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pro em: The strong magnetic fields of neutron stars, which range from lo&G to lOl3G, 
and l- -- --tft'it'. ell understood, i.e. their origin is not known. Presence of a magnetized core insi 

neut n stars, which is predicted by the models discussed here, seems to be an interesf 
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December 1991 t ". di ssed in the next section. MagnetiC phase of quark matter, consIdered In sect. 3, 
-4 'R¥'-'~ ..,_exis in the ehirally broken quark phase, which develops a pion condensate [2]. Implicatio: 

, _ ..ft ~.:; of t presence of a magnetized core for magnetic fields of neutron stars are discussed 
ABSTRACT ~_.. ... ..... "'ileCt. 4. In particular accretion-induced magnetic field decay of millisecond pulsars [3} 
Possible mechanisms of.a spontaneo~ spin polarization in .the d~~ ~on~matter of the disc sed there. 
neutron star core are discussed. It IS shown that proton Impuntles In a n~n matter' ., " 
are likely to spontaneously polarize at neutron star core densities becoming the source of 2. Polarized Protons in the Neutron Star Core 
the magnetic field. The quark core, if present, can be also magnetized due to ordering of 
quark spins in the pion-condensed phase of a chirally broken quark matter. This model If the central density of a neutron star is below the deconfinement density the neutro 
can account for a recent evidence that decay of magnetic field occurs only for neutron stars star core is composed mostly of neutrons with some admixture of protons, electrons aD 
which accreted matter in their evolution. muons which form a uniform liquid of densities exceeding the nuclear saturation densii 

no = 0.17 fm -3. The proton component is required for the beta stability of the system. Tl 
proton fraction x = np/n is expected to be of the order of a few percent. At the saturati<J 
density no the proton fraction is x ~ 0.05 [4}, and it changes with increasing densit 

1.	 Introduction Various model interactions give different z(n) [4], however for many realistic interactiOl 
the proton component disappears at sufficiently high densities [4}. In the calculatiOl 

The problem considered here isa question if the spin ordering can occur in the ground presented here we use the Ra.venhall's parametrization of the Friedman-Pandbaripanc 
state of dense baryon matter which exists in the neutron star interior. One expects the equation of state (FPR) as given by Lattimer [5]. The proton fraction for the FPR equatic 
phase transition from the nucleon phase to the quark phase to occur at such densities. of state decreases from x ~ 0.05 at n = 0.2fm-3 to zero at n = 0.9fm-3 (the cUr, 
Hence the baryon matter in neutron stars can exist in the form of nucleon matter, below UV14+TNI in Fig.ll in Ref.[4]). The maximum mass of the neutron star for the FP 
the deeonfinement density and in the form of quark matter in the deeonfined phase. In equation of state is close to 1.8M0 . 

both cases these are fermion systems in which spin interactions could lead to spin ordering. The proton impurities strongly influence the magnetic properties of the neutron Stl 
Our goal here is to identify possible mechanisms which could produce a spin polarization matter. Under certain conditions they are likely to spontaneously polarize [1]. To 54 

in the nucleon matter and in the quark matter of the neutron star core. The two proposed this let us compare energy of polarized and normal phase assuming the proton admixtu: 
mechanisms are dift'erent' but both of them result in a permanently magnetized phases of, in the core to be of the order of a few percent. H the proton-neutron spin interaction 
respectively, nucleon matter and quark matter in the neutron star core. approximated by the effective contact potential with a strength gPN, we can write t] 

change of the energy per unit volume with respect to the unpolarized phase as follows: 
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bere Ds N and DSP is the neutron and proton spin excess, respectively. The first and the 
hird tenn describe respectively the change of the neutron and proton energies due to a 
mall polarization. The second tenn represents the proton-neutron spin interaction. The 
am contributions to this interaction come from the one-pion exchange, the p-exchange 
d the second-order tenso~ interaction. These contributions, calculated in Ref. [6] , give 

PN s:::l -2jm2. The change of the neutron energy density DEN can be expressed in tenns 
,f the L8.:ldau Fermi-liquid theory as 

