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Galilean covariance is the most fundamental property of low energy physics. 

In spite of that there are many branches of low energy physics which lack from ON GALILEAN COVARIANT QUANTUM MECIIANICS 

Andrzej Horzela, Edward Kapuscik and Jaroslaw Kempczyilski ! 
Department of Theoretical Physics, H. Niewodniczanski Institute
 

of Nuclear Physics, ul. Radzikowskiego 152, 31 342 Krakow, Poland
 

and
 

Laboratory of Theoretical Physics, Joint Institute for Nuclear
 

Research, 101 000 Moscow, USSR, Head Post Office, P.O. Box 79.
 

Abstract: 

Formalism exhibiting the Galilean covariance of wave mechanics is proposed. 

A new notion of quantum meclusnical forces is introduced. The formalism is illus

trated on the example of the harmonic oscillator. 
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Galilean covariance formulation. This, higWy undesirable, situation happened for 

example in classical mechanics of a single interacting particle where the usual way 

of defining the acting forces through some force laws breaks down the Galilean 

covariance. In order to prevent this catastrophe we have recently proposed [1] to 

determine the acting forces from Galilean covariant differential equations derived 

from the non-covariant force laws. The most important result of Part I consists 

in finding the correct transformation rule for the total energy of the interacting 

particle which is different from the known rule for its kinetic energy. 

Part I of our paper, apart from its pedagogical value, opened also a new way 

of understanding the Galilean covariance in quantum mechanics. There exists a 

general proof [2] that quantum mechanics based on the SchrOdinger equatiohs is 

Galilean covariant but this proof contains the assumptions that the Hamiltonian of 

the interacting particle is constructed from a scalar potential. In view of Part I such 

an assumption must be considered as wrong because already in classical mechanics 

the potentials are not scalars with respect to the Galilean transformation and the 

question of a Galilean covariant formulation of quantum mechanics becomes open 

for a new discussion. 

Our paper provides a new approach to Galilean covariant quantum mechanics. 

A central role in it, in analogy to classical mechanics, is played by the acting 

forces. As a matter of fact, in our approach we introduce a new notil)ll of a 

quantum m~anicalforce which is independent from the classical force laws. Our 

formalism is not a quantization of the classical canonical fonnalism in which the 

DOD-covariant force laws are used at the very beginning. This fact implies some 
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one. In particular, it turns out that I 

restricted class of states and this pro 

relations in quantum physics. 
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We shall work in the framewor~ 

space-time [3] because, in contradistij 

it admits a fundamental non-singula.t! 

metric is the fact that its maximal 

group but de Sitter group SO(4,1) [ 

and Lorentz groups. Therefore, havi 

wave mechanics for the interacting 

obtain a unitary representation of t 

infonnation on the dynamics of the p 

an irreducible representation of the 

the de Sitter group obtained in this 

50(3,1) which is isomorphic to the La 

of the Lorentz group will contain th 

energy dynamics of the interacting p; 

consider this way as one of the possib 

of particles without an explicit use 0: 

the first step in that direction. 

II. The non-covariance of cl 

Through this paper we shall con: 

chanics for scalar particles. The gene: 

and does not change our results. 

III. Galilean covariant formulation of wave mechanics. 

We shall develop our new approach to wave mechanics in the framework of the 

five-dimensional model of the Galilean space-time [3,6]. In this model, in addition 

to th~ usual spa.ce and time coordinates x and t, with the transformation rules 

(2.2), we use also a fifth coordinate 6 with the transformation rule 

6 -+ 9' =6 + Ri . it + ~it 2t +cp (3.1) 

where cp realizes the one-parameter central extension of the Galilei group [6]. The 

advantage of using the eleven parametric extended Galilei group instead of the 

usual ten parametric Galilei group primarily consists in the fact that the unitary 

projective representation (2.1) for the latter is replaced by the ordinary unitary 

representation 

(U(R,iI,ii,b,cp)'l!)(X',t',fJ') = 'l!(x,t,8) (3.2) 

for the former but now the new wave functions depend on five coordinates (x, t, 6). 

