8n 2 de! 1 8nUX~! Ax~! 8n Wx = ---- ­ (2.16a, b, c)
8Lx' 8Jx' mAx 8AX' 

N-l 
de! ~ de! ( ~ 2 ) -1 cYXy = L...J 1I"Xk1l"Yk, .cXy = mAX 0XY, (2.16d, e) 

k=1 

where nand Aare the pseudovectors of the angular rotation velocity and the vortex 

rotation velocity [4,24] respectively, while Y will be called the Fermi-energy tensor. We 

have 

Uc] 1 [A~ +A~ 2AAAB] [Lc] (2.17)[A =m(A2 _..\2)2 2.2 J,' cycl-A,B,C.
-- CAB 2AAAB AA tAB C
 

2 YAA 1 {(LAX + JAX )2 (LAX - JAX)2}
 
WA = ~ + ~ L (A _ A )3 + (A ~A)3 ,cycl A,B,C,

m A m .. A X=B,C A X A X 

(2.18a) 

or when we express the momenta L, j by the velocities n, Xwe get 

W~ = ~A~ +U~+Ub+A~+Ab-2(Ac/AA)UBAB-2(AB/'AA)UcAc, cyclA,B,C.
m AA 

(2.18b) 

9 

Proposition (2.2). The Poisson bracket relations lead to the following system of equa­

tions (X=A,B,C): 
d 1 
-AX - -PX = 0 (2.19a)
dt m ' 

~PX - mw~AX +8Uo /8AX = _8utens /8AX, (2.19b) _ 

d 
diLx +L fxyzUyLz = 0, (2, 19c) 

y,Z 

DUtensd 
di Jx +L fxyz(AyJz + .cyyYyz) = - L fXYZ DR¥A; RZk' (2.19d) 

Y,Z y,Z,k 

d[iik 
] [A .c ][Rk] [ 0 ] (2.1ge, I)di irk - -y.c A- J1; irk .= - DUtens/DRk ' 

d 
di'DXa +L fXYZUy'Dza = 0, (2.19g) 

y,Z 

The r.h.s. of eqs.(2.19d, b, I) contains the SO(N-1) tensorial part of the interaction. 

The derivative appearing there is defined as: 

N-l 

DF/DRxk == {::rxk,F} = L f~m(8F/8Rxm). (2.20) 
m=1 

Equations (2.19g) describing the orientation of the main axes of the nuclear inertia 

tensor in the space are separated from the remaining equations (2.19a - I). Thus, 

noticing that the total angular momentum L2= L~ +L~+Lb is conserved and because 

the matrices R,1I" introduce only 6N-21 independent variables (see eqs.(2.2b,2.5)), we 

conclude that the system (2. 19a-1) contains 6N-10 independent equations of the motion 

(L#O). The system reduces by two more equations in the case L=O. 

III. The Sp(6,R) classical collective dynamics 

Drastic reduction of the system of dynamic equati~ns takes place when the O(N-1) 

tensorial part of the interaction vanishes (uten,,=o). The rest of the paper is devoted 

to this particular case. Let us introduce 3-dimensional square matrices U, 9,F, A and £ 

U='\+A·A-;-n·A (3.1) 
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• - . - • 2 I 2 -2 -2 - ­QXY = -(A·A - n·,X)XY + (m- ,X- 'Y'A- - 'x·A - 0 .,X + 2n.A·A)xY, (3.2) 

F = -diag(8Uo / 8'xA, 8Uo / 8>'B, 8Uo / 8>'c), ,X = diag('xA, 'xB, 'xc). (3.3a, b) 

£ = A.(2fi - A.A-,X -1 ).A -1, (3.3c) 

Propo"ition (3.1). When uten, = 0, the time derivative of the matrices U and.y close 

the system of the differential equations 

d
-U=Q+m-IF. (3.4)
dt 

~Y == £.y +y. t£. (3.5) 

The closure of the above subsystem of the fifteen equations for the variables 'xx, Ox, 

Ax ,YXy, X, Y = A, B, C follows immediately from the Poisson bracket relations. In­

deed, all the terms of the D(N -1) invariant Hamiltonian are built on eighteen variables 

'xx,px,Lx,Jx,YXY, and the relations 

{Lx,Yyz} == {Ax,Yyz } = {px,Yyz } =0, (3.6a, b, c) 

{Jx,Yyz } == -(exysYsz +exzsYys), (3.7) 

{YXY ,Yzs } = -ixzYys - ixsYzy - jyzYxs - jysYxz. (3.8) 

together with eqs.(2.9a-d) close their Poisson algebra.
 

Proof of the Propo"ition (3.1). Using eqs.(2.19a-b) and noticing that
 

Qxx == >'xwi, (3.9) 

we arrive at eqs.(3.4) for the diagonal elements of the matrix U. We get the equations 

(3.4) for the off-diagonal terms cOnsidering the time derivative of the relations 

('x·A - O,>')XY = m-l(>.~ -,X~ )-I('xxixy + Lxy'xy), (3.10) 

which follow from eq.(2.17). We have 

m-I(,X~ -,X~ )-2[-2(>'x~x-'xy~y)('xxixy+Lxy'xy)+(A~ -,X~)(~xixy+Lxy~y)] 

= -(~.A - fi·'\)xy. (3.11) 

m-I(,X~ -,X~ )-I('xXJXy+LXYAY) = (m-2 ,X-IY,X-2 -'xA2 _02,X+20,XA)xy, (3.12) 

since, summing r.h.s. for both terms we obtain the required result. In establishing the 

. relation (3.12) it is convenient to present eqs.(2.19c,d) in the form 

>. - - -­d - - - -- d
-£=O·L-L·O -J = A·J - J·A +Y·.c - .c·Y. (3.13)
dt ' dt 

This calculation shows that the nine equations (3.4) are equivalent to the twelve first 

order differential equations (2.19a-d). Using the Leibnitz formula for the time derivative 

of the definition (2.16d) and applying eqs.(2.19/, 2.5) one arrives at equations 

~YXy - L [(Axz6zz, - ixz.czz')Yz'y +(Ayz6zz, - iyz.czz')Yxz'] = 0. (3.14) 
Z.z' 

Equations (3.5) follow immediately from the above, given the ident~ty 

£=A-i·.c. (3.15) 