1 ( NN) 2 (2)DEN = 2NN 1 +Go DSN' 

ere NN = m.kF /1(' is the density of states at the Fermi level and G~ N is the spin 
.ependent Landau parameter for pure neutron matter. Calculations of Ref.[7] show that 
IG~N depends weakly on density and we take Gf/N ~ 1 in the whole density range of 
,..terest. This shows, that pure neutron matter does not possess a ferromagnetic phase. 

inimizing DE, Eq.l, with respect to DS N we find 

NN (PN)2C 2 CDEmin = GNN) 9 vSp +vEp. (3)
( o.21+ 

'This formula shows, that the spin instability (DEmin < 0) is controlled by the proton tenn 
DEp. H this term makes only a small contribution, the system displays a spontaneous 
proton polarization. There are various ways for this to happen, depending on the values of 
gPN, G~ N, G[P and the proton effective mass mp. For example if the proton-neutron spin 
interaction gPN is sufficiently strong and G[P '" 0 the spin instability occurs at higher 
densities [1). The same effect occurs if the proton effective mass becomes sufficiently high 
and G:P ,...., 0 since then the change in the proton kinetic energy due to polarization is 
small. In an extreme case of localized protons DEp = O. Clearly, the behaviour of proton 
impurities is crucial for the spin properties of the system. The possibility of localization 
of proton impurities was considered in Ref.[8]. 

Assuming that protons are fully polarized we find the magnetization in the form 

gPNNN (4)M = [ 1 +G:NPN +pp]np. 

The quantity in the parenthesis is the effective magnetic moment per one proton. At low 
densities it is close to the bare proton magnetic moment pp, whereas at higher densities it 
changes sign and becomes parallel to the neutron magnetic moment PN. The reversal of the 
direction of the effective magnetic moment depends crucially on the sign of gPN, since from 
minimization of DE, Eq.l, one finds DSN - _gPNDSp• Hence for negative values of gPN the 
induced neutron spin excess points in the same direction as the proton spin density. In Fig.1 
we show the magnetization, Eq.4, as a function of the neutron density for gPN. = -2.5fm2 

and the FPR proton fraction (solid line) and alsO for a constant proton fraction % = 0.05 
(dashed line). The magnetization manges sign at nr ::::s 0.48fm-3 • For the FPR proton 
fraction magnetization vanishes above 0.9jm-3 • One can easily imagine that the dipole 
magnetic field of the neutron star will reflect this behaviour of the magnetization. 
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Our model contains three parameters. The first one is the proton-neutron spin inter­
action gPN. It determines the density n,. at which the magnetization vanishes. We use 
the value gPN = ~2.5jm2 which is 25% higher, than the value of Ref.[6]. The two other 
parameters are the critical densities n, and n. which limit the density -range in which the 
magnetic phase exists. As far as the upper limit n. is concerned a natural choice for the 
FPR equation of state is n. =0.9jm-3 , a density at which the proton fraction vanishes. 
This limit can be however lower, since at very low % the core temperature may exceed 
the Curie temperature. The lower critical density n, should be detennined by the nucleon 
hamiltonian. Here we shall treat both critical densities as adjustable parameters. 

3. Magnetized Quark Matter' with Broken Chiral Symmetry 

If the central density of a. neutron star exceeds the deconfinement density an inner 
quark core can appear. It is generally expected that the quark matter forms the ground 
sta.te of baryon matter at densities above the deconfining transition. Deconfinement at zero 
temperature and high baryon density can be viewed as delocalization of valence quarks 
due to overlap of neighbouring nucleons, hence it is a geometrical rather than dynamical 
effect. 

There is another fundamental phase transition in QCD: the chira! symmetry restora­
tion, which makes the valence quarks massless (up to small current masses). This is a 
genuine dynamical effect and it would seem rather accidental if the chiral field vanished at 
the same density where valence quarks become deconfined. H deconfinement occurs at a 
low"er density than the chiral symmetry restoration, the chirally broken quark matter is the 
ground state of baryon matter in the density range between the two transitions. Thus, we 
shall deal with deconfined quarks with "constituent"-like masses generated by the broken 
chiral symmetry. 

