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Abstract: )
Formalism exhibiting the Galilean covariance of wave mechaaics is proposed.

A new notion of quantum mechanical forces is introduced. The formalism is illus-

trated on the example of the harmonic oscillator.
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1. Introduction

Galilean covariance is the most fundamental property of low energy physics.
In spite of that there are many branches of low energy physics which lack from
Galilean covariance formulation. This, highly undesirable, situation happened for
example in classical mechanics of a single interacting particle where the usual way
of defining the acting forces through some force laws breaks down the Galilean
covariance. In order to prevent this catastrophe we have recently proposed [1] to
determine the acting forces from Galilean covariant differential equations derived
from the non-covariant force laws. The most important result of Part I consists
in finding the correct transformation rule for the total energy of the interacting
particle which is different from the known rule for its kinetic energy.
Part I of our paper, apart from its pedagogical value, opened also a new way
of understanding the Galilean covariance in quantum mechanics. There exists a
‘general proof [2] that quantum mechanics based on the Schrodinger equatious is
Galilean covariant but this proof contains the assumptions that the Hamiltonian of
the interacting particle is constructed from a scalar potential. In view of Part I such
an assumption must be considered as wrong because already in classical mechanics
the potentials are not scalars with respect to the Galilean transformation and the
question of a Galilean covariant formulation of quantum mechanics becomes open
for a new discussion.
Our paper provides a new approach to Galilean covariant quantum mechanics.
A central role in it, in analogy to classical mechanies, is played by the acting
forces. As a matter of fact, in our approach we introduce s new notion of a
quantum mechanical force which is independent from the classical force laws. Our
formalism is not a quantization of the classical canonical formalism in which the

non-covariant force laws are used at the very beginning. This fact implies some
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essential differences between our app
one. In particular, it turns out that |
restricted class of states and this pro
relations in quantum physics.

We shall work in the framewor |
space-time [3] because, in contradist‘i.‘
it admits a fundamental non—singulaf
metric is the fact that its maximal
group but de Sitter group SO(4,1) [4
and Lorentz groups. Therefore, havi
wave mechanics for the interacting {
obtain a unitary representation of tl
information on the dynamics of the p
an irreducible representation of the w
the de Sitter group obtained in this W
S0(3,1) which is isomorphic to the Lor
of the Lorentz group will contain th
energy dynamics of the interacting paj
consider this way as one of the possibﬁ
of particles without an explicit use of|

the first step in that direction.

II. The non-covariance of cla.J

Through this paper we shall cons#
chanics for scalar particles. The gener]
and does not change our results.
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II1. Galilean covariant formulation of wave mechanics.

We shall develop our new approach to wave mechanics in the framework of the
five-dimensional model of the Galilean space-time [3,6]. In this model, in addition
to the usual space and time coordinates Z and {, with the transformation rules
(2.2), we use also a fifth coordinate § with the transformation rule

o-»o'=o+35-a+%azt+¢ (3.1)

where  realizes the one-parameter central extension of the Galilei group [6]. The
advantage of using the eleven parametric extended Galilei group instead of the
usual ten parametric Galilei group ;;ximatily consists in the fact that the unitary
projective representation (2.1) for the latter is replaced by the ordinary unitary

representation
(U(R,,d,b,9)¥)(Z",t',0') = ¥(£,¢,6) (32)

for the former but now the new wave functions depend on five coordinates (£, t, 4).
It has been shown in ref. [7] that the five-dimensional approach to the Galilean
covariant wave equations reproduces the results of the four-dimensional approach.
Unfortunately all these discussion in the case of wave mechanics again applies only
in the case of free particles.

Another advantage of the five-dimensional formulation of wave mechanics is
connected with the Galilean transformation rules for quantum mechanical observ-
ables. In particular, identifying the operators "iha%,- with the components of the
momentum operator ii'j of the free particle, in the four-dimensional formulation of

wave mechanics we get the transformations rule
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Quite similarly as for operators X; we shall see that for the interacting particles B
| does not vanish. From that it follows that the operator —iha%i is the momentum
operator P,- only for free particles.