The compact and elegant form of the equations of motion (3.4,3.5) follows from 

their geometrical character. We show it in the following way. Let p be the 6 X N -1 

dimensional matrix of the Jacobi coordinates and momenta 

Xl'" XN-I}p= { -+ -+ , (3.16) 
PI" ·PN-l 

and let us define the collective tensor: 

(L+S)/2 -Q } {O -1)
C(p) == P·~·K(6) = , where K(6) = >, (3.17){ P (L - S)/2 1 0) 
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The elements of C(p) are the Poisson generators of the Sp(6,R) group: 

N-l N-l 

SaP = L (XakPPk +PakXPk), Lap = L (XakPPk - PakXPk), (3.18a, b) 
k=1 .k=1 

N-l N-l 

Pap = L PakPpk, QaP = L XakXpk· (3.18c, d) 
k=l k=1 

Let the six-dimensional block-diagonal matrix 'D(O(t»=V(O(t» EB V(O(t» detennine 

the transformation.of p to the b-frame p -+ Pb='D(O(t»p. Using relations (3.10) and 

eqs.(2.1, 2.4a-c) we find 

Pb = {).. :1} {~I"'~N-l } . (3:19) 
mil)" 1l"1 ... 1l"N-1 

Applying the above and eq.(2.2b,2.5) we arrive at the fonnulas 

m)...tU _)..2 } 
C =t[)(O).Cb·[)(O), C b = . (3.20)

{ >.-I.y.)..-J +m2 U.V -mU.).. 

The mutual correspondence between the D(N-1) invariant dynamics and the Sp(6, R) 

model comes from -the last mapping and from the analysis of the evolution of the system 

in the phase space. Within the D(N-1) model the evolution is determined by the action 

of the Sp(6, R) group and we have [13]: 

pet) = g(t)·p(O),- C(t) = AdO(t)(C(O», Ado(X) d~f g.x.g- 1 , (3.21a, b, c) 

where get) is the 6-dimensional symplectic matrix: 

Sp(6, R) = {g E GL(6, R); K(6)9K(6) -1 =tg-l} . (3.21d) 

It is convenient to factorize the matrix g( t) as follows: 

g(t) =tV(O(t»·gb(t).V(0(0», (3.22) 

Proposition (3.2). The Lee derivative of the matrix (h(t) 

Qb(t).g;;l(t) = Hb(q(t)coll), (3.24) 

has the form: 
ncall _ 

Hb(q(t) ) - { F·)..-l ~l}, (3.25) 

where ndenotes the angular velocity tensor V(O).tv(O). 

Proof. Taking the time derivative of the equations (3.19) and substituting equations 

(2.1ge,!,3.15) we get 

~Pb(t) = Hb(qcoll(t»Pb, (3.26) 

H 
b = { 

d ()..
di mU 

0) ().. 
)..-1 + mil 

0)'( A£.)} ( ).. -1 0) 
)..-1 _y.! £ -m)...U.)..-l)..' 

(3.27) 

Next, calculating the matrix Hb from the last formula and comparing the result 

with eq.(3.25) we come to conditions 

n= ~ + )..·A·)..-l _U·)..-I, m-11 = )...£..).., (3.28a, b) 

F.)..-l =m (~u-n'U+U.A-m-1)..-1.y,£.))..-1 (3.28c)
. & ' 

_. 1 - - 1 _U=-)..·)..+U·)..- +2U-)..·A·)..-, (3.28d) 

The equations (3.28a, b, d) follow immediately from the definitions (3.1-3.3b,2.16e) while 

eq.(3.28c) is obtained applying eq.(3.4), which finishes the proof. 

Let us also examine the relations (3.21a, b, d). Formula (3.21a) results from (3.26). 

The matrix H b belongs to the sp(6, R) algebra: 

sp(6,R) = {X E:: gl(6,r): Xb·K(6)+K(6)·tXb = O}. 

where the matrix gb(t) describes the evolution of the system in the b-frame: 
'This enshure the simplecticity of the matrix gb, hence also 9 E Sp(6, R) and finally the 

matrix C E sp(6, R) evolves in time as fopows: C =get) . C(O) . (K~) .tg(t) . K(6» = 

pb(t) = gb(t)'Pb(O), (3.23) g(t). C(O)· g-l(t). 
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Proposition(3.2) says: the D(N-I) invariant ~lassicalsystem is dynamically equiva­

lent to the system of independent particles moving in the local time dependent harmonic 

field. The evolution of this field is described by the closed subsystem of equations of 

motion for the collective variables {qcoll}. 

Indeed, let us consider the field-frame (i-frame) Pj=15I(a(t»)p and let the particles 

move in the specific time dependent (translational invariant) single-particle field: 

uef/ = m Lw}(t)(xLY, (3.29) 
Y,k 

Noticing that the transformation-generating function has the form: 

S(x,PI, t) == ~ XanV~a(a(t»P~n' (3.30) 
a,A,n 

we obtain the time dependent Routhian function R(Pji t) 

R(Pji t) == H(p(Pj» - fJS(p(p I), t)/ fJt = 

'" '" [ 1 I 2 2 f 2] /2 - n/(t)·LI,.. .. (3.31a)L.J L.J m- (PYk) +(Wy(t)xhJ 
. Y k 

or in more compact form 

R(PI; t) = i1tr [H/(t)·C(Pj)J. (3.31b) 

where fi l = iJI.'1)I. If (}i(t)=O'i(t) and mw~(t)= -(:F>. -1 )xx(t) then fi/(t) =fi(t), the 

matrix HI = Hb and the canonical equations of motion for PI generated by Routhian 

R(Plj t) coincide with equations (3.26) for Pb. 

-IR this approach the angle functions O'i(t) are assumed to be known and indepen­

dent of the canonical variables Pi thus the variables PI are canonical too. Then, denoting 

Cf == C(PI) we find that generators {QI,SI,PI,LI} and {Q,S,P,L} obey the same 

Poisson bracket relations. On the other hand, the system of time-independent coordi­

nates Pb does not obey the canonical relations (see the equations in Propo.sition(2.1». 

The cranking term -0·£ should be added to the Hamiltonian fmiction to compensate 

in equations of motion for the differences between the structure of the Pb and -pI Poisso~ 

relations. Applying the Leibnitz formula for the time derivative of the definition (3.21) 

and using eqs.(3.23,3.24) one gets 

d 
diCb = HbCb - CblIb· (3.32) 

The physically most important configurations are those 0) for which the matrices lIb 

and C b commute and (ii) which are stable in regard to small variations of the collec­

tive variables. Such configurations distinguish the physical domain in which the stable 

effective mean field exists. We will return to the discussion of point (i) in Section VI. 