We study here quark matter in the effective chiral quark-meson model of R.ef.[9}. This 
model has been rather successful in reproducing properties of the lowest baryons [9]. Its 
dynamics is governed by the o--modella.grangian with quark and meson degrees of freedom, 
which hopefully can be derived from QCD. It reads 

[, = i~'"Ypap\f! - g~(o- + i'"YsT' i)\f! - U(O', i) + ~(a,.0')2 + ~(alli)2, (5) 

where \f!' is the quark field, 0' and i are the meson fields, g is the quark-meson coupling con­
stant, and U is the "Mexican Hat" potential, which leads to spontaneous chiral symmetry 
breaking. For the case of exact chiral symmetry (mll' =0), the potential is: 

U(o-, 11) =~.\2(o-2 +~ - F:>2, (6) 

where .\2 =m;/2F;', and meT is the mass of the O'-meson. The vacuum expectation value 
of q is 0'0 =Fw, where Fll' = 93 MeV is the pion decay constant. The effective mass of 
the quark in this model is m = gO', which in the vacuum becomes rno = gFll" The values 
of the quark mass of the order of 500 MeV give good fits to baryon properties in model 
calculations of R.ef.[9]. The value of the mass of the 0' meson was taken ~bove 1 GeV [9], 
however the nucleon fits were not sensitive to this number as long as it was large. 
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We find that at low densities the system has broken chira.1 symmetry, i.e. the expecta­
tion value of the chiral field does not vanish. One can distinguish two different phases with 
broken chiral symmetry: the normal quark matter with nonzero sigma field and vanishing 
pion field, and the pion-condensed phase with space-dependent pion and u fields: The 
latter state has nontrivial spin properties as we show below. 

In the normal phase (i.e. with no pion condensates) the pion field vanishes and the 
u.field is constant in space, u = il. The quarks acquire a mass m = gil. In the mean 
field approximation the system behaves as an ideal gas of fermions whose mass depends 
on density. The energy density is 

tF 
f __1 1 _ F2)2 (7)= "V l d3k(k2+g2jj2)1/2 + _A2(q2

(211")3 I 0 4 ~ , 

with 
"'1 = "'1.N,Ne, (8) 

where "'1. is the spin degeneracy, N, is the number of flavours and Nc = 3is the number 
of colours. For isospin-symmetric normal quark matter (i.e. with equal number of up and 
down quarks) "'1. = N, = 2 and "'1 = 12. The quark Fermi momentum is kp = (611"n ql"'1)1/3, 
where n is the quark density; the baryon densitr is n = n q/3. The last term in Eq.7 is q 
the energy density of the u-field resulting from the potential (6). The equilibrium value of 
the u-field is obtained by minimizing the energy per baryon, E = fIn, with respect to q. 

The pion-condensed phase has a nonvanishing eXPectation value of the pion field. We 
consider here the neutral pion condensate, for which only the 7I"3-COmponent is nonzero. 
Following Dautry and Nyman [10] we assume the following ansatz for the u and 71"3 fields 

u(rj = jjcos(q· T), 7I"3(T) = jjsin(q· T), (9) 

and 11"1 = 11"2 = O. The chiral field wave vector if , and the amplitude jj will be treated as 
variational parameters. 

