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Abstract 
We discuss the calculation of the order 0'; QeD contributions to the deep in­

elastic coefficient functions for polarized and unpolarized deep inelastic lepton­
hadron scattering. These corrections receive some contributions from produc­
tion mechanisms which do not appear up to the order as level. The effect of 
these higher order corrections on the polarized and unpolarized structure func­
tions will be analyzed. The calculations reveal large corrections in the small 
x-region accessible at HERA as well as in the large x-region explored by fixed 
target experiments. 
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Introduction 

Deep inelastic lepton-hadron scattering experiments, started by the SLAC-MIT group 
(1) at the end of the sixties, opened a new era in the study of strong interaction 
physics. These experiments revealed that hadrons are composed of pointlike con­
stituents, called partons, which were later on identified as quarks and gluons. In the 
framework of the parton model [2] the early data could be interpreted by assuming 
that the scattering process between the lepton and the partons is incoherent. In this 
way one could explain the apparent scaling behaviour of the hadronic structure func­
tions appearing in the deep inelastic lepton-hadron cross sections. In addition one 
could derive various sum rules which can be expressed as integrals over the structure 
functions and their validity was confirmed by the early data. Considerable progress 
was made after the advent of Quantum Chromo Dynamics (QCD) [3], a non-abelian 
(here SU(3)) gauge field theory, which describes the strong interaction between the 
quarks and gluons inside the hadron. In particular it is supposed to give an explana­
tion for the phenomenon that the quarks and gluons are confined [4] in all existing 
hadrons. Another important feature of QCD is asymptotic freedom [5] which implies 
that the renormalization group improved (running) coupling constant a s (R2 ) goes to 
zero when the renormalization scale R tends to infinity. This property allows us to 
make an expansion in as of the perturbative part of the hadronic structure functions 
which are represented by the Altarelli-Parisi (AP) splitting functions [6] and the co­
efficient functions. If these corrections are resummed via the renormalization group 
(or Altarelli-Parisi) equations one can explain the scale dependence of the hadronic 
structure functions which was confirmed by the second generation of deep inelastic 
lepton hadron experiments [7]. For the most recent experiments see [8]-[12]. Until 
the middle of 1992 the AP splitting functions were calculated up to O(a;) [13]-[17] 
\V hereas the deep inelastic coefficient functions (also called Wilson coefficients) were 
known up to O(a s ) only [18]-[20]. With the advent of HERA (DESY, Hamburg) [21] 
and the planned electron-proton facility at LEP * LHC (CERN, Geneva) [22] a new 
generation of experiments will start to test QCD in kinematical regions which were 
inaccessible so far. We also would like to mention the experiments which will measure 
the spin structure functions of the proton with a higher accuracy than has been done 
until now. They will be carried out e.g. by SMC (CERN, Geneva) [23] and HERMES 
(DESY, Hamburg) [24]. Due to improved detection techniques and higher statistics 
of the data we expect that higher order QCD corrections beyond the next to leading 
order will become noticeable and therefore have to be calculated. This requires the 
(,C:llculation of the O(a~) contributions to the AP splitting functions and the O(a;) 
contributions to the coefficient functions in particular for unpolarized lepton hadron 
scattering. Recently the calculation of the O(a;) contributions to the unpolarized 
<1)ld polarized coefficient functions have been finished by us, see [25]-[29], and the re­
sults will be discussed in these lectures. The lectures will be organized as follows. In 
section 2 we present the kinematics of deep inelastic lepton hadron scattering. In sec­
bon 3 we show how the O(a;) contributions to the coefficient functions are calculated 
without going into explicit details. Here it will turn out that the procedure of mass 
factorization becomes much more complicated than in the case of the lowest order 
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corrections. In section 4 we discuss the properties of the coefficient functions where 
the latter show some large corrections in the small as well as in the large x-region. 
These corrections did not show up on the O(as) level. In section 5 we show how the 
next to leading log description of the structure functions is modified by including the 
(a;) contribution to the coefficient functions. The effect of the still missing O( a~) 

contributions to the AP splitting functions will be estimated. 

2 Kinematics of deep inelastic lepton-hadron scattering 

Deep inelastic lepton-hadron scattering is given by the reaction (see fig.l) 

(2.1 ) 

where £1, £2 denote the in- and outgoing leptons respectively and H stands for the 
hadron (mostly proton or neutron). The symbol "X" denotes any inclusive hadronic 
final state allowed by quantum number conservation laws. In lowest order of the 
electroweak coupling constant the reaction proceeds via the exchange of one of the 
intermediate vector bosons of the standard model, i.e., V = I' Z, W (see fig. 1). 
Since the above process is inclusive with respect to the outgoing hadrons denoted 
by "X", only the outgoing lepton is detected. In these lectures we will discuss the 
neutral current reaction with £1 = £2 = e, V = 1 and the charged current reaction 
£1 = VI-L(i/I-L)' £2 = Jl-(Jl+), V = W+(W-). At large momentum transfer the neutral 
current interaction gets also contributions from Z-boson exchange. In this case the 
deep inelastic cross section becomes more complicated (for details see [21]). We will 
now treat the neutral current interaction with V = 1 (pure electromagnetism) in a 
little bit more detailed way. In the one photon exchange approximation (fig.l) the 
scattering amplitude is given by 

T = ie2 
2 1 . < k2 , a21i1-L(O)lkt , at >< Pn , ~IJI-L(O)lp, s > (2.2) 

q + 'lc 

Here al (a2) and s denote the spins of the in (out) going electron and proton respec­
tively. The momentum and the quantum numbers (internal, external) of the hadronic 
state X are given by Pn and ~. The electromagnetic current for the lepton and the 
hadron are given by jl-L and JI-L respectively. The differential cross section is given by 