To proceed further let us now concentrate our attention on the Hamiltonian H.
From the Schrodinger eqﬁatioh (2.5) it follows that under Galilean transformations
we should have

- | -~ th_, 8

H—-H' =H-ihi- RV+—2— % (3.21)

Comparing this with the transformation rule [1]
E-E=E+4%- RP+-mu (3.22)

for the total energy of the particle, we see that all physical states must be eigen-
states of the mass operator ik and that th.e operator —iiV has to be inter-
preted as the quantum mechanical counterpart of the time independent quantity
P present in the transformation rule (3.22) and formed from the momentum of the

particle p'(¢) and quantities describing the interaction. Since only for free particles
=pt)= const (3.23)

we must conclude that only for free particles the operator —i AV is the momentum

. operator.

In Galilean physics time has an absolute meaning and therefore the total

classical time derivative
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is invariant under the change of the reference frame. Translating this condition

into the quantum mechanical language we must require that
[HH'] =0 (3.25)

because otherwise the time derivatives defined by the operators H and H'. respec-
tively, will be incompatible. The time evolution of two observables in two different
inertial reference frames should then have different physical meaning. Condition -
(3.25) is just that condition which is usually not taken into account in all discussion
of the Galilean covariance of wave mechanics.

From (3.21) and (3.25) it once again follows that
o -
[E,H] =0 {3.26)

and therefore the Hamiltonian H may be of the following general form

3
- 7] o o
H= 2 2 2
;{A(f )3 5 BN g gn +CU )f,a
+D(f2)fjafJ +E(f"')af a(; }+V(f2) (3.27)

where all coefficients are arbitrary functions of the indicated argument. Under the

Galilean transformation this expression behaves according to the rule
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. . = a\ 0
3 L [ —924 . 72— ) ——
H—~H—-H—A(f)< 2t6-RV + 4 30)09

rr @ -
- [B( i Rzt C(f?)a Rﬂ (3.28)

Comparing this with the required transformation rule (3.21) and taking into ac-

count that all states must be eigenstates of the mass operator iha% we get

A(f*)= ‘2% (3.29)

B(f2)=c(f"2)=o (3.30)
From (3.10), (3.12), (3.18) and (3.27) we get' the conditions
D(f?)=o0 (3.31)

(3.32)

from which it follows that the function E (f?) is a constant. From (3.11), (3.13)
and (3.27) we finally get the relation

-,

2
sr)-mE S ), e

Summarizing up and changing the notation from E to 3 we get the following

representation for our basic quantum mechanical observables

X;=z;+af; (3.34)

5 _ . O 2imaf 9

PJ' = —th-a?j + A afj (3.35)
G B 2.0 80  ..im

H=—2—mA+ﬂjz=:]-EEa—fj+V(f> C (336)
. 4 ~ .
=22y (77) (337

where a and § are two dimensional constants which in each particular case have to
be determined from the characteristic constants of the problem and the function
|4 ( f" 2) plays the role of ”potential’ which determine the shape of the acting forces.

Since for the free particle there are no constants which may give the right

dimension to the constants o and # we must conclude that in this case we have
a=3=0 (3.38)

and our formalism reduces to the standard formalism of wave mechanics for free
particles.

In part I we have shown that the non-covariant force laws may be replaced by
covariant differential equations for the acting forces. Similarly, we may form such

equations also in quantum mechanics where they will have the form

1
g

[8,[8.8]] = eith) (3.39)

where the right-hand side is determined from the corresponding differential equa-
tion for the classical force. In this way we get the correspondence between the

quantum and classical problems.
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IV. The physical interpretation of the formalism.