From the lagrangian (5) one derives the Dirac equation for quarks moving in the u 
and 1r3 fields (9). It has the form 

(-io· V+(jmexp{i'Y~T3i' r"));(r") = Eq,(r"), (10) 

where m = gjj and ; is the Dirac spinor. This Dirac equation can be solved exactly by 
replacing t/> by ;R defined through • 

;(r") =up{-~i'Y~T3q· r);R(r"). (11) 

The transformed quark spinors satisfy the equation 

(-ia· V- ~a. "~T3 +pm)q,R(r") =E;R(r"). (12) 

which is independent of ;. It admits the plane wave solutions 

;R(rj = ezp(ik . r")X( k), (13) 
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with the spinor x( k) satisfying the equation 

- 1 _... ­
(0' k - -0' ?"Y5'T3 + pm)x(k) = E(k)X(k). (14

2 

This equation can be easily diagonalized giving the following spectrum [10] 

E±(k) = {m2 + P + !(q)2 ± [m2(q)2 + (q. k)2jl /2Jl12. (I~ 
4 

One can notice that the interaction term in the Dirac hamiltonian (10) can be writte 
as -~E·q.,-3' where :E = "'1~"'1o;Y is the relativistic spin operator. Quasiparticles diagonalizin 
the interaction hamiltonian are thus the up (7'3 = +1) and down (7'3 = -1) quarks wi t 
the spin polarized along the wave vector if 

The ground state wave function of the system in the mean field approximation i 
assumed to be a single Slater detenninant composed of quasiparticle wave functions th(j 
satisfy Eq.l0.The baryon density is 

3
n = 3(2~)3 "'1 [/ d k8(EF - E_(k)) +/ ~ke(EF - E+(kn] , (H 

where the spin-flavour-colour degeneracy "'1, Eq.8, is "y = 6 since for isospin-symmetric u 
and down quark matter both branches of t.he spectrum (15) have spin-flavour degencrac 
i.N, = 2. The above integrals can be calculated analytically in cylindrical coordinatt 
with kz parallel to if 

The energy density of the system which follows from the lagrangian (5) and Eq.9 is 

3 3 
f = (2~)3'Y [/ d kE_(k)8(EF - E_(k)) + Jd kE+(k)8(EF - E+(kn] 

1 1 ' 
+2q2(q)2 + 4,\2(02 - F;)2. (I' 

The first term in brackets is the energy of the occupied Fermi seas of - and + quasiparticle 
The next term is the kinetic energy density of the chiral field and the last term is tl 
potential energy of the chiral field. The integrals in Eq.17 are also analytic. 

At a fixed value of the baryon nwnber density, the ground state corresponds to tl 
values of q =1 il and jj =mIg minimizing the grand potential n which for T = 0 is 

n = e - 3Epn, (1: 

where 3Ep = po is the baryon chemical potential, and e and n are given by Eqs.17 and 1 
respectively. 

We show in Fig.2 the energy per baryon as a function of the baryon density f, 
mo = 500 MeV and ma ::::: 1200 MeV for the pion condensed phase (solid line with the lab 
C). The pion condensed phase has lower energy than the normal phase (N) in the whc 
density range shown. There is a strongly self·bound sta.te in this phase with the energy p 
baryon of 1170 MeV at the "saturation density", no =0.5fm-3 • The thermodynamical 
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stable phase exists only for densities above no· We also show results (dashed lines) for the 
nonlinear sigma model [11]. 

The transformation (11) does not change the spin properties of the quasiparticles 
because the spin operator E%' = "Y5"(0"Y3 commutes with the chiral rotation exp( -i"Y5 T3Q' 

rj2). In the rest frame of the quasiparticle, we have 

[hR(k =0), E%'] = O. (19) 

Here hR is the rotated Dirac hamiltonian in the plane wave basis. 
In the nonrelativistic case the relation (19) holds in any frame, and in the nonrelativis­

~ic limit all spins of the given flavour are aligned as was pointed out by Dautry and Nyman 
)0]. In this case the interaction hanliltonian is -~a. QT3' where a is the spin operator. 

Configuration obtained by filling only the E_(k) states has the same number of up and 
~own quarks and zero spin density. There is, however, nonzero net magnetization since 
~he magnetic moments of up and down quarks are different. Assuming Dirac magnetic 
moments we have P. = -21-'tl where pu and JJtl are the up and down quark magnetons, 
respectively. The magnetization is 

M = g(pusu + JJtlSd), (20) 

where Su = Hn"t - n.d and Sd = t(ndt - nd!) are spin densities of up and down quarks, 
respectively, an~ 9 = 2 for Dirac particles. 