1 1 d3 k2
 

lih-vpl 4E1 Ep (27r)32E2
 

(27r)4 J(4)(k1 + P - k2 - Pn ) . (2.3) 

Summation over the spins of the outgoing electron yields 

(2.4 )
 

3
 



-.......
 

where the leptonic tensor is given by 

Ll-lv(k1,q,ad = 2
1
Tr(¥2 + m)'I-l(¥1 + m)(l + ,s/d,v 

2 [2k1~kl" - q~ k1" - q"kl~ + ~g~"q2 + 2 i m c~""iJ q"of] 
LL~(kl' q) + i L~] (k1, q, al) , (2.5) 

where q denotes the momentum transfer q = k1 - k2 • The leptonic tensor is split into 
a symmetric and antisymmetric part. The latter is due to the polarization al of the 
incoming electron. The hadronic tensor is defined by 

(2.6) 

The above expression can be rewritten by inserting a complete set of intermediate 
states. Using the completeness relation one gets 

(2.7) 

Inserting the above expression into (2.6) we obtain: 

3 
1 L d Pn Jd4 iqz 

47r M n,e (27r)3 2En z e 

{< p, sIJI-l(z)IPn , ~ >< Pn , ~IJV(O)lp, s >
 

- < p, sIJV(O)IPn , ~ >< Pn , ~IJI-l(z)lp, s >} (2.8)
 

Using translation invariance 

(2.9) 

where P is the four momentum operator with the properties 

iPzl ipzlPI-l Ip, s >= Pl-l Ip, S > -+ e p, s >= e p, s > , (2.10) 

equation (2.8) becomes 

1 d3 PnWJLV(p,q,s) = 
47r M ~ (27r)3 2En 

{<5(4)(p + q - Pn ) < p, sIJJL(O)IPn , ~ >< Pn , ~IJV(O)lp, s > 

- <5(4)(q - P + Pn ) < p, sIJV(o)IPn , ~ >< Pn , ~IJJL(O)lp, S >} . 

(2.11 ) 

The second delta function vanishes because its argument is always larger than zero. 
This can be shown as follows. In the rest frame of the proton we have: po = Ep = 
1'1, qo = E 1 - E2 > 0 and Pn,o ~ M. Therefore the delta-function has to vanish 

4
 



in any frame because of Lorentz covariance. The property that WJLV can be written 
as the Fourier transform of the expectation value of the commutator of two local 
currents is very important. Since the commutator vanishes for spacelike distances, 
i.c., z2 < 0 one can prove that in the limit _q2, pq --+ 00 the integral in (2.6) is 
dominated by the light cone behaviour of the current commutator (i.e. the behaviour 
near z2 = 0). This allows us to make a light cone expansion of the two local currents. 
This property is characteristic for deep inelastic lepton hadron scattering and it does 
not appear when one studies other deep inelastic processes like massive lepton pair 
production (Drell-Yan process), heavy flavour production, direct photon production 
etc. If we calculate the differential cross section (2.3) in the rest frame of the proton 
the momenta are parametrized as follows 

p = (M,O) , k} = E 1 (1, 0, 0,1), k2 = E 2 (1, 0, sin 0, cos 0) , (2.12) 

and the cross section rcads (solid angle: dfh = sin 0 dO d¢) 

d2 a a 2 E 
dE dfh = Q4 E: LJLv(k1 , q, adWJLV(p, q, s) . (2.13)

2 

Because of Lorentz covariance, conservation of the electromagnetic current JJL and 
PT invariance (P = parity, T = time reversal) the hadronic tensor can be written as 

W JLV _ ( JLV + qJLqV) W1( 2) + (JLP -qpq JL) (vP pq-g -- - v) W 2(pq, q2)- pq, q --qq2 q2 q2 M2 

+i [M{~"'\Tq'\STG1(pq,q2) + ~{~"'\Tq,\(pqST - qSPT)G2(pq,q2)] 

= W[~(p, q) + iW(~](p, q, s) , (2.14) 

with s . p = O. Here Wi denotes the (proton) spin averaged structure functions and 
G 1 (longitudinal) and G2 (transverse) stand for the spin structure functions of the 
proton respectively. There exists a third structure function called the longitudinal 
structure function WL(pq, q2) which depends on WI and W 2. It is defined by 

WL(pq, q2) = - W, (pq, q2) - ~~: W2(pq, q2) . (2.15) 

Using (2.5) and (2.14) the cross section in (2.13) can be written as 

d
2
a _ a 

2 
E 2 [[S] JLV _ [A] JLV} ( )

dE dfh - q4 E L JLV W[S] L JLV W[A] . 2.16
2 1 

The unpolarized cross section is obtained by averaging over the initial spin of the 
proton 

d2a) _ a
2 E 2 [S] JLV (2.17)( dE dO - q4 E L JLV W[S]

2 2 unp~ 1 

The contraction of the two tensors is straightforward. Using the momentum assign­
rncnt (2.12) in the rest frame of the proton we obtain 

2~ ( d;2;n ) = 4E2:: 4 ~ [W2(pq, q2) cos + 2W1(pq, q2) Sin2~] ,(2.18)
n2 2 unpol 1 2 
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where we have neglected the mass of the proton M. The polarized cross section is 
cieri ved from the asymmetry dA given by 

dA = da(s, ad - da( -s, ad . (2.19 ) 

Since the symmetric parts cancel in dA we find 

d2 a( -s,ad 
(2.20)

dE2 dn2 

Any proton spin component normal to the scattering plane (here y-z plane) gives no 
effect (assuming T -invariance). It is therefore sufficient to gi ve the two independent 
spin configurations for the proton spin parallel and transverse to the beam direction in 
the electron scattering plane. Here the incoming electrons are longi t udinally polarized 
so that the polarization effects are not proportional to the lepton mass m. Specifically 
we choose 