Formally, eqs.(3.4,3..5) admit the trivial solution YXy=O. In this case the above 

equations and eqs.(2.19g) become equivalent.with the Riemann equations of motion 

to the Dil'icWet Liquid Droplet (DLD). The dynamics of DLD was studied for more 

than a century by grea.t mathematicians and astronomers (see ref.[24,25J). In applica­

tion to the nuclear dynamics [26,27,30-34J this model has been formulated in a fully 

microscopic way using the semisimple group GCM(3). The Lie algebra of this group 

is spanned by fifteen elements {Q, S, L} and constitutes the dynamical algebra of the 

DLD. This allows us to render the quantum-mechanical form to the DLD model and to 

study its place in the microscopic nuclear theory. One obtains an another model based 

on the group Gdy n=Sp(4,R) reducing the particle motion to a single plane [35,36J. The 

two-dimensional dynamics leads to a great simplifcation in· the structure of the collec­

tive space. In Appendix A we show that the four variables YAA, YAB, YBB, Jc can be 

expanded in terms of the generators of the u(2) algebra. 

IV. The colle~tive space 

We begin this section with the discussion of the reduced collective space (see ref.[13J 

by Kramer) on which the Sp(6, R) group acts as a transitive group of canonical trans­

formations. On the grounds of Section III we define the reduced collective space as th.e 

manifold of the orbits Ox: 

Ox = {C E Jp(6,R): C = Adp(X), g E Sp(6,R)}. (4.1) 
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A useful classification of these orbits is given by the identification of an orbit Ox ,,'ith 

the coset space of the Sp(6, R) group modulo the stability group Gx: 

Gx = {9 E Sp(6, R), Adl/(X) = X} 

Hence: 

dim Ox = dim(Sp(6,R)IGx) = dimSp(6,R) - dimGx 

Within the orbit Ox == Of we ~ay choose the representative point /J so that the matrix 

C(/J) with elements given in h units is of the fonn 

{ 
-f}0 

C'/= C(/J) = f 0 ' f = diag(it,h,h), it 5 h 513 so. (4.2) 

Leaving aside the classes of the orbits with 13 = 0, which are physically interesting only 

for N 56, we di:-tinguish the following four classes of OJ' l=(ft, 12, h): 

12 if 11 = 12 = fa, (A); 

16 if it > h = 13, (B); 
dim Of = , (4.3) 

16 if it = h > 13, (C);!18. if it > 12 > h, (D). 

The .Jtability groups Gx C Sp(6, R) corresponding to these classes are isomorphic with 

the groups U(3), U(l) x U(2), U(2) x U(l) and U(l) x U(l) x U(l), respectively [13J. 

Further reduction of the collective space follows due to SOL(3) rotational symme­

try. We may exclude the three Euler angles from the collective space by introducing 

the space denoted as 0 jlSOL(3) of the elements conjugated by the SOL(3) group 

(see eqs.(3.19)). Then, the factor space OilSOL(3) should be decomposed into the 

subspaces 0 T,L enumerated by the value of the angular momentum L. We get 

8, (6) if ft = 12 = 13, L > 0, (L = 0), (A case); 

12, (10) if it > h = 13, L> O,(L = 0), (B case); 
(4.4) dim 0 [L = 12, (10) 

if 11 =h > 13, L > O,(L = 0), (C case);1. 14, (12) if ft > 12 > 13, L > O,(L = 0), (D case). 

The physical meaning of the above classification is contained in the following Proposi. 

tions. 

Proposition (4.1). On the manifolds O[L the eigenvalues Y of the Fenni-energy tensor 

are found in the intervals it ~ Yl ~ 12, Yl ~ Y2 ~ Y3, 12 ~ Y3 ~ h· 

Proposition (4.2). For the degenerate orbits (A), (B) and (C) the tensorsY and J take 

the following general fonns 

Yb = 121, J~ =0, for case A, (4.5) 

Yb =tVY'Yin''Dy, J~ =tVy}, for case B, (4.6a) 

Vy E 80(3), Yin = diag(Yl' Y2, Y3), jl =h =0, j3 = j, I j Is it - 12 

Ul(2) = [Ii + Ii - j2J12 ± tV[(Jl + 12)2 - j2][(it - 12)2 - j2], (4.6b, c) 

Y3 = Ii, (4.6d) 

while in case (C) Yb and Yi are found as in case (B) after exchanging ft with 13 and 

assuming I j Is it - h· 

For the class (D) the eigenvalues Yi = Yi(l,}) may be found by solving a sixth 

order equation which CQuid be obtained using formulas presented below. We skip the 

detailed discussion of this case. 

Proposition (4.3). The invariants of the symplectic Sp(6, R) action in the orbits spac.e 

Of 

C2p = (-l)Ptr C(p)2p 
, p=2,4,6, (4.7) 

are expressed by the collective variables as follows 

C2 = tr (2Y - ]2), (4.8a) 

C4 = tr {(2Y - ]2)2 - 2y2 
}, (4.3b) 
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C6 = tr {(Y - j2)3 + 3Y j4 - 3YJyj _ 3y2 j2 + y3}, (4.8c) 

while for the two other invariants
 

, 1 3 1 1
C' - !C2 _!C C6 , (4.9a,b)4-8 2 4 4 C6 = 48C2 - SC2C4 + a

we have 

C~ = I)YxxYyy - Yl y )+ L JxYxyJy , (4.8b') 
X,y x>y 

C~ = det Y (4.8c') 

Proof 01 Propositions (4.1-4.3). Let us consider the transformation p --+ p'=g-l. p and 

let p E GCM(3) C Sp(6,R) be of the form 9 =t1)(8)·),· X where 

_ { 1)(8) O} _ { A O} _ {I 0 } 1)(8) = , A= , X = , (4.10) 
o 1)(8) 0 A-I X 1 

and where the symmetric matrix X chosen is X = -m('U· A+ A ·U)/2. Noticing that 

j=-m(tU.A - A'U), we find 

!j -I}C --+ C' = Ado-I(C) = : (4.11) { -tJ2 + Y !j 

The relations (4.8a-c) are arrived at applying formulas (4.7) for the matrix C'. Then 

eqs.(4.8b', c') follow after long but elementary calculations. Next, using formula (4.2) 

we determine the values of the invariants 

3 

C2p = 2LI1P
, C~ = LIlli C~ = Ii IiI;. (4.12) 

i=1 i>j 

and using eqs.(4.8a-c,4.12) we get the following equations for the eigenvalues Yi: 