Before going to a particular example we would like to discuss some aspects of
the physical interpretation of the new wave functions.
From the shape of the Hamiltonian (3.36) we get the following representation

of the wave functions

—3 'd - T 2 -
w(f,t,&f):(e.rp ;"9) /dsmp[$-i2,‘;—ht]¢(«f,t,f) (4.1)

where the function ¥(q,t, f ) satisfies the wave equation

ihal/)(%:,f) - [ﬁAf-i-V(f) ¢(,it,f) (4.2)

with
Ao & 4.3
P —,Z;W (4.3)

The dependence of ¥(q, ¢, f) on the argument §is ot determined by the dynamical
equation (4.2) but by the initial form of the wave packet represented by the wave
function w(i,tﬁ,f}. During the time this wave packet as usually is spreading
and after a long period of time it may be quite different from the initial packet.
Since the variable ¥ does not represent the position bof the particle described
by the wave function ¢(Z,t,86, f ) we cannot interpret the absolute square of the
wave function as the probability density of finding the particle at some point.
However, the wave functions properly normalized should serve for the evaluation

of mean values of quantum mechanical observables. To see what the normalization
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condition should be let us define the mean value of any observable O(7. V. f. 3,—)

in the state d)(i’,t,ﬂ,f) by the usual formula
O(¥) = / Pz d f 4 (,4,6, [ YO(F.V, f.0;1(7.1.6. ) (4.4)

In particular, the mean value of the j-th component of the acting force is given by

Fi(p) = / Prd (24,0, ) Ew(7,0.0.f) = / ProlfOEFY (45
where Fj(f) is the function in (3.13) and

w(f,t):/d“x]c,b(f.t,e,f)lz = (%)3/ dqlu(gt. il (4.6}

serves as a statistical weight in the integral (4.5). From that it follows that the
integrals in (4.6) may be interpreted as the probability density that at time t on
the considered particle acts the force F = (Fy(f). Fa(f). F3(f)). For this purpose
the density w( ft) should be normalized to unity and we get the normalization

condition for our new wave functions in the form
/ dPrd fl(7.1.0. )2 =1 (4.7)

As we have seen the wave functions. in general, do not have the probabilistic
interpretation in the position space. The situation changes. however. if at the
end of calculations we restrict our theory to the subspace of the space Y x R’.
spanned by the arguments Z and f defined by the classical force law

F(t) = F(£(t)) (4.8)
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i.e., to the subspace given by the equations
Fi(H)=Fi(® (4.9)

where Fj( f) is the function from (3.13). On this subspace, the functions Fj( 1)
which realize our quantum notion of force are connected with the variable Z by the
same relation (4.8) which determines the classical force law and our "force picture”
has an image in the Z-space. In this sense we may restore the usual space - time
picture of the wave function. It must be however remembered that this procedure
breaks down the Galilean covariance of the formalism because all classical force
laws for a single particle are non-covariant.

It is also interesting to look on the restoration of the standard force laws in

terms of observables Z; and F. From (3.34) and (3.37) it is clear that a relation

of the form
17",- = F;(21, 22,%3) (4.10)

may be satisfied only for such states for which the multiplication by the variables

z; gives zero. Such states are described by wave functions #(z,t,0, f) which as |

functions of the variable ¥ have the properties of Dirac é-function. This can be
however achieved only for the initial time because any wave packet is spreading
in time. In fact, taking in (4.1) the functions %({,t, f) as independent from the

variable ¢’ we have

¥(#,0,0, f) = 2xAY8(2)w(F,1) (411)

where ¥( f+t) is some solution of the equation (4.2). Therefore, the classical force

19

laws may be translated into quantum mechanics only as an initial relation between

" force and position.
In classical physics the force laws determine also the time derivative of the
force. A different situation happens in wave mechanics. In fact, from (3.36) and

(8.37) it is seen that the time derivative of the force is given by the operator

d - - .
i JEGj:E[H’ J]=
3
LB (25,0 0) -
'hg(af,?*“anan (4.12)

and this operator may be related to the operators P; only on that states for which
the wave functions do not depend on the variable . This may be achieved provided

we choose the initial conditions in such a way that

(@4, F) ~ S@b(F,1) | (4.13)

where again the function ¥(f,¢) is a solution of the equation (4.2).