In the relativistic case the spin densities su and Sd are somewhat modified. This is 
because relativistically the spin operator does not commute with the boost operator. The 
mean value of the spin is reduced in the relativistic case as compared with the nonrela­
~ivistic one. The spin densities 8" and 8d are calculated relativistically as 

1 ­
S.(d) = 4(\l1(1 ± T3hoEz \l1). (21) 

Jne finds that these spin densities can also be expressed analytically [2]. 
In Fig.3 we show the ratio of relativistic and nonrelativistic spin densities as a function 

)f the baryon density for rno = 500 MeV (solid lines) and for rno = 300 MeV (dashed lines). 
rhe ratio is less than unity and decreases with increasing density. Magnetization is still 
~iven by the formula (20). As one can see the relativistic effects reduce the magnetization 
)f the system. 

We have shown that the quark matter with neutral pion condensate exhibits spin 
)rdering, which leads to nonzero magnetization of the system. This is a result of the fact, 
~hat the up and down quark Penni seas are oppositely polarized along the direction of 
;he pion field wave vector q. The electric charges of up and down quarks have opposite 
lign and thus the magnetic moments of all the up and down quarks point in the same 
:Iirection. The net magnetization of the system is however reduced as compared with the 
lonrelativistic case. If the quark core is present inside a neutron star it is composed of 
;he clllrally broken quark matter. Our results indicate that this is most likely the pion­
x>ndensed quark matter which possesses a net magnetization. The quark core could thus 
x>ntribute to the magnetic moment of the star. 

4. Accretion-Induced Magnetic Field Decay and Magnetic Core in a Neutron 
Star 

The origin and evolution of the pulsar magnetic field remain two unsolved problems of 
the neutron star physics. Recently, however, a new coherent picture of the evolution of the 
field is emerging [12,13J. The evidence is accumulating the widely accepted view that the 
pulsar magnetic field decays on a time scale of 107 years may be incorrect. Only neutron 
stars that have been recycled in binaries show clear evidence for magnetic field decay [12J. 
To this category belong both millisecond pulsars and binary radio pulsars, which have 
Bp < 1010.6 G. These recycled pulsars probably higWy contaminate the general population 
of single pulsars giving an impression that the magnetic fields of isolated neutron stars 
decay on such a relatively short time scale [14]. The recent observation of cyclotron lines 
from "Y-ray-burst sources which are old neutron stars indicates that their magnetic fields 
have not decayed [15,16J. 

The analysis, summarized in Ref.[12J, has important implications for models of the 
neutron star magnetic field. It strongly indicates that the magnetic field of an isolated 
neutron star has the value Bp '" 1012 

- lOl3G and is permanent. On the other hand, the 
magnetic field of recycled neutron stars is diminished with respect to these values by an 
amount, which is directly related to the total amoWlt of accretion that took place during 
the X-ray binary phase [17], i.e. the decay of the magnetic field is monotonically related 
to the mass increase of the accreting neutron star. We show, that these features are (pite 
naturally accounted for in a polarized proton core model which we described in sect 2. 
In this model the dipole magnetic field of a neutron star is produced by a permanently 
magnetized matter in the dense core of the star. The magnetization results from the 
ferromagnetically ordered proton spins with density-dependent magnetic moments. For 
the heaviest neutron stars a quark core can appear which, if magnetized, can contribute 
to the total magnetic moment. 