It has been shown in ref. [7] that the five-dimensional approach to the Galilean 

covariant wave equations reproduces the results of the four-dimensional approach. 

Unfortunately all these discussion in the C88e of wave mechanics again applies only 

in the case of free particles. 

Another advantage of the five-dimensional formulation of wave mechanics is 

connected with the Galilean transformation rules for quantum mechanical observ

abIes. In particular, identifying the operators -in a~. with the components of the 
J 

momentum operator ~ of the free particle, in the four-dimensional fonnulation of 

wave mechanics we get the transfonnations rule 
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&=0 (3.20) 

Quite similarly as for operators Xj we shall see that for the interacting particles iJ 

does not vanish. From that it follows that the operator -in 8~' is the momentum 
J 

operator Pj only for free particles. 

To proceed further let us now concentrate our attention on the Hamiltonian iI. 

From the SchrOdinger equation (2.5) it follows tha.t under Galilean transformations 

we should have 

. .,. - ih 2 {}
H - H = H - inu· RV + -u - (3.21) . 2 a8 

Comparing this with the transf~nnation rule [1] 

E - E' = E + ij.R.P+ ~mij2 (3.22)
2 

for the total energy of the particle, we see that all physical states must be eigen

states of the mass operator in -A. and that the operator -inV has to be inter

preted as the quantum mechanical counterpart of the time independent quantity 

Ppresent in the transformation rule (3.22) and formed from the momentum of the 

particle p( t) and quantities describing the interaction. Since only for free particles 

P= pet) =const (3.23) 

we must conclude that only for free particles the operator -inV is the momentum 

operator. 

In Galilean physics time has an absolute meaning and therefore the total 

classical time derivative 
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dt
d = Ut

a 
+ v· V+~ V-2 a (3.24). 2 08 

is invariant under the change of the reference frame. Translating this condition 

into the quantum mechanical language we must require that 

[If,If'] = 0 (3.25) 

because otherwise the time derivatives defined by the operators iI and iI'. respec

tivtrly, will be incompatible. The time evolution of two observables in two different 

inertial reference frames should then have different physical meaning. Condition 

(3.25) is just that condition which is usually not taken into account in all discussion 

of the Galilean covariance of wave mechanics. 

From (3.21) and (3.25) it once again follows that 

[a~;,H] = (3.26)0 

a.t:J.d therefore the Hamiltonian If may be of the following general form 

• ~{ 2 a a 2 a a 2 a 
H = L, A(f) ax .ax' + B(f )ax .ar + C(f )/j aT + 

j=l J 1 } } } 

2 a 2 a a} 2+ D(f )h aIi +E(f )aIi aIj +It
r 

(f ) (3.27) 

where all coefficients are arbitrary functions of the indicated argument. Under the 

Galilean transfonnation this expression behaves according to the rule 
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A A, A 2 ( ~ - -2 a) aH -" H = H = AU) - 2u . RV + u - - oB Of} 

- [B(f2)l7. R o~ +C(P)i1· Rf1 (3.28) 
. of 

Comparing this with the required transformation rule (3.21) and taking into ac

count that all states must be eigenstate!" of the mass operator ih!e we get 

11.2 
A (/1) = - 2m (3.29) 

, . 