Et de} 
at = ---(1,0,0,1) =--+ (2.21 ) 

m 

def 
Slong = (0,0,0, 1) =--+ (2.22) 

Strans = (0,0,1,0) ~f t (2.23) 

In the case the proton is longitudinally polarized we obtain 

(2.24) 

where the upper (lower) arrow represents the electron (proton) spin. When the proton 
is transversely polarized we get 

d2a-+t d2a-+-l. 4a2 E 2 
dE dn - dE dn = --;j2 E: sinO [MG t (pq,q2) +q

2
G2(pq,q2)] (2.25)

2 2 2 2 

where the left (rigth) arrow represents the electron (proton) spin. 
The calculation of the cross section for the charged current reaction proceeds 

in the same way. In the one W-exchange approximation the scattering amplitude 
becomes 

T = ~ GF 2 :~ . < k2, 1721i~a)(O)lkt, 171 >< Pn , (IJra)(O)lp, s > ,(2.26)
v2 q - w + ze 

where a = + refers to the reaction with a neutrino in the initial state which is 
mediated by W+ exchange and a = - refers to the reaction with an anti-neutrino in 
the initial state which is mediated by W- exchange. Notice that the charged current 
J(c:r) changes the flavour of the state on which it works. For a = + : QPn - Qp = 1 
and for a = - : QPn - Qp = -1 where Qp denotes the charge of the state with 
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rnomentum p. In the rest frame of the hadron with momentum p the unpolarized 
cross section is given by 

2 
d a _ ~ Gl ( M ~ ) 2 E2 (0') (k ) WtJ.LI ( ) (2.27)dE2dn2 - 8 (27r)2 q2-M~ E LtJ.LI l,q (0') p,q

1 

Here GF denotes the Fermi constant and the leptonic tensor is given by 

L~':,) = 8 [2k1#k1V - qvk1# - q#k1v + ~g#vl + ia e#vAulkf] (2.28) 

where we have neglected the lepton masses.
 
From Lorentz covariance it follows that the hadronic tensor can be written as
 

Ll 
tJ.LI qtJ.q ) W(O')( 2)W(a)(p, q) = - 9 --2- I pq,q( q 

tJ. pq tJ.) (LI pq LI) WJO') (pq, q2)p - -q p --q+ ( q2 q2 M2 

W(O')( 2) W(O')( 2). tJ.LlO' /3 3 pq, q + tJ. LI 4 pq, q 
-Zc pO'q/3 2M2 q q M2 

VV:(O') ( 2) 
+( tJ. LI + LI tJ.) S pq, q 

p q p q M2 

W(O')( 2).( tJ. LI LI tJ.) 6 pq, q +z p q - p q M2 (2.29) 

Besides CP-invariance which leads to the vanishing of W6 there are no other restric­
tions on WtJ. LI . Notice that instead of WI we could also use the longitudinal structure 
function WL defined in (2.15). Using (2.28) and (2.29) the cross section in (2.27) 
becomes 

M2 )2[ ()
( M~ : q2 2wlO') (pq, q2) sin

2 2' 

+wJ<»(pq, l) cos 2 ~ 

W (O')( 2) E 1 + E2 • 2 ()] 
- Q 3 pq, q M sIn 2' . (2.30) 

Since we have neglected the lepton masses, the structure functions W4 and Ws drop 
out in the above cross section. Moreover in the leading twist approximation, where 
the weak current is conserved, they will vanish. Like in the electromagnetic case the 
hadronic structure tensor can be written as 

1
We.,'} (p, q) = 41rM Ja'z e,qz < p, s I [J(_<» (z), Je<» (0)] Ip, s > (2.31 ) 

The weak current is of the V-A type, i.e., 

(2.32) 
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where V(~) and A(o)(z) stand for the vector and axial vector respectively. Under 
charge conj ugation they transform in the following way 

cV(~)(z)ct - V(~o)(z)t = - V(~)(z) (2.33)
 

C A(o)(z) C t A(_o)(z)t = A(o)(z) (2.34)
 

The charge conjugation operator is denoted by C with CG"t = 1. Since the strong
 
interactions are invariant under charge conjugation hadrons and anti-hadrons are 
related i.e. 

CIH;p,s >= IH;p,s > , (2.35) 

where Hand H denote the hadron and anti-hadron respectively. Using this property, 
one can derive a relation between the structure functions of hadrons and anti-hadrons. 
From the matrix element in (2.31) we can infer the following relation 

< H;p,sl {[V(~o)(z), V(~)(O)] + [A(_o)(z),A(o)(O)]} 

- {[A(_o)(z), V;(O)] + [V(~o)(z), A(o)(O)]} IH; p, s > 

= <	 H;p,slctc ({[V(~O)(z), V(~)(O)] + [A('_o)(z),A(o)(O)]} 

- {[A(_o)(z), V(~)(O)] + [V(~o)(z),A(o)(O)]} )CtCIH;p,s > 

= < H;p,sl{[CV(~o)(z)ct,CV(~)(O)ct] + [CA(_o)(z)Ct,CA(o)(O)ct]} 

- {[CA(_o)(z)ct,CV(o)(O)ct] + [CV(~o)(z)ct,CA(o)ct]}IH,p,s > (2.36) 

Using the charge conjugation relations in (2.33 ) and (2.34) the last expression in 
(2.36)	 can be written as 

< H; p, sI { [V(~o) (z), V(~)(O)] + [A(_o)( z), A(o)(O)]} (2.37) 

+ {[A<_o)(z), V(0)(0)] [V(~o)(z),A(o)(O)]} IH; P,s > . (2.38) 

The comn1utators [V, V] and [A, A] contribute to the structure functions Wk(k = 1,2) 
and the commutators [A, V] and [V, A] contribute to W3 • Hence we have the relations 

W(o) ( 2) - W(o) ( 2)
k,H pq, q - k,fJ pq, q . k = 1,2 ,	 (2.39) 

(2.40) 

In case the hadron is a charge conjugate eigenstate like e.g. the pion WJo) = O. 
Furthermore we can also derive that all QeD corrections to WJo) which originate 
from parton subprocesses, where the parton in the initial state is an eigenstate of 
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charge conjugation like the photon, also vanish. Since W~a) does not depend on the 
colour index the above statement also holds for the gluon. 