(Y2 - Yl)ji + (Y3 - YI)ji = F(Yl)' cycl1, 2, 3 (4.13a, b, c) 

with F(y) = IIi(y - In/y. IT we choose the order Yl ~ Y2 ~ Y3, the l.h.s. of eq.(4.13a) 

(eq.(4.13c» becomes negative (positive). Noticing that Yl ~ Y3 and that F(y) is nonneg­

ative for h ~ Y ~ !J and for Y ~ 11 we obtain Proposition (4.1). Applying it to caseB 

in the Proposition (4.2) we conclude that Y3=Ii. Thus, using eqs.(4.8a, 4.9b, 4.12, 4.13c) 

we have 

12""2 = I + f22' YIY2 IiIi, (YI - li)j~ + (Y2 - fi)ji = 0,Yl + Y2 + ~Ji = 

which entail the result in eqs.(4.6a-d). The proof for case (C) is quite similar and 

equations (4.5) (case (A» immediately follow from the formulas in ~ase (B). 

Another class of invariants of motion conslitute the generators j kl( p) (see eq.(2.10» 

of the SO(N-1) group. Let us consider the following functions (Casimirs of the 

SO(N-1) group) 

D2p = (-l)ptr j(p?P, p=1,2,3, (4.14) 

In the classical N-body problem these functions and the functions C2p are dependent 

and coincide. We verify it substituting into formulas (4.14) the expressions (2.10). 

Then applying eqs.(2.2b,2.5) we find for D2p , p=1,2,3 the same relations which have 

been established already in eqs.(4.8a-c) for the invariants C2p. Latter result expresses 

in the classical mechanics an important fact well known from quantum investigations. 

Considering the space of the quantum N-body states SN and a chain of the subgroups 

Sp(6N -6, R) C Sp(6, R) x SO(N -1) one shows [37] that: (i) the even and the odd 

parity states form the two Sp(6N -6, R) multiplets < !(! )3N-4 >, q=1,3 respectively 

and (ii) the groups SP(6,R), SO(N-1) are a complementary pair in respect to the above 

reduction, which means that the reduction for both representations is multiplicitj' free. 

One has 

SN = L S(fU~/~)N, (4.15a) 
I:~/~~/~~O 
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with
 
S(/U~f~)N =< fthfa >,p(6,R) 0(/: f~ f~ 0(N-7)/2),o(N-l),
 

N-l (4.15b) 
h=f: +-2-h. 

The eigenvalues of the Casimir invariants of the soCN -1) algebras are well known 

[38,39]. The domain of validity of the classical approximation given by eqs.(4.12) is 

examined in Appendix B. 

To apply the above results to the nuclear system, the selection of the states al­

lowed by the Pauli principle should be made. We say that the Sp(6, R) representation 

< iI, 12, fa > is allowed when the set of t~e antisymmetric wave functions with the 

O(N -1) orbital structure (Ii f~ f~ 0 ... 0) is not empty. Due to the group reduction 

O(N -1) :J SjJb, where SjJb is the symmetric group of the spatial particle coordinates 

permutations, the latter problem may be solved in a purely group-theoretical way [40]. 

We also say that the O(N -1) invariant classical model is prequantized when the initial 

conditions are chosen so that the part of the phase space associated with the forbidden 

values of the invariants C~p is truncated. 

V. Relation between the collective dynamics in O(N-I) invariant model and 

in the FLDM 

Equation (3.4-3.5) may be deduced from the TDHF theory formulated in terms of the 

Wigner distribution function [14] which is the Fourier transform of the one-body density 

matrix. The relations obtained by integrating the equation for the Wigner distribution 

function f( r, p, t) over momenta (p) with the weights I, Pi, PiPj, etc., constitute an infinite­

set of equations for various local fields: for density, collective velocity, pressure, etc. [19]. 

This set includes the continuity equation. 

The analogy of these equations with equations of the classical hydrodynamics opens 

the way to the use of well-developed mathematical methods. One way to do it is realized 

in ref.19, where the method of "virial theorems" by Chandra.sekhar and Lebovitz [24] is 

generalized to the description of the collective motion in the droplet of a Fencl liquid. Fol­

lowing this way~ one establishes the generalized virial theorems, i.e. the relations between 

the integral characteristics appearing after taking the moments from the equation for the 

Wigner function over the full phase space of a nucleon. Then one introduces approxi­

mations leading to physical models parameterizing the collective velocity field u(x, t)= 

m-1 Jdp3 pf(x,p,t)/p(x,t) (p(x,t)= Jdp3 f(x,p,t)) and other local fields. 

When the collective velocity is approximated by a linear function of coordinates, the 

following moments of the distribution function are involved in the equations of motion:. 

< XXXy >, < XXpy >, < PXpy >, where < ¢>(x, p, t) >= JJdp3dx3 <jJ(x, PI~)f(x, p, t). 

These moments constitute a set of collective variables identical to the one discussed in 

Section III. In particular, the Fermi energy tensor Y and the vorticity vector j appear in 

FLDM, and equations (3.5) follow exactly. 

In the FLDM the same expression for the kinetic energy is obtained as in the formulas 

in Section II. No explicit statement of the invariance properties of the nucleon-nucleon 

interaction is made. The potential and its gradients entering into the dynamical equations 

for the collective variables are related to the nucleon-nucleon interaction following the 

selfconsistency rules of the HF theory. Their dependence on the collective variables is 

obtained using these rules and the continuity equation to adjust variations of the integrals 

entering equations of the motion with collective currents. In applications the selfconsistent 

potential is often substituted by empirically defined one describing the properties of nuclear 

matter [42,43], e.g. by using the surface tension plus Coulomb potential. Disregarding the 

difference in the definition of the potential functions UO(AA' AB' AC), one may say that 

eq.(3.4). and with it the collective dynamics considered before is satisfied exactly in. the 

FLDM as well. 