B (j2) = C (j2) =0 (3.30) 

From (3.10), (3.12), (3.18) and (3.27) we get the conditions 

D (j2) =0 (3.31) 

_ 2imE (j2) a 
fJ= --n.:.......~ (3.32)
 

from which it follows that the function E (j2) is a constant. From (3.11), (3.13) 

and (3.27) we finally get the relation 

av (l2)
F. (f~2) = 2mEa = 4mEa y (f~2) f· (3.33) 

J 1i2 ali 1i2 ] 

Summarizing up and changing the notation from E to /3 we get the following 

representation for our hasic quantum mechanical observables 

Xj=xj+ali (3.34) 

1.S 

P = -i1i~ + 2imaIJ -!.....j (3.35)
aXj h af; 

~ 1i2 a a, _"')3
H=--~+j1L--+VV· (3.36) 

2m j=1 afJ afJ 

Fj = 4~~fJ Y (12
) f; (3.37) 

where a and fJ are two dimensional constants which in each particular case have to 

be detennined from the characteristic constants of the problem and the function 

V (j2) plays the role of "potential' which determine the shape of the actilll!; forces. 

Since for the free particle there are no constants which may give the right 

dimension to the constants a and j1 we must conclude that in this case we have 

a=j1=O (3.38) 

and our formalism reduces to the standard formalism of wave mechanics for free 

particles. 

In part I we have shown that the non-covariant force laws may be replaced by 

cO\CI.riant differential equations for the acting forces. Similarly, we may form such 

equations also in quantum mechanics where they will have the form 

1 [A [A A]] .-1i2 H, H, Fj = Uj(F) (3.39) 

where the right-hand side is detennined from the corresponding differential equa

tion for the classical force. In this way we get the correspondence between the 

quantum and classical problems. 
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IV. The physical interpretation of the formalism. 

Before going to a particular example we would like to discuss some aspects of 

the physical interpretation of the new wave functions. 

From the shape of the Hamiltonian (3.36) we get the following representation 

of the wave functions 

- ( -im8) J 3 [iq.x 2] If.'{i,t,8,j)= exp-- d xexp -h--i2~ht t/J(q,t,j) (4.1) 
h 

where the function 1jJ( ii, t, I) satisfies the wave equation 

ih 8tP(~ t,f) = [P6 f ~ \/(1)] t/J(q, t, I) (4.2) 

with 

3 82 

(4.3) /;:;f=L8P
j=1 ) 

The dependence of 1/;(q, t, I) on the argument qis ilot detennined by the d~'namical 

equation (4.2) but by the initial form of the wave packet represented by the wave 

function t/J( i, t, 0,1). During the time this wave packet as usually is spreading 

and after a long period of time it may be quite different from the initial pocket. 

Since the variable x does not represent the position of the particle described 

by the wave function ,p(x, t, 8, f) we cannot interpret the absolute square of the 

wave function as the probability density of finding the particle at some point. 

However, the wave functions properly normalized should serve for the evaluation 

of mean values of quantum mechanical observables. To see what the normalization 
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condition should be let us define the mean value of an)' observable O(i. ft. { Or) 

in the state 1jJ(i, t, 9, I) by the usual formula 

O(lf') = Jd3xd3f1/J*(i,t,fJ,f)0(Y.ft,{ol)di.t.8.f) (4.4 ) 

In particular, the mean value of the j-th component of the acting force is /!;iven hy 

Fj(t/.,) = Jd3xd3ft/J*(x,t,8,I)Fjlj)(i,t.o.l) =Jd3xw(It)Fj (!l (-l.;3 ) 

where Fj(/) is the function in (3.13) and 

2w(f~ t) = Jd3 xlti'(x. t, O,!W = (2r.)3 Jd3qlt:(q. t . .r 11 (-l.Gl 

ser\"es as a statistical weight in the integral (4.5). From that it follows that the 

integrals in (4.6) may be interpreted as the probability density that at time t on 

the considered part ide acts the force F= (F1( !). F2 ( I). F3 ( f )). For this purpOSf' 

the density w(f~ t) should be normalized to unity and we get tht> normaliZRtioIl 

condition for our new wa\'e functions in the form 

3 3Jd xd flti,(x.t.8.IW = 1 (.J./) 

As we have seen the wave functions. in general. do not have the probabili:-;tic 

interpretation in the position space. The situation changes. howewr. if at the 

end of calculations we restrict our theory to the sub~!la('e of the ~p(H"(, HI x R l . 