One can derive many more relations between the deep inelastic structure functions 
(for details, see [2]). In the literature one very often redefines the structure functions 
in order to make them dimensionless. Introducing the Bjorken scaling variable x = 
Q2/2pq with q2 = _Q2 < 0 one defines 

MW1(pq, q2) = F1(x, Q2) , (2.41 ) 

:: W2(pq, q2) = Fk(x, Q2) , k = 2,3 , (2.42) 

MQ2 2 2 
-- WL(pq, q ) = FL(x, Q) , (2.43) 

pq 

M pq Gdpq, q2) = 91(X, Q2) , (2.44) 

(pq)2 G ( 2) (Q2)
~ 2 pq,q = 92 x, . (2.45) 

Also the deep inelastic cross sections are very often presented in a different way. Here 
we introduce a second scaling variable y with y = pq / pk1 • In the rest frame of the 
hadron we have 

(2.46) 

The deep inelastic cross sections can then be rewritten in the following form. In the 
case of the pure electromagnetic process the unpolarized cross section (2.18) becomes 

2 2
d2a ) 47rQ 2 [{ M xy }

( dxdy unpol = (Q2)2 (8 - M ) 1 - y - 8 _ M2 F2(x, Q2) 

+X Y2F1 ( x, Q 2
) ] , (2.47) 

where S is the eM energy of the lepton hadron system (here S = 2ME1 +M2). The 
polarized cross sections (2.24) and (2.25) are equal to 

2 4 2 2 2 2
d a d a f!:. 87rQ [( 2M x y ) 4M x ]
dxdy - dxdy = T 2 - y - S _ M2 91(X, Q2) - S _ M292(X, Q2) (2.48) 

d2a-+'!- = 87rQ2 (4M 2X(1 - y)) 1/2 (1 _ M 2xy ) 1/2 X 

dxdy q2 y(S - M2) (1 - y)(S - M2) 

[y 91(X, Q2) + 292(X, Q2)] (2.49) 

The charged current induced cross section (2.30) is equal to 

2 2
d a(a) G} ( MJ ) 2 (S _ M 2) [{ 1 _ _ M xy } p(a)(x Q2) 
dxdy 27r MJ +Q2 Y S - M2 2 , 

+ xy2 Fla)(x, Q2) - Q xy(l - y/2) FJa)(x, Q2)] (2.50) 
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3 Calculation of the order a; corrections to the DIS coeffi­
cient functions 

In this section we will give an outline of the calculation of the O(a;) corrections 
to the deep inelastic (DIS) coefficient functions including their dependence on the 
renormalization and factorization scales. The underlying assumptions of these calcu­
lations in the context of perturbative QCD are the same as those made in the parton 
lnodel [2]. Here one assunles that in the Bjorken limit (Q2 -+ 00, x is fixed see (2.41)) 
jhe deep inelastic lepton-hadron cross section is given by a sum over the individual 
lepton parton cross sections. This means that the scattering becomes incoherent and 
that all interactions between the active parton (the parton which interacts with the 
it'pton) and the spectator partons (the partons which do not interact with the lepton) 
are neglected. In this way one neglects all power corrections of the type (m2/Q 2r-2 

where m 2 is an arbitrary mass scale which is of the order of the confinement scale A2 
• 

These power corrections are very often called higher twist terms. In these lectures 
\ve will limit ourselves to leading twist (T = 2) contributions since only in this case 
there exist very powerful tools like mass factorization, operator product expansion 
and renormalization group methods which allow us to calculate the QCD corrections 
up to any order in the strong coupling constant as. Expanding the hadronic state 
denoted by Ip, S > in an incoherent sum of parton states Ipk, Sk > 

Ip, S >= L aklpk, Sk > , (3.1 ) 
k 

we can write the hadronic tensor WJjIl (2.6) or (2.31) as 

WJLII(p,q,S) = LlakI 2Wf ll (Pk,q,Sk) , (3.2) 
k 

where lakl 2 denotes the probability to find a parton k in the hadron and Wfll stands 
for the partonic structure tensor given by 

(3.3) 

since the intermediate vector boson V only interacts with the quarks the partonic 
rlectroweak current jJj(z) is given by 

(3.4) 

_.l·;i e Qkf denotes the electroweak charge matrix, \Ilk is the quark field operator and 
the syrnbol ":" stands for normal ordening. The hadronic structure functions listed 
in (2.41 )-(2.43) can now be written as 

Fi(x, Q2) = L lakl 2qZ :Fi,k(Z, Q2) , (3.5) 
k 

VI,' here qk stands for the electroweak charge and z denotes the Bjorken scaling variable 
for the parton i.e. z = Q2/2Pkq. Because of the analogy between Fi and :Fi,k the 
latter will be called parton structure function. This analogy follows from the property 
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that the partonic tensor W: 1I in (3.3) can be decomposed in structure functions in the 
same way as has been done for the hadronic tensors in (2.14) and (2.29). Note that 
one should not confuse the parton structure function with the parton density which 
will be defined below. Relation (3.5) also holds for the longitudinal spin structure 
function 91 (x, Q2) (2.44) where Uk is now spin dependent. However because of twist 
three contributions such a simple parton model relation like (3.5) does not exist for 
the transverse spin structure function 92( x, Q2) (2.45). Integrating the probability 
IUkl2 over all parton momenta, except for the longitudinal momentum of the struck 
parton, expression (3.5) can be rewritten as 