The magnetic field at the surface of the star is obtained by solving the Tolman­
Oppenheimer-Volkoff equations for the FPR equation of state and integrating the mag­
netization over the polarized core. Using the radius R of a given star and its m3.{!;netic 
moment lit we calculate the surface magnetic field at the magnetic pole Bp = 2 IM I /R3 • 

Neutron stars with central densities below n, are nonmagnetic. Neutron st.ars with central 
densities nt < n c < n r have magnetic moments increasing with the mass. If the central 
density passes nr, there appears an oppositely magnetized inner core, and the total mag­
netic moment of the star decreases and so does the surface magnetic field. The maximum 
for all curves occurs at Afr '" 0.94M0 , which corresponds to nc = n r . The field decreases 
until the mass reaches the value M z , which corresponds to the polarized core with zero 
total magnetic moment and the magnetic field vanishes for M z • This mass depends on nt. 
For higher neutron star masses the inner core contributes more and the magnetic moment 
of the star starts to increase again, albeit in the opposite direction. For still heavier stars 
magnetized quark core appears and the magnetic moment rises dramatically (dashed line 
in Fig.4). 

One can notice that the abrupt change of the magnetic field from 10l2G to zero occurs 
over a narrow neutron star mass range M z - M r which is of the order of 0.lM0 . This 
behaviour is, generally, consistent with the above picture of the evolution of the neutron 
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star magnetic field. If the initial pulsar mass corresponds to the field a few times lO l2 G 
then accretion of a few tenths of solar mass leads to a significant decay of the magnetic 
field. The pulsar then evolvec; exactly as in the model of Shibazaki et al. [17]. One should 
however notice that if the accretion exceeds a certain amount, which for the initial mass 
equal to M is li.M = M z - M, the magnetic field starts to increase again very rapidly. One 
can argue that this is exactly the case of the neutron star in an X-ray binary 4U 1627-27 
which, as was pointed out by Verbunt et aI. [18], accreted a lot of matter but still retains 
a strong magnetic field. . 

Recently new measurements of the mass of two millisecond binary pulsars were re­
ported: Wolszczan [19] has determined the mass of the 37.9ms pulsar PSR1534+12 to be 
1.32 ± 0.03M0 and Ryba and Taylor [20] heave determined the mass of the 5.36ms pulsar 
PSR 1855+09 to be 1.27!g:~:M0' This together with the very precise determination of the 
mass of the pulsar PSR1913+16, which is 1.442 ± 0.003M0 [21] allows for a more precise 
comparison of our model· with the data. Magnetic fields of these pulsars are respectively 
109 .98 G, 108 .48 G and 1010.35G. In FigA we show these values together with an (arbitrary) 
error bar for the magnetic field amounting to the factor of three uncertainty which should 
account for the unknown deviations of the pulsar radiation law from the magnetic rotator 
formula. The curves correspond to n, = OA3jm-3 and n u ~ 0.54jm-3 

. For the curve 1 
the FPR proton fraction is used. We also show res~ts corresponding to scaling down the 
magnetization of Fig.1 by a factor of 0.6 (curve 2). One should notice that in order to 
move closer to the data points we used a rather thin shell of magnetized matter. When the 
magnetic quark core appears the field starts to increase much faster since magnetization 
of quark matter 'is much higher as shows the dashed line in FigA. 

This work is partially supported by the KBN grant no. 2.0204.91.01. One of the 
authors (MK) wishes to thank Professor a MaIika. for inviting him to Szczyrk Summer 
School. 
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Fig.2 Quark matter energy per baryon as a function of baryon number density for 
isospin-synunetric quark matter. Solid lines correspond to mIT = 1200 MeV and da"hed 
lines correspond to the nonlinear O"-model. N and C label the normal and pion-condensed Fig.l The magnetization of the neutron star matter as a function of neutron density. 
phases, respectively. 

The solid and dashed lines correspond respectively to the FPR proton fraction and a 
constant proton fraction x=O.05. 
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Fig.3 The ratio of relativistic and nonrelativistic spin densities as a function of 
the baryon number density for mo = 500MeV (solid curves) and rno = 300MeV (dashed 
curves). The labels 1 and 2 correspond to the nonlinear u-model and to mit = 1200MeV, Fig.4 The surface magnetic field as a function of the neutron star mass for the FP 
respectively. equation of state and for n, = 0.43jm-3 and n. =O.54jm-3 • The solid lines correspon 

to magnetized nucleon matter and the dashed line represents the magnetized quark cor 
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