The parallels between the description of the O(N -1)-invariant system given in the 

previous sections and in the hydrodynamical picture rest on the properties of the single­

particle orbits: as follows from eq.(3.16b), the particle collective velocity pcoll/m is a linear 
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function in its coordinates with the same coefficients for all particles. Thus, the velocity 

field corresponding to the O(N -1) invariant system is a linear function in the coordinates. 

It is precisely this property of the collective flow which lll1.derlies the Dirichlet-Riemann 

theory embodied in FLDM. 

As is known from studies by many authors (see ref.[19,42] and the references quoted 

there), the Fermi-energy tensor Y plays a decisive role in the deJcription of the nuclear giant 

quadrupol~ resonance~ it determines the part of the elasticity coming from the quadrupole 

deformation of the Fermi-surface. In quantum systems the deformation of the geometrical 

surface is accompanied by the distortion of the Fermi-surface. The stresses.due to the 

deformation of the Fermi-surface turn out to be much more important for the description 

of the.. energy of the giant resonances than those which are originated by the potential 

energy. 

The low-energy excited states are quite sensitive to the potential. The rules of FLDM 

are quite flexible and much simpler than those obtained by, the direct application of al­

gebraic methods. A, number of potentials have already been tested in different physical 

problems in the framework of FLDM [19,41-44]. However, the field of applications of this 

method is limited by the fact, that an information on the pro[?erties relevant to the noncol­

lective motion is missing here. This drawback may be overcome using equations described 

in the previous sections with simple but realistic potential functions. 

VI. Model of S-bands 

Among the solutions to the differential equations (3.4-5) of special importance are 

the stationary ones describing the states of equilibrium of atomic nuclei. Within the DLD 

mod~l one distinguishes the two families of the stationary solutions which are called in 

the literature Sand P-Riemann ellipsoids. The problem of classification of the stationary 

solutions of Sp(6, R) model is more complicated, and it will be discussed in a forthcoming 

paper. Below we restrict our attention to a family of stationary solutions which generalize 

the concept of the S-Riemann ellipsoids. We define them stating the following set of 

conditions: 

LA=LB=JA=JB=O, (6.1a-d) 

YAB = YBe = YeA = 0, (6.2a-c) 

PA=PB=pe=O, (6.3a-c) 

Ae = Je YAA/A~ - YBB/A~, (6.4) 
m YAA - YBB 

w~ = (mAX )-1(auo/aAX), (X = A, B, C), (6.5a,b,c) 

where the frequencies Wx (see eq.(2.20» can be rewritten in the following form: 

w~ = Y:~4 + il~ +A~ - 2(.AB/AA)ileAc, (6.6a) 
m "A 

w1 = Y:\~ +il~ +A~ - 2(.AA/AB)ileAe, (6.6b) 
m "B . 

2 Yee (6.6c)We=~' 
m "e 

It is straightforward to verify that the above set of conditions describes stationary so­

lutions to the system of mo~ion equations (3.4 -,5). However, the relations (6.1a-6.5c) 

are insufficient to detennine the elements of the matrix C(p). On the grounds of Section 

IV the extremes of the Hamiltonian function should be searched in the orbit space 0fL' 

Since, using the Proposition (4.3) and eqs.(4.12) we find the following expressions for the 

diagonal elements of Fermi-energy tensor 

. 1 2 2 2 1/ 2 2
YAA(BB~ =. 2"(hA +hB - Je ) ± 2"V [(h A +hBF - Jel[(hA - hB )2 - Jel, (6.7a, b) 

(6.7c)Yee = h~. 

where the vector h= (hAhBhe ) can be chosen in the three nonequivalent ways: 

hL = (/1,12,13), hM = (Ill 13, h), hH = (13, iI, h)· (6.8) 
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, Now, for biven values of L2, h the equations (6.1a-6.7c) provide a complete set of algebJ:aic 

equations. The fact that Yxx are positively defined restricts the range of the variable Je 

(see eqs.(6.7a, b» to the interval IJe ~ hA.- hB' The transformation I --+ -I, J --+ -J 

admitted by the Hamiltonian symmetry allows us to use only the nonpositive values of 

Je from the above interval. In Appendix C the equilibrium conditions (6.4, 6.5a, b, c)" are 

presented in a form more convenient for calculations. For given values h, Je the equations 

eq.(GAa, b, c) supplemented by expressions (6.7a - c) allow us to calculate the principal 

axes >'A, >'B, >'e, while L =1 Ie I is 'calculated from eq.( C.1). 

In the space Of the stationary solutions form one parameter families. . The three 

vectors h appearing in eq.(6.8) divide the solutions into the three subfamilies. We will 

denote them as S( h)-bunds. 

Due to equations (3.25,6.5a - c) the matrix Hb depends on the four parameters 

W = (WAWBWene), (n A = f.. B = 0) in exactly the same way as the matrix HI in the 

standard CHOM. Furthermore, since for the equilibrium configurations the matrixes Cb 

and Hb commute (se~ eq.(3.32», thus under a symplectic transformation Q(w) known from 

Valatin work [45], we might simultaneously represent both matrices at the canonical form 

H\ -w')=Ado(w)(Hb(w», C(h)=AdO(w)(C~), i.e. in the same form as we used in formula 

(4.2). Gwing to the conditions (6.7a-c) the vector h remains unchanged throughout the 

band. Let us note that the same is true for the CHOM bands. Hence for the equilibrium 

band we can write Cb =Cb( h, w) =C I, The eigenvalues of Hb(w) are already known [47,48] 

,
W1(B) = (w~ + w1)/2 + n~ =f ~J(w~ - w1P + 8· nb(w~ + w1), we = We· (6.9) 

Noticing the canonically invariant character of expression (3.31b) for the Routhian func­

tion we immediately find R = h.w'. Inserting here .;) from eq.(6.9) and comparing the 

derivatives 8/8wi of R obtained from the last expression with the derivatives of R found 

from expression (3.31a) we restate the standard formulas of CHOM [47,48] 

>.2 = ~ {(hA hB,\ ± w~ -w1 ±4n~ (hA _ hB)} X=A B' 
X 2 . I + ') '2'2 , " , ,m WA WB WA-WB WA WB (6.10) 

\2 _ he
/I.e - --, 

mwe 

Using the formulas (3.1,3.17,3.20) and (6.1a-6.4,6.6a-c) we arrive at the following 

equations for the remaining elements of matrix Cb: 