2 ~ 211 dz X 2A A 

Fi(x, Q ) = Ui(X) L..J qk -jk( -) Fi,k(Z, Q) , (3.6) 
k x Z Z 

with 

(3.7) 

Here ik(Z) denotes the parton density. In an infinite momentum frame where both 
the target hadron as well as the incoming lepton momentum get large (e.g. CM 
frame lepton-hadron system) the variable Z can be interpreted as the fraction of the 
hadron's momentun1 carried away by parton k. Notice that only in the case of the 
scaling parton model [2] where Fi,k is given by the Born approximation (see below) 

the parton densities ik have a physical interpretation. When we include higher order 
QCD corrections Fi,k becomes collinearly divergent so that the latter is unphysical. 
Since the hadronic structure function Fi ( x, Q2) is an observable quantity we cannot 
give a physical interpretation to ik anymore. Therefore we will call it the bare 
parton density indicated by a hat (note the analogy between bare parton density 
and bare coupling constant and bare masses in renormalized perturbation theory). 
The radiative corrections to Fi,k are computed by using the Feynn1an rules which are 
derived fron1 the QCD Lagrangian 

L - 1 Fa Fa,1J.1I + ',,/. DIJ. ,,/.. ,,/. ,,/..
QCD - -4 1J.1I Zl.f/i,kllJ. ijl.f/J,k - mkl.f/i,kl.f/t,k , (3.8) 

where the gluon field tensor is defined by 

(3.9) 

and the covariant derivative by 

(3.10) 

Here the gluon is described by the gauge field A~ and the quark by the spin half 
(Dirac) field VJi,k. The Lagrangian in (3.8) is locally gauge invariant under the gauge 
group SU(N)c (C=colour) where N = 3. The gauge field A~ is put in the adjoint 
representation which in1plies that U runs over 1 to N 2 

- 1. The Dirac field VJi,k is put 
in the fundamental representation so that i runs over 1 to N. The generators of the 
colour gauge group are given by Ta and they satisfy the commutation relations 

(3.11 ) 
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where Ta = Tat and Tr(Ta) = 0 and t abe denote the structure constants of the Lie­
algebra. In the case we can neglect the quark mass mk the Lagrangian in (3.8) is also 
globally invariant under SU(nf)F (F=flavour) where nf denotes the number of light 
flavours. Here the quark field "pi,k is put in the fundamental representation of the 
flavour group and k runs over 1 to n f. Notice that the the gluon field does not carry 
any flavour index so that it belongs to the flavour singlet representation. If we add 
the gauge fixing part and the Faddeev-Popov ghost term to the QCD Lagrangian 
one can quantize the theory and the resulting Feynman rules can be found in the 
standard text books [30]. 
The parton structure functions Fi,k are obtained from the vector boson-parton reac­
tion 

v (q) + P -t PI + P2 + ... Pi . (3.12) 

\Vhere p is the momentum of the incoming parton k (we drop the index k of p). The 
epartons in the final state are indicated by their momenta PI, ... Pl. Integrating over 
all parton momenta in the final state (the reaction is inclusive) the parton structure 
tensor can be wri t ten as 

(3.13) 

where MJ1-(f) denotes the amplitude of reaction (3.12) and the phase space integral 
is given by 

(3.14) 

Here the partons in the final state are assumed to be massless and the reason that 
the integrations will be carried out in n dimensions will be explained below. The 
structure functions :Fi,k(i = 1,2,3,L and k = q,g) can be extracted from WJ1-V (3.13) 
via projection methods. Up to order a~ the parton subprocesses which we have calcu­
lated are listed in table 1. The corresponding Feynman graphs for the vector boson 
quark subprocesses are presented in figs. 2-8. The diagrams for the vector boson 
gluon subprocesses can be obtained from figs. 4,6,7 by interchanging a quark in the 
initial state with a gluon in the final state. In calculating the loop and phase space 
integrals one encounters three types of divergences: ultraviolet (UV), infrared (IR) 
and collinear (C) singularities. Ultraviolet singularities appear because the power 
of momenta in the numerator of the Feynmann integrals are so large that the lat ­
LeI' diverge when the integration (loop) momentum tends to infinity. Infrared and 
collinear divergences appear when the propagator (denominator) vanishes at some 
specific value of the momenta over which one is integrating. These singularities are 
called infrared when they appear if the gluon momentum goes to zero. They are called 
collinear if they arise when the momentum of an internal parton becomes parallel to 
an incoming or outgoing parton momentum. The above divergences are cancelled or 
removed by virtue of the following theorems. Since QCD is a renormalizable theory 
the UV singularities are removed by replacing the bare coupling constants and bare 
masses by their renormalized ones (see below). The IR divergences are cancelled by 
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adding radiative and virtual gluon graphs (Bloch-Nordsieck theorem). The collinear 
divergences appearing in the final state are also cancelled by adding virtual and ra­
diative graphs because the process is inclusive (Kinoshita-Lee-Nauenberg theorem) 
The divergences left over, which appear in the parton structure functions Fi,k origi­
nate from collinear singularities due to initial state interactions They are removed 
via mass factorization. Notice that the collinear divergences only appear in theories 
where all particles are massless like in QCD. In the case of QED or the standard 
model of the electroweak interactions they do not show up because these theories 
contain a sufficient number of massive particles. The appearance of collinear sin­
gularities in QCD is a consequence of the fact that we put the initial state partons 
on-mass shell so that all long range effects (confinement) are ignored. This is the 
reason that we can only determine the Q2-evolution of the hadronic structure func­
tions Fi ( X, Q2) but not their x-dependence. The latter has a non-perturbative origin. 
Since the appearance of collinear divergences and the mass factorization theorem are 
characteristic for perturbative QCD we will pay more attention to them than to the 
UV and IR singularities which removal or cancellation is already treated in the con­
text of the electroweak standard model. Before the above mentioned divergencies 
are either cancelled or removed they first have to be regularized. For that purpose 
we have used the technique of n-dimensional regularization which preserves Lorentz 
covariance and gauge invariance. Notice that for the computation of F3 ,q and 9l,q 