spanned by the arguments x and 1defined by the classical force law 

t(t) = .t(Y(t)) (4.8) 
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i.e., to the subspace given by the equations 

Fj(i) =Fj(i) (4.9) 

where Fj(l) is the fWlction from (3.13). On this subspace, the functions Fil) 

which realize our quantwn notion of force are connected with the variable zby the 

same relation (4.8) which determines the classical force law and our "force picture" 

has an image in the z-space. In this sense we may restore the usual space - time 

picture of the wave function. It must be however remembered that this procedure 

breaks down the Galilean covariance of the formalism because all classical force 

laws for a single particle are non-covariant. 

It is also interesting to look on the restoration of the standard force laws in 

terms of observables Xj and Fj • From (3.34) and (3.37) it is clear that a relation 

of the form 

~j =~j(Xl,Z2,X3) (4.10) 

may be satisfied only for such states for which the multiplication by the variables 

x j gives zero. Such states are described by wave functions t/J( i, t, 8, l) which as . 

functions of the variable i have the properties of Dirac 6-function. This can be 

however achieved· only for the initial time because any wave packet is spreading 

in time. In fact, taking in (4.1) the functions t/J(q,t,i) as independent from the 

variable qwe have 

tP(i,O,',!> = (21fA)36(Z)t/J(j,t) (4.11) 

where f/(j, t) is some solution of the equation (4.2). Therefore, the classical force 

!aws may be translated into quantum mechanics only as an initial relation between 

force andposition. 

In classical physics the force laws detennine also the time deriVative of the 

force. A different situation happens in wave mechanics. In fact, from (3.36) and 

(3.37) it is seen that the time derivative of the force is given by the operator 

d ~ ~ i ~ A]
dt Fj == Gj = T; [H,fj = 

= i{J t (ePFj + 2fJFj~) (4.12) 
11 k=1 fJ!l fJIt fJIt 

and this operator may be related to the operators Pj only on that states for which . 
the wave functions do not- depend on the variable i. This may be achieved provided 

we choose the initial conditions in such a way that 

t/J(q, t, l) '" 6(i)tP(l, t) (4.13) 

where again the function fj,(l, t) is a solution of the equation (4.2). 

Clearly, the class of states for which we may reproduce the classical force laws 

on the operator level being specified by (4.11) and by the class of states for which 

the time derivative of the force is fixed by the force law being specified by (4.13) are 

disjoint and therefore it is impossible reproduce simultaneously the force law and 

its time derivative. The operator versions of force laws carry therefore only part of 

the information contained in classical force laws and clearly this is a consequence 

of the quantum mechanical uncertainty relation. 

Both classes of states specified either by (4.11) or (4.U) contain only non

normalizable states in the sense of (4.70 &Ild therefore our probabilistic interpre

tation does not apply to them. For normalizable states the content of quantum 
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mechanical force laws is different from their classical counterparts. The only com

mon property they have is that they always break down the Galilean' covariance. 

Among all normalizable states a special role is played by the stationary states 

for which 

tP(q, t, j) = e-i IjL ,p(q, j) (4.14) 

where .p(q, j) satisfies the eigenvalue equation 

[PAj + y(j2)} .p(q,j);;: Of/;(q,j) (4.15) 

Substituting (4.14) imo (4.1) we ge~ the ~ve functions in the form 

(4.1e)t/J(i,t,lJ,i) =- Jti'z "pi ("1- (:: +0) t - mlJ} tP(9:!) 