XAe = XeA = XeB = XBe = 0, for X = S,L,P, (6.11) 

SAA.= SBB = Sec = 0, (6.12) 

PAA = m2[(w~ - n~)>.~ + n~>.1], PBB = m 2 [(w1- n~)>.1 +n~>.~], (6.13a, b) 

Pee = m2w~>.~, (6.13c) 

SAB = m(>.~ - >.~)ne, PAB = 0, (6.14a, b) 

LAB = m(>.~ + >.1)ne - 4m(w~ - w1)-1[>.~(w~ - n~) - >.~(w1- n~)]ne' (6.14c) 

Within the frequently used semiclassical approach for CHOM [46-51] under the Valatin 

transformation Q(w) one writes R= Ewxhx, where hx are commuting elements of the 

sp(6, R) algebra. The quantum solutions are found as the eigenstates of the Routhian 

operator R 

R(w)l.f.hjw,t >= Lwxhxl.f.h;w,t > (6.15) 
X 

In this formula hX denote the eigenvalues of the operators hx, f is the lowest weight vector 

of the IUR of the sp(6, R) algebra, while the other quantum numbers distinguishing the 

state are omitted. From the above we conclude that the stationary solutions constituting 

the three bands S(hx ),X = L, M, H are represented as the coherent vector states. In 

particular, the solutions consist of the S( ~L), (and forming the yrast line within sp(6, R) 
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multiplet), are associated with lowest weight vector state If, liW, t >. Moreover, since 

the formulas (6.1O-6.14c) remain valid in the semiclassical level as expectation values of 

sp(6, R) observables, the bridge between the S(h) bands and between the band'l of the 

CHOM ensures the consistence of the semiclassical rules stated at the end of Section IV 

with the semiclassical CHOM approach. 

The algebraic model of the collective bands presented above extends the range of the 

application of the CH.OM model. The new element is contained in the formulas (6.5a-c). 

They express the selfconsistency conditions generated by collective potential Uo, which 

connect the distribution of matter with,distribution of the mean field. 

Let us consider, as an example, a very simple form of the isotropic volume-dependent 

potential: 
2° f3 /3 1iU(,xA,,xB,,xe) =3/p·(,xA,xB,xe/A )p -2' (6.16)

mX 
In eq.(6.16) the parameter p fixes the compressibility of a nucleus, while the length pa­

rameter X fixes the value of the geometrical nuclear radius Ro = (RARBRe)l/3 in the 

ground state, i.e. for Je = Le = O. Assuming nuclear surface having an ellipsoidal 

form E x~dRk = 1 and a homogeneous distribution of the nuclear matter we obtain 

,x~ =N m/5. Here the ground state value of .\0 = (,xA,xB,xe)1/3 is given by eqs.(C.lOa, b) 

and we get 

X2 =NmF- 4/(P+2) /5, Fo =Ud2/a)1/3. (6.17a,b)o 

Equations (6.5a-c) take the form 

w~,x~ - w~,x~ = 0, w~,x~ + w~,x~ - 2wb,x~ = 0, (6.18c:z, b) 

-2T=pUo, (6.18c) 

and from relations (6.17a,6.18c, C.9a, b) we find for the total energy E 

E = (p + 2) (F/F )2p/(P+2)a, 15 
o a = (6.19a, b)

p 2NR~mFi. 

The function F is defiLed in eq.(C.8) and depends only on the invariants of motion l 
and Je (Le = Le(Je )). ~he parameter a determines the noncollective part of the kinetic 

energy Tintr. 

It is interesting to consider the f~llowing function: 
- / 

Fo(Z,.N) =minFoU), (6.20)
1 

where the minimization is done by taking into account the Pauli principle for fixed proton 

and neutron particle numbers z,N. The weight vector f~ corresponding to Fo determines 

the ground SP(6,R) multiplet of collective states. The estimate of the smooth part 01 Fo 

may be found using equations given in [3] (VoL2,Ch.6,eq.(6. 510)). One has: F~m(z,N) ~ 

[(3Z)4/3 + (3N)4/3]/12 ~ (3N/2)4/3/6. Then 0 establishes the Fermi-energy and one finds 

for the smooth part of this quantity 

oem ~ 17.7· N . MeV, (6.21) 

Notice that the Fermi-energy tensor is important for the description of the nuclear shape. 

In particular, the shape in the ground state is determined by this tensor. This could 

be seen even without calculation by considering eqs.(6.5a - c) and (6.6a - c). Assuming 

that the potential energy UO(,xAl,xB,,xe) is a symmetric function of its arguments one 

concludes that eq.(6.5a-c) could be fulfilled at ,xA =,xB =,xe only if YAA = YBB = Yee. 

For the volume dependent potential ,xx '" f x . Thus, only those nuclei are spherical in 

their ground states which have the ground-state vector i with three equal f x indices. The 

Pauli principle admits equal values of fx for the lowest configurations only in doubly magic 

nuclei. In other words, the O( N -1) invariant model explains the spherical symmetry of the 

ground states of nuclei with closed harmonic oscillator shells and the loss of the spherical 

symmetry in nuclei with open shells. 

The influence of the Fenni-energy tensor on the nuclear shape is particularly important 

in the case of a volume dependent poten~ial. Such potential considered within the DLD 
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model leads to a quadrupole instability of the nuclear shape for L > O. Notice, however, 

that in nuclei the surface and Coulomb forces play an important role in establishing the 

shape. 

The equilibrium conditions (6.18a, b) have been determined earlier for two particUlar 

submodels ~ssed in detail by Troudet and Arvieu [47,49). The first results from ossum­

ing that the product of oscillator frequencies WAWBWC is constant through all the band. We 

leave out the proof that substituting p =2 we will reproduce this model. Considering the 

limit p-+oo (or p--oo) we arrive at the second model, for which the geometrical radius 

il{J is common for all values of L. The equilibrium relations to this model have been found 

in ref.[49}. A simplified version of the selfconsistent CHOM bands based on the approxi­

matio~ suggested hy Bohr and Mottelson (Ref.[3},Vo1.2,ChA.§3) has been investigated in 

[50} (see also Appendiz C). 