also the /5- matrix appears in the traces of the gamma matrices. Since this matrix 
only exists in four dimensions one has to find a suitable prescription in n dimensions. 
In our calculations we have adopted the prescription of 't Hooft and Veltman [31] 
which was elaborated by Breitenlohner and Maison [32]. An explicit calculation of 
the radiative corrections will not be presented here. For the technicalities in partic­
ular the evaluation of the complicated two to three body phase space integrals we 
refer to the literature [25, 26, 27, 28, 29]. Before discussing the expressions for Fi,k 
and the method of mass factorization we have to distinguish between the singlet and 
non-singlet part of the structure functions. As an illustration we will limit ourselves 
to the purely electromagnetic case where Q in (3.4) stands for the charge operator. 
Using a matrix representation this operator can be expressed into the unit matrix 
and the generators of the flavour group SU(nJ)F where nJ stands for the number of 
light flavours. The generators are denoted by )"i/2 which satisfy the same commuta­
tion relations as the colour generators Ta in (3.11). Denoting the unit matrix by ),,0 

(nJ x nJ matrix) we have for example 

a. SU(2)F (u, d quarks) 

(3.15) 

2 5 1
Q = -),,0 + -),,3 (3.16)

18 6 ' 

where ),,3 denotes the third Pauli-matrix. 
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b. SU(3)F (u,d,s quarks) 

1 1 
Q = -A3 + -A8 (3.17)

2 2V3 ' 

2 2 1 1 
Q = -Ao + -A3 + -A8 (3.18)

9 6 6V3 ' 

where A3 and A8 are the third and eighth Cell-Mann matrices. 

c. SU(4)F (u, d, s, c quarks) 

(3.19) 

2 5 1 1 1 
Q = -Ao + - A3 + --A8 - --A15 (3.20)

18 6 6V3 3V6 

Here Ai (i i= 0) denote the generators of SU(4)F. Notice that all Ai are diagonal. the 
general expression for Q2 can be written as 

(3.21 ) 

(3.22) 

/\0 and A are called the singlet and non-singlet (adjoint) parts of the operator Q2 
because they satisfy the relations 

(3.23) 

where i = 1··· (n} - 1) (i i= 0). Inserting the current jJl(z) (3.4) in the expression 

for W;v (3.3) we obtain (see also (3.5)) . 

""' 2 2 AFi rv L...J lakl < klQ Ik > :Fi,k , (3.24) 
k 

where k runs over all (anti)quarks and the gluon in the initial state. Expression (3.24) 
(.dn be worked ·out using (3.21) and (3.22). It becomes equal to 

F;l 

, (3.25) 

where now k only runs over the quarks and anti-quarks. Notice that :Fi~k and :Ff5.s are 
the same for all quarks k independent of the flavour (up, down, strange, charm, etc.) 
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· , 

as long as they are massless. The indices Sand N S denote singlet and non-singlet 
respectively and since the gluon is a flavour singlet we have dropped the superscript 
S in j:i,g. Because lakl 2 corresponds to the parton density jk expression (3.25) can 
be rewritten as 

1 
+ [~ (e;	 - n ~ e%) jt] j:~s , (3.26) 

(=1 f k=l 
If we evaluate this expression for an even number of flavours one obtaiDs 

5 
Fi(x, Q2) = ai(x) l d: Ls [E(xj Z)Fi~q(Z, Q2, f) + G(x j z)Fi,g(z, Q2 , f)] 

1 '" '" NS 2}+ 6D.(x/z)Fi,q (z,Q ,f)	 (3.27) 

where ai(x) (i == 1,2, L) is defined in (3.7). Since we will calculate j:i,k in higher 
order of as it becomes collinearly divergent and the singularities manifest themselves 
as pole terms of the type l/c i with c == n - 4 (n-dimensional regularization!!). The 
gluon densi~y g, the singlet quark density t and the non-singlet quark density A are 
related to fk in the following way 

G(z)	 jg(z) , (3.28) 

t(z)	 L (jq(z) + jq(z)) (3.29) 
q 

A(z)	 L (jq(z) + jq(z)) - L (jq(z) + jq(z)) (3.30) 
q=up q=down 

The expression for the spin structure function 91 (x, Q2) has the same form as F1(x, Q2) 
where now the densities and the parton structures functions have to be understood 
in the polarised sense. Proceeding for the neutrino structure function Fi (i == 2,3) in 
the same way as outlined above one can write in the case of an isoscalar target 

1 
2 1 dz '" '" S 2F2(x, Q ) = x x -;~(X/Z)F2,q(Z, Q ,f) ,	 (3.31 ) 

1 
2 1 dz '" '" NS 2F3(x, Q ) == x x -;V(x/z)F3,q (z, Q ,f) .	 (3.32) 

For F 3 we have averaged over the neutrino and the anti-neutrino structure function. 
The valence quark density which also belongs to the non-singlet class is given by 

v(z) == L	 (jq (z) - j q( z )) . (3.33) 
q 

\Ve now present the formal expressions of the parton structure functions j:i,k' In the 
Born approximation (zeroth order in os) they become (see fig.2) 

j:(0) = 0 j:(0) = j:(0) = j:.(0) = ",(0) == 8(1 _ z) j:.(0) == -j:.(OJ (3.34)L,q , l,q 2,q 3,q 91,q '3,q 3,q , 
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j:(O) = 0 j:(O) _ j:(0) _ j:(0) _ A (0) - 0 
L,g , l,g - 2,g - 3,g - gl,g - . (3.35) 