and we easily recognize them 88 elements or the earrier space of the unitary rep

resentation of the extended Galilei group. From the general theory of such rep

resent~tions [6] it is knoWD that each of them is characterized by three numbers; 

the spin s, which we have assumed to be zero; the mass of the particle m, which 

we .have fixed at the beginning and the value of the rest energy 0, which is the 

only parameter not fixed a priori by our formalism. Since the eigenvalue problem 

(4.15) has solution only for restricted quantized values of 0 we see that our for

malism produces representations of the Galilei group with quantized values of the 

rest energy, which are determined by the acting force. The picture just described 

shows the essential differences between classical and quantum Gulean covariant 

mechanics from one side and between our covariant formalism and the standard 

one from the other. In classical physics the acting forces influence the motion of 

the particle without changing its internal structure. In our formalism the acting 

forces change the internal structure of the particle because they determine its in- . 

temal rest energy while the space-time picture is modelled by the initial form of 

wave packet and the spreading phenomenon. The standard formalism of quantum 

mechanics, like classical mechanics, does not allow to describe the changes of in

ternal structure of the particle on which the force acts and restricts its role to the 

description of the influence of the acting forces on the spreading wave packets~ As 

we have already explained, we can also describe this phenomenon by restricting 

our general eovariant formalism to a non-covariant subspace in the combiued r 
and j spaces which is &elected by a given classical force law. 

Since the q..dependenee of the functions tP( i, j) is determined by the initial 

conditions, the eigenfunctions .p,.(q, j) in (4.15) which belongto a nOlrdegenerate 

eigenwdue O. are of the fonn 

tPn(i, i) == "'n(q) tPn(j) (4.17) 

where n denotes the whole collection of quantum numbers. For such states the 

probability density w(i, t) defined by (4.6} is time independent and equal to 

wn(f~ t) =cn r"'n(l)1 2 == wn(l) (4.18) 

where 

Cn = (21r)3 J<PqltPn(q)1 2 
(4.19) 

Because the functions tPn(q) are detennined by the initial shape of the wave packet 

we may always normalize the integrals in (4.19) to unity and then we simply have 

21 22 



W n (!) = ItPn(f)j (4.20) 

similarly to the standard wave mechanics probability density for the coordinate. 

Among non-diagonal ma.trix elements of observables a physical meaning have 

only elements taken between states for which the eigenfunctions tPn(l) are different 

but the functions tPn(q) are the same because only transitions between such states 

initially prepared identically are connected with the interaction. For such states 

the matrix elements of the position operators (3.34) and momentum operators 

(3.35) have the form 

Xj(nll nz) =AjCnl n2 +a f' d3!t/J~l (f)!j tPn2(l) (4.21) 

and 

• ... 8 ...
pj(nll nz) =Bjcn. nz + f3Jd

3!tPnl (f) 8h tPnz(f) (4.22) 

where A j and Bj are contributions from the first terms in (3.34) and (3.33), re

spectively, which obviously are diagonal in the space of the functions tPn(f). From 

this it easily follows tha.t in the space of tPn(l) functions, the operators :ij and Pj 

satisfy the standard commutation relations. 

V. The example of the harmonic oscillator. 

We shall now apply our general approach to the simple case of the harmonic 

oscillator. The more complicate cases, in particular the Kepler problem we plan 

to consider in separate papers. 
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Assuming that the function F;(f) in (3.13) is simply equal to h and neglect

ing the unessential integration constant in (3.37) we get the following expression 

for the function V(lZ) in (3.36): 

2 

V(f2) = 4 h af2 (5.1) 
m,O:jJ 

Calculating the second time derivative of the force according to the formula 

.: 1 [, [, ']]Fj = -liz H, H,Fj (5.2) 

we come to the equation of motion for the acting force 

.: 1, 
F·--F·=O} rno:} (5.3) 

Identifying now the constant 0: to 

0:=- _1 (5.4)mw2 

we see that equation (5.3) coincides with the equation for the harmonic oscillator 

force [I] where w is the frequency of the oscillator. 