From equations in Appendiz C it is easy to notice that the functional dependence 

of L, z = (A~ - Ah)/(A~ +At) and AAAB/Ab on the vortex spin J is given by universal 

functions. This m~s that the results of this Section reduce the investigation of the model 

of S-bands for all the potentials belonging to the class (8.16), i.e. for all values of p, to a 

problem t.hat has already been worked out [47,49]. 

VII. Summary 

The content of previous sections sheds light on the interplay of nuclear collective and 

individual-particle phenomena. 

The nuclear dynamics is approached in this paper using the mathematically transpar­

ent parameterization of the complete set of the N-body coordinates in which the compo­

nents of the inertia tensor are taken as the six collective coordinates. A rather formal way 

of introducing the complementary coordinates and the complexity of N-body eigenfunc­

tions musk the individual-particle motion and create a gap between this fonnulation of the 

theory and alternative microscopic approaches. The token remains true in the case when 
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the ossumptions of the O(N -1) invariance of the Hamiltonian is introd.uced. However, 

in the classical limit of exact solutions of the O(N-1)-invariant model the nature of the 

collective and single-particle motions as well as their mutual dependence are amazingly 

transparent. It is precisely this limit what is exammed in a detailed way here. Our findings 

may be summarized os follows: 

1) The nuclear collective motion is described by the system of equations including in 

addition to the inertia tensor and the angular momentum vector two additional elements: 

Fenni energy tensor Y and vorticity (circulation) vector i. These two quantities depend 

on the coordinates and on the momenta conjugated to the coordinates complementary to 

the inertia tensor components. 

2) The motion of individual particles is determined by the time dependent harmonic 

field. The parameters of the field are unambiguously given by the collective variables and 

by general invariants of the collective motion. In the other words, in the classical limit to 

the O(N -1) invariant model, the motion of the nucleons is governed exactly by the time 

dependent selfconsistent field. 

3) The variables describing the collective motion may be expressed in terms of the 

generators of the Sp(6, R) group, which allows the geometrical analysis of the model. The 

evolution of the syste~ is described by the Sp(6, R)-group action in the sp(6, R) vector 

space sp~ed by the collective variables algebra. Due to the participation of Y and j 

in the enveloping field of this algebra, this space is larger than the collective space of the 

most existing models considering the quadropole deformation of nuclei. This is true, in 

particular, in respect to the unified model where neither of these elements participates in 

the collective dynamics. 

4) Considering the SP(6,R) orbits in the phase space one finds explicit relations for 

invariants of the motion in terms of Y and I Some important geometrical constraints 

on these quantities are obtained in the general case.. A detailed analysis is given for the 

closscs of orbits with dimensions lower than the maximal one. 
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5) Equations of the collective motion allow the stationary solutions. Hereabout a fam­

ily of such solutions called as S-bands"is examined. The S-bands establish a link between 

the theory of S-Riemann stationary soluti<:>fis and the selfconsistent CHOM. Properties of 

S-hands manifest an important role which play the circulation of the collective velocity 

(J) and the anisotropy in the distribution of the nucleons in the momentum space (Y) in 

determining the shapes and inertial properties ofrotating nuclei. 

6) It turns out that in the case of a one parametric family of the volume dependent 

potentials including two limits cOIisidered in the literature the solutions for S-bands admit 

a scaling which reduces the problem to the one investigated before. 

7) Parallels are established between the description of the collective motion in the 

O(\rr - 1) invariant model and in the FLDM. In the latter the same equations of the 

collective motion as derived in this paper appear as approximate solutions of the TDHF 

theory without any constraints on the local part of the selfconsistent field. The FLD~ is 

successfully applied to the description of the bulk properties o.f the distribution of strengths 

of the multiple trans~tions. This may serve as a test of applicability of the model described 

in this paper. 

We hope that the material presented before will be useful fC?r a number of future 

investigations, for example, for the classification of all stationary solutions and for the 

description of nuclear collective rotational and vibrational bands. The need of the general­

ization of existing models for such an analysis is clearly manifested by the recent discovery 

of the SU(3) multiplets in the superdeformed rotating nuclei [52]. 
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Appendix A 

The algebra of variables YAA,YBB, YAB and JAB becomes transparent after mapping 

onto the four-dim~nsionalalgebra u(2) {O'o, O'}, ~2' 0'3} witp. the structural constants @;iven 

by the equations 

fi~ = 2f.ijl: fti = flo = f~ = 0 for i,j,k = 1,2,3, 

The realization of the quantities JXY ,YXy(X, Y E {A,B}) reads 

Y =YAA +YBB = i(O'~ + O'~ - O'~ +O'i), (A.1a) 

6Y = YAA ~ YBB ~ 0'1 X (O'~ - 0'~)1/2, (A.1b) 

YAB = 0'3 X (O'~ - 0'i)1/2, (A.Ie) 

JAB = 0'2· (A.Id) 

In fact, using the relation 

{F, G} = (aiF)(ajG)fi~O'I:' 

we recover the Poisson brackets 

{JAB,Y} = 0" rJAB,6Y} = -4YAB, {JAB,Y} = ~Y, (A.2a - c) 

{Y, ~Y} = gJABYAB, {Y, YAB} =2JAB~Y, {YAB,~Y} = 2JABY, (A.2d':'" 1) 

identical with those in eqs.(3.3,3.4). 

. Th~ relati?ns (A.1a-d) may be used to quantise the Hamiltonian of the two dimen­

sional version ofthe O(N -I)-invariant model. It is achieved by mapping {q} onto the set 

of the self-adjoint operators of the algebra u(2). A r~mark should be idded concerning 

the generalization of the theory to the three-dimensional case. In [22] the f~nD.ulas are . 

developed for the matrix elements of the operators J defined as operators in the many 

body subspaces SN(flhh) (see eq.(4.13~». It is found that the dimension of the xnatrix 
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representation of the J obtained in this way coincides with that of the irreducible repre­

sentation of the u(3) algebra. Hm~ever, no explicit relations are known for J, Y operators 

in terms of the generators of the u(3) algebra. 

Appendix B 

Some comments are necessary to establish the domain in which the classical expres­

sions (4.1~) for the eigenvalues of the Casimir invariants C2p and semiclassical relations 

(6.7a-c) are valid. We are going to show that the approximation (4.12) works much 

better than one might think, looking at the exact formulas for these invariants, and that 

eqs.(6.7a - c) can be applied even if the number of nucleons is npt very large. To discuss 

this problem, we apply the quantum expression for the Hamiltonian [9] 

A vib 1i
2 

N ­~ {[j2 4 8 ~ >"A 8} 
(B.1)H =-2m~ 8>"2A-l-~8>"A +2 ~ >..2A ->"18>"A ' 

A B(#A) . 