In leading twist the longitudinal structure function j:L,k is always zero. The gluonic 

structure functions j:r~), g~~; are zero too because the gluon cannot directly interact 

with the vector boson V. The relation between :FJ~j and j:J~J follows from charge 
conjugation in the same way as derived for the hadronic structure functions in (2.39) 
and (2.40) . In the subsequent part of this section we will only present the general 
form of the expressions for FL,k and :F2 ,k and shortly comment on the other parton 
structure functions. This general form which our computed expressions have to satisfy 
follow from the mass factorization theorems derived in [33]. The first order corrections 

denoted by .ti(~ have been calculated in the literature at the end of the seventies [18]­
[20]. They ca~ be presented in the following from (see figs. 3,4). 

u (Q2)e/2j:(1) _ Os S _ [_(1) + (1)] (3.36)L,q - 47r e fl2 CL,q CaL,q 

u (Q2)e/2j:(1) = Os S _ [P(O) ~ + C(1) + ca(1)] (3.37)2,q 47r e fl2 qq c 2,q 2,q 

(3.38) 

2
 
-i-(I) _ Osu S (Q _ )e/2 [P(O) _ 1 + -(1) + (1)]

J2 9 - n f e 2 qg C2 9 ca2 9 (3.39) 

, 41r Jl c" 

The above expressions have to be computed up to terms proportional to f because 
in the procedure of mass factorization they will be multiplied by IlL The mass 
parameter Jl, which is an artefact of n-dimensional regularization, originates from 
the dimensionality of the gauge coupling constant 9 (as = g2 I47r) in n dimensions. 
This mass parameter fl should not be confused with the renormalization scale Rand 
the mass factorization scale M which will be introduced later on. The spherical factor 
Sf' which is also characteristic for n-dimensional regularization is defined by 

(3.40) 

Further o~ denotes the bare strong coupling constant which has to be renormalized 

later on. Notice that the longitudinal structure functions :Fi~L do not contain collinear 

singularities up to O(os). The latter show up in j?2. The residues of those singular­
ities are given by the Altarelli-Parisi (AP) splitti~g functions Pij (i,j = q,i],g) [6]. 
Finally there is no distinction between the singlet and non-singlet part of the O( Q s ) 

'b' :FA. -i-(I),S -i-(I),NS Th d 2 'b' :FA ( Q2 )contn utlon to 2,q I.e. J2,q = J2,q . e or er Os contn utIons to 2,q Z, ,f 

take the following form. The non-singlet part is determined by graphs in figs. 5-7 the 
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contributions A2
, B 2 , AB and the term coming from the interference between graphs 

C and D in fig. 8 (identical quarks in the final state) in. It can be written as 

j-(2),NS _ (a~)2 S2 (Q2)e [~{-2(l c(1) + p(O) 0 c(l)}
L,q - 47l" e /12 C 0 L,q qq L,q 

+~(2),NS _ 2{3 (1) + p(O) tOI (1)]
CL,q oa L,q qq '61 a L,q (3.41) 

j:(2),NS (a~)2 S2 (Q2)e [~{~p(O) 0 p(O) _ (3 P(O)}]
2,q 47r e /12 c2 2 qq qq 0 qq 

+ ~ {~(P(l),NS + p(!),NS) _ 2{3 c(l) + p(O) 0 c(l)}c 2 qq qq 0 2,q qq 2,q 

-(2),NS _ 2{3 (1) + p(O) tOI (1)]+ C2,q Oa 2,q qq '61 a2,q , (3.42) 

where the convolution symbol 0 is defined by 

(J 0 g)(x) = t dXt t dX20(X - Xt X2)!(Xtlg(X2) (3.43) 

The pS) stand for the second order AP splitting functions in the MS -scheme which 

are computed in [13]-[17]. The coefficients c~,12, a~~2 already appeared in the O(a s ) 

contribution to j-i(~) (see eqs. (3.36)-(3.39)) and {3o denotes the lowest order coefficient 
in the {3-function 'which up to order 9 6 is given by 

(3.44) 

with 

(3o = 3
11 

CA - 3
2 
nj , (3.45 ) 

where CA = N for SU(N) and n j stands for the number of light flavours. The 
second coefficient {31 and the third order coefficient (32 can be found in [34] and 
[35] respectively. Notice that the above and subsequent expressions are written in a 
short hand notation where all arguments in the functions like z, Q2 are suppressed. 
Further the non pole terms are constructed in such a way that c~~k denotes the order 

a~ contributions to the coefficient functions in the MS -scheme. The pole terms 
in the second order expressions j-i(,~ originate from collinear as well as ultraviolet 

singularities since Fi(}) is proportional to the bare coupling constant. Because there 

exist two different non-singlet combinations of parton densities A (3.30) and V (3.32) 
mass factorization requires that the non-singlet AP splitting function has to be split 
into (see(3.41)) 

p(1),NS = p(1),NS + p(~),NS (3.46 ) q;q} qq qq 
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We have to do the same for the coefficient function 

(2),NS _ (2),NS,+ + (2),NS,­
Ci,q - Ci,q Ci,q , (3.47) 

The last term on the right hand side in (3.46) and (3.47) is due to the presence of 
identical (anti) quarks in the final state. It originates from the interference between 
diagrams C and D in fig. 8. 
In order a; the singlet quark parton structure function starts to differ from the non­
singlet one. This difference can be traced back to process C in fig. 8 provided the 
quarks in the final state are not identical. The singlet parton structure function j-i~~) 
ca.n be written as 