Clearly, the class of states for which we may reproduce the classical force laws
on the operator level being specified by (4.11) and by the class of states for which
the time derivative of the force is fixed by the force law being specified by (4.13) are
disjoint and therefore it is impossible reproduce simultaneously the force law and
its time derivative. The operator versions of force laws carry therefore only part of
the information contained in classical force laws and clearly this is a consequence
of the quantum mechanical uncertainty relation. '

Both classes of states specified either by (4.11) or (4.13) contain only non-
normalizable states in the sense of (4.70 and therefore our probabilistic interpre-

tation does not apply to them. For normalizable states the content of quantum
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mechanical force laws is different from their classical counterparts. The only com-
mon property they have is that they always break down the Galilean covariance.

Among all normalizable states a special role is played by the stationary states
for which

W@t f)=e"¥p(g f) (4.14)
where ¥(q, f ) satisfies the eigenvalue equation
[ag + V(™| w@.f) = au@ 1) (415)

Substituting (4.14) ioto (4.1) we get the wave functions in the form

- i 2 .
Wan0.0)= [ &2 capl [«‘-5— (;’—m +n)t—ma] W@ ) (418

and we easily recognize them as elements of the carrier space of the unitary rep-
resentation of the extended Galilei group, From the general theory of such rep-
| resentations [6] it is known that each of them is characterized by three numbers;
the spin s, which we have assumed to be zero; the mass of the particle m, which
we have fixed at the beginning and the value of the rest energy 2, which is the
only parameter not fixed a priori by our formalism. Since the eigenvalue problem
(4.15) has solution only for restricted quantized values of Q we see that our for-
malism produces representations of the Galilei group with quantized values of the
rest energy, which are determined by the acting force. The picture just described
shows the essential differences between classical and quantum Galilean covariant
mechanics from one side and between our covariant formalism and the standard

one from the other. In classical physics the acting forces influence the motion of
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the particle without changing its internal structure. In our formalism the acting
forces change the internal structure of the particle because they determine its in- .
ternal rest energy while the space-time picture is modelled by the initial form o~fv
wave packet and the spreading phenomenon. The standard formalism of quantum
mechanics, like classical mechanics, does not allow to describe the changes of in‘-
ternal structure of the particle on which the force acts and restricts its role to the -

description of the influence of the acting forces on the spreading wave packets. As

we have already explained, we can also describe this phenomenon by restriciing

our general covariant formalism to a non-covariant subspace in the combined 7
and f spaces which is selected by a given classical force law.

Since the §~dependence of the functions ¥(q, f) ) is determined by the initia]
conditions, the eigenfunctions ¥a(§, f) in (4.15) which belong to a non-degenerate |
eigenvalue {2, are of the form

¥al@, F) = ¥a() ¥l f) (417)

where n denotes the whole collection of quantum numbers. For such states the

probability density w(f,t) defined by (4.6) is time independent and equal to
wa( 1) = caltal( )P = wa(F) (4.18)
where
= (20 [ Pelva(d) | (4.19)

Because the functions ¥n({) are determined by the initial shape of the wave packet

we may always normalize the integrals in (4.19) to unity and then we simply have
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wa(f) = [$a(£)] (4.20)

similarly to the standard wave mechanics probability density for the coordinate.
Among non-diagonal matrix elements of observables a physical meaning have
only elements taken between states for which the eigenfunctions t),( f) are different
but the functions ¥,({’) are the same because only transitions between such states
initially prepared identically are connected with the interaction. For such states

the matrix elements of the position operators (3.34) and momentum operators

(3.35) have the form

.'tj(nl,nz) = Aj&n] na + a/'dsfib;‘l (f)f,l/)nz(f) (421)

and

pj(n1,n2) = Bjényny + B / & fon (f )a%nﬁn,(f“ ) (4.22)

where A; and B; are contributions from the first terms in (3.34) and (3.33), re-
spectively, which obviously are diagonal in the space of the functions ¥n(f). From
this it easily follows that in the space of ( f ) functions, the operators £; and p;

satisfy the standard commutation relations.