The transformation 

p' = j-Ipj, (B.2) 

j = (>"A>"B>"c)-(N-4)/2I(>"~ - >"1)(>..~ - >..~)(>..~ - >..~)rI/2, (B.3) 

affects only the term HVib which transform;:; into 

(H Vib )' = _~ 2 ~~ + f;quan + f;quan (B.4)2 ~ 8>..2 1 2' 
m A A 

2
(jquan = 1i (N - 5)2 - 1 ~~ 

(B.5)
1 2m 4 ~ >..2 ' 

A A 

f;quan __ ~ ~{ >..~ +>"1 >..~ +>..~ } 
2 , - 2m ~ (>..~ - >"1)2 + (>..~ - >"1)2

2 
1i {1 1}2 (B.6)+2m;;>"~ (>"~->"1)+(>"~->"~) 

The term Ur-an proportioI'-ll to N 2 is much more important than ur-an . Neglecting iUioo~n 

and adding f;r an to the intrinsic kinetic energy one obtains (B.7) with Y' being given by 

(B.8) 

(Tintr )' - ~ 'L Y' />..2 (B.7)- 2m X xx x, 

Yxy = Yxy + ~[(N - 5)2 - 1]1i25x y. (B.8) 

The Y' tensor has a slightly different meaning as compared with the definition given in 

the principal part of this paper. For IUR (fUU~0... 0) of the algebra so(N -1) we have 

C2 = 2 L:~=I nUi + (N -5)1i)+4(f~- I~)1i. Hence, using eq.(4.8a) and noticing from the 

formula 4.16b) that Ii = Ji-(N -1)1i/2 we arrive at 

I)Yxx + J~) = ~C2 + ~((N - 5)2 - 1)1i2 ~ Ii + Ii + Ii. (B.9) 
A ~ A 

For the same reason the eigenvalues of the quantities C~ and C~ should be renormalized as 

well. In quantum mechanics the change of the order of j-operators in eqs.(4.14) changes 

the invariant operators and their eigenvalues. One may use this ambiguity and choose 

undefined terms such that the relations (4.12) become valid also for C~, C~. 

Appendix C 

It is useful to rewrite the system of equations (6.4), (6.5a-c) in a somewhat different 

way. Equation (6.4)"may be written in the form 

21_ [1L = -Jc __ 2z ]c JI=Z2 - 1- Z2 (1- zY/~Y) , (C.1) 

where 

>..~ ->..1 
Y = YAA +YBB , .6.Y = YAA - YBB, (C.2a, b,t:)

z = >..~ + >..~' 
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while eqs.(6.4a-c) read 

1 2 S2 S n d d 0
(mAAAB)- (1-z )-/ LAnz = (AAdA -ABdA)U, (C.3a) 

n=O 

1 d d d 0 
TAA +TBB - 'll'ee = 2"(AAdAA +AB dAB - 2Ae dAe)U , (C.3b) 

1", d 0
TAA + TBB + Tee = 2' L.JAX dA U. (C.3c) 

x x 

In eqs.(C.3a) the coefficients An are found to be: 

Ao =~y, Al = '25 Jc
2

- 1'; A2 = -2~Y - 6B1, 

A3 = -2A1 +4B2, ~ = ~y + 2Bll As = Al - 2B2, (C.4) 

B1 = ltYI~Y, B2 = J&[1 +(Yl~y)2J. 

The quantities Txx in eqs.(C.3b,c) are the components of the kinetic energy tensor cor­

responding to the stationary solution 

's 

.TAA+ TBB = (mAAAB)-I(l- z2)-S/2 L Enzn, (C.5) 
n=O 

Tee = Yeel(2mAb)· (C.6) 

where 
Eo = J~/4 +Y12, E1 = -~YI2, E2 = -2Eo, 

(C.7) 
E3 = -B1 +~Y, E. = B2 +Eo, Es = -B1 - ~YI2. 

The left-hand side of eq.(C.3c) is the total kinetic energy 6f a nucleus. 

~: us examine the above system choosing the potential UO iIi the form given in 

eq.(6.16). Let Ze'1' Aeq denote equilibrium values of z, (AAABAe )1/3 respectively and 

1/3 
[ ]F = fe{1 - Z:'1)-S/2 L EnZ:q -. (C.8) 

n 

From eq.(C3.b) we get TAA+TBB=2Tee, thus for the total kinetic energy T we find 

T = ~[2Tee(TAA +TBB )2j1/3 = ~(FI Aeq )2 1m, 

and using eq.(C.3c) we get Aeq = A(Fln)2/(P+2>. Let Ao,Fo,zo denote values of Aeq,F 

and z in the ground state i.e. at the point Je=Le=O. From eq.(C.3a, C4, 6.7) we' get 

Zo = (h~ - hb)I (h~ +hb) and by simple calculation we arrive at the following relations 

T = a(FIFO)2P/(P+2> , a = ~(Fol AO)2, (C.9a,b)
2m 

Fo = (JAfBfe)I/3, AO = J..(Foln)2/(P+2>. (C.IOa, b) 

Let us assume also that I Ze'1 I~ 1. Keeping the first two terms in the polynomial of 

Z on l.h.s.of eq.(C.3a) and using eqs.(6.7a,b,6.8) we find 

25 (hA - hB ) ... ... 
Zeq ~ 1:'2\ ';1- [J/(hA - hB)]~, 5 (h

A 
+h

B
)' h = ha , G = L,M,H. (c.n){1 I 

Hence, the parameter 5 must be small too. For these assumptions the range of angular 

momentum within the nuclear band is limited: 0 ~ Le ~ (hA-hB). Indeed, from eq.(C.l) 

we get Le ~ -Je, so that we may asSume Je to be negative -(hA - hB) ~ Je 5 o. 
Considering the above equations, while preserving the lowest terms in the power of Lc, 

we obtain 

F ~ [he(hAhB +Lb/4)]1/3. (C.12) 

Substituting this factoI' into the energy formula (6.19a) and choosing the parameter p = 2 

we arrive at the result which coincides with an approximation which has been discussed in 

[50]. 
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