The total energy of the classical hannonic oscillator is given by [1J 

E = (5.5)2~ ~(t)+ :S»)\ 2~2 (f 2(t) + G}») 
and the quantity PIn (3.22) is given by 

P=i(t)+G(t} (5.6)w2 
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We have earlier explained that the quantum mechanical counterpart of this quan

tity is simply given by the operator -ihV. From that and (3.35) we get the 

quantum mechanical counterpart of the quantity Gin the form 

2i{3 8 
(5.7)(;i = T8li 

Substituting this and (5.6) into (3.36) we come to the following form of the Hamil

tonian 

A 2 
2 2 2 

A 1 (~ G) 1'1. ~ 2 li w ~ 2H=- p+- --G --F (5.8)
2m w2 4{3 4{3 

This quantity will be the quantum mechaJI!ca1 counterpart of the classical total 

energy (5.5) provided 

(3 = _n,2mw4 

(5.9)
2 

In our fonnalism the harmonic oscillator is therefore detennined by the following 

basic quantum mechanical observables 

A 1 
Xi = Xi - mw2 /j (5.10) 

A '1'1..8 '1'1. 2 8Pi = -l - + l mw - (5.11)aXi ali 
2n,2 n, mw4 1"'2 

H 
A = --6, ... - --6, ... + --I (5.12)

2m x 2 f 2mw2 

Fj = Ii (5.13) 

It is easy to verify that these observables satisfy the basic quantum mechanical 

relations (3.10) . (3.12) and·have the correct Galilean transformation properties. 
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It is also easy to see that on states for which the condition (4.11) is satisfied we 

have the operator relation 

Fi = -mw-Yj (5.14) 

while on states which satisfy (4.13) we have 

A A2 
Gj =W Pj (5.15 ) 

Obviously the relations (5.14) and (5.15) coincide with the classical force law for 

the harmonic oscillator. 

Solving the Schrodinger equation (2.5) with the Hamiltonian (5.12) we get 

the following expressions for the functions t/J(q~ I~ t) in (4.1) 

"'2 )t/J(q,/~t) = exp ( -2:mw2 

nL ./. (i{'e i 
v.J \,n2,na 

t II3 H ( - ViirJ 3 )'Pnl,n2,n3 II nj mw (5.16) 
n\,n2,na j=1 

where tPnl ,n2,na(qj are arbitrary functions to be detennined from the initial shape 

of the wave packet, (nl, n2, n3) is a triple of integers, H n are Hermite polynomials 

and 

3 
wn \,n2,na = (nl +Tt2 +n3 + 2)w (5.17) 

are the usual frequencies of the quantum mechanical oscillator. 

Obviously, restricting the theory on the subspace of the classical force law 

given by the equations 
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.', 

1= _mw2 :r	 (5.18) 

the function .p(it j, t) reproduces the wave function of the standard wave mechan

ics but we loose the Galilean covariance because (5.18) is not a covariant relation. 

VI. Conclusions. 

We have developed a new formalism which allows to exhibit the Galilean c0

variance of wave mechanics. The essential point of our approach is connected with 

a new notior: of quantum mechanical force. The force, like in the classical version 

of our approach, is subjected to its own e<I,uation of motion but, in addition, it 

is realized as an independent observa.ble. The wave functions of our fonnalism 

depend therefore on more variables than tba wave functions of the standard for

malism do and a. particular modification of the probabilistic interpretation was 

needed. 

The standard approach to quantum mechanics implicitly assumes that the 

measurenent of the position of the particle gives also a complete information on 

the i.>rces acting on it. We have fono.ed here an independent quantization of the 

force beca.t.-se it seems to us that this way is closer to the physical reality. Our 

approach may lead to new uncertainty relatio:lS connected with the force laws but 

this problem waits for more detailed inveStigation. 

Like a situation was at the earliest stage of quantum. mechanics [10] we ha.ve 

verified our formalism only on the simplest example of the harmonic oscillator and 

we showed that it works. This creates the hope that in the near future we will 

be able to work out the Kepler problem, the most fundamental problem of any 

quantum theory. 
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