V. The example of the harmonic oscillator.

We shall now apply our general approach to the simple case of the harmonic

oscillator. The more complicate cases, in particular the Kepler problem we plan
to consider in separate papers.
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Assuming that the function Fj(f)in (3.13) is simply equal to f; and neglect-
ing the unessential integration constant in (3.37) we get the following expression
for the function V(f*)in (3.36):

R L

V(f?) = g’ (5.1)

Calculating the second time derivative of the force according to the formula
- 1ra 1o . )
Fi=-o [, [H,F,” (5.2)

we come to the equation of motion for the acting force

N _
Fj-—F;=0 (5.3)

ma

Identifying now the constant o to
a=-——" (5.4)
we see that equation (5.3) coincides with the equation for the harmonic oscillator

force (1] where w is the frequency of the oscillator.

The total energy of the classical harmonic oscillator is given by [1]

~ 2 . .
E= % (i(t) + %(,i)) + _zmlwz (F 2ty + —ii”) (5.5)

and the quantity P in (3.22) is given by

P=jt)+ 2 (5.6)



We have earlier explained that the quantum mechanical counterpart of this quan-
tity is simply given by the operator —ihV. From that and (3.35) we get the

quantum mechanical counterpart of the quantity G in the form

. 2B 8
G; = o (5.7)

~

Substituting this and (5.6) into (3.36) we come to the following form of the Hamil-

tonian

2
- 1 - G A? =9 A2w? =9
ot (e 8) B v o

This quantity will be the quantum mechanical counterpart of the classical total
energy (5.5) provided

| B=-— (5.9)

| In our formalism the harmonic oscillator is therefore determined by the following

basic quantum mechanical observables

Xj:l‘j"mfj (’5‘10)
. .0 . . 0

Bi= -zﬁﬁ-x—j + thmw a—f, (5.11)
- A AZmuwt 1 o

H= —2—n—1A5— ) Af:'-i- 2mw2f (5.12)
Fi=f (5.13)

\‘ It is easy to verify that these observables satisfy the basic quantum mechanical

| relations (3.10) - (3.12) and have the correct Galilean transformation properties.
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It is also easy to see that on states for which the condition (4.11) is satisfied we

have the operator relation

Fj = —-mwX; (5.14)

while on states which satisfy (4.13) we have

Gj = w’p; (5.15)

Obviously the relations (5.14) and (5.15) coincide with the classical force law for
the harmonic oscillator.

Solving the Schrédinger equation (2.5) with the Hamiltonian ( 5.12) we get
the following expressions for the functions (g, f,t) in (4.1)

-

. 72
W@ f0 = eon(-5)

Z Vninang(§)emrmanat

ny,n2,n3 3

3

f.
Hn* - 2 .
(7, (- ) G0

where ¥n, ,n,.n,(§) are arbitrary functions to be determined from the initial shape

of the wave packet, (ny,ng,n3) is a triple of integers, H,, are Hermite polynomials

and

3
Wny,nang = (N1 + 12 +n3 + E)w (5.17)

are the usual frequencies of the quantum mechanical oscillator.
Obviously, restricting the theory on the subspace of the classical force law

given by the equations

26
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f=-muw'z (5.18)

the function ¥(§, f, t) reproduces the wave function of the standard wave mechan-
ics but we loose the Galilean covariance because (5.18) is not a covariant relation.

VI. Conclusions.

We have developed a new formalism which allows to exhibit the Galilean co-
variance of wave mechanics. The essential point of our approach is connected with
a new notior. of quantum mechanical force. The force, like in the classical version
of our approach, is subjected to its own equation of motion but, in addition, it
is realized as an independent observable. The wave functions of our formalism
depend therefore on more variables than tha wave functions of the standard for-
malism do and a particular modification of the probabilistic interpretation was
needed.

The standard approach to quantum medla.mcs implicitly assumes that the
measurerent of the position of the particle gives also a complete information on
the forces acting on it. We have followed here an independent quantization of the
force becavse it scems to us that this way is closer to the physical reality. Qur
approach may lead to new uncertainty relatioas connected with the force laws but
this problem waits for more detailed investigation.

Like a situation was at the earliest stage of quantum mechaunics {10} we have
verified our formalism only on the simplest example of the harmonic oscillator and
we showed that it works. This creates the hope that in the near future we will
be able to work out the Kepler problem, the most fundamental problem of any

quantum theory.
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