.t~2),S = .t~2),NS + .t~2),PS (3.48) l,q l,q l,q' 

~ (2) NS ~ (2) NS
where FL,k' and F 2 ,k' are presented in (3.41) and (3.42) respectively. The pure 
singlet part (P5) is given by 

j-(2),PS _ (a~) 252 (Q2) E: [~ {p(o) iOI _(1) } + _(2),PS + p(O) 0 (1)] (3.49)
L,q - nJ 47r E: J.1.2 £ gq 'C/cL,g CL,q gq aL,g, 

j:(2),PS = n (a~)2 52 (Q2)E: [~{~P(O) 0 P(O)}
2,q J 47r E: J.1.2 £2 2 qg gq 

+ ~ {~P(I),PS p(O) 0 c(1)} + C(2),PS + p(O) 0 a(I)] (3.50)£ 2 qq gq 2,g 2,q gq 2,g 

In the case the quarks in the final state are identical, we also have to include reactions 
Band D in fig. 8. However the answers for j-l~),NS,+ and .ti~~)'PS do not differ from 

the ones derived for the non-identical quark case. Note that .ti~~),NS,+ is that part 

of ~~~),Ns(3.41), (3.42), which can be attributed to PJ;),NS (3.46) and c~~j,NS,+ (3.47). 

Finally the order a; contributions to j-i,g( Z, Q2, f) become 

( a~)2 52 (Q2)E: [~{-2j3 -(1) + p(O) iOI -(1) + p(O) iOI -(I)}
n J 47r E: J.1.2 £ OCL,g gg 'C/ CL,g qg 'C/ CL,q 

+C(2) _ 2j3oa(1) + p(O) 0 a(l) + p(O) 0 a(l)] (3.51 )L,g L,g gg L,g qg L,q 

0/ 

i-(2) n f (a~)2 52 (Q2) E: [~ {~P(O) 0 (p(O) + p(O)) _ 13 P(O)}2,g J 47r E: J12 £2 2 qg gg qq 0 qg 

+~ {~P(l) _ 213 c(1) + p(O) 0 C(l) + p(O) 0 c(1)}
£ 2 qg 0 2,g gg 2,g qg 2,q 

+C(2) _ 24 a(l) + p(O) iOI a(l) + p(O) iOI a(I)]
2,g jJO 2,g gg 'C/ 2,g qg 'C/ 2,q (3.52) 

The expressions for j-i~l and 9~~l have the same form as those presented for j-J~l. 
Notice that in the case of the spin structure function 91 the AP splitting functions 
take their polarized representation which in lowest order can be found in [6]. The 
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second order contributions pJ;)'S and pJ;) can be inferred from expressions (3.50) 

and (3.52) (see [29]). Unfortunately the splitting functions pJ;) and pJ;) can only be 
obtained by performing an order D's

3 computation of 91,k unless one chooses another 
n1ethod. This problem can be wholly attributed to the fact that the gluon does not 
directly interact with the virtual vector boson V. For the charged current interactions 
we have the special properties 

j:(f),NS _ _ :F.(f),NS 
3,q - 3,q , (3.53) 

jY) = 0 (3.54 ) 3,g , 

(f) NS (l) NS
in all orders of perturbation theory and :FA 

3 ,q' has the same form as :FA 

2 ,q' • The 
above properties follow from charge conjugation see(2.39) and (2.40). Notice that for 

FJ~j,NS the plus sign in eqs. (3.46) and (3.47) has to be replaced by a minus sign. 

After having computed Fi,k we have to perform coupling constant renormalization. 
Choosing the MS -scheme this can be achieved by replacing the bare (unrenormalized) 
coupling constant D'~ by 

(3.55) 

where R represents the renormalization scale. After having removed the UV sin­
gularities the remaining pole terms 1/fi can be attributed to initial state collinear 
di vergences only because Fi,k is an inclusive quantity. The latter singularities are 
removed by mass factorization which proceeds in the following way 

TNS r NS CNS 
or i,q = qq 0 i,q , (3.56) 

(3.57) 

(3.58) 

In all above quantities coupling constant renormalization has been already carried 
out so that they all depend on R. The collinear devergences are absorbed in the 
transition functions r ij so that the deep inelastic (DIS) coefficient functions Ci,k are 
fini teo Therefore both functions depend on the mass factorization scale M as well as 
on the coupling constant renormalization R. Since the splitting of eqs. (3.53)-(3.54) 
in a pole and non-pole part can be done in an arbitrary way (indicated by the scale 
}vI) r ij and Ci,k are scheme dependent. Combining eqs. (3.27) and (3.56)-(3.58) the 
scale dependent parton densities are defined by 

il NS 
(3.59)r qq 0 il

A 

, 

S A A 

E r qq 0 E + 2n f r qg 0 G (3.60) 

G ~gq 0 t + r gg 0 G . (3.61 ) 
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Contrary to the bare parton densities A, t and 9 the scale (M) dependent ones, 
given by E, ~ and 9, are scheme dependent. In principle the latter also depend 
on R. However in practice one always chooses M = R. Equations (3.57), (3.58) 
and (3.60), (3.61) can be cast in the form of a matrix equation. The property that 
the radiative corrections to ilq determine both the gluon and the quark coefficient 
functions and densities is called mixing. The same holds for the radiative corrections 
to Fi,g. This is a special example of a phenomenon characteristic for pertubative 
calculations in quantum field theory. It states that quantities which belong to the 
same irreducible representation of an internal and external symmetry group mix under 
renormalization or mass factorization. Here the quantities F i: q and Fi,q belong to the 
flavour singlet representation and therefore mix. The non-singlet representation has 
one element only i.e. Fr:/ and the mass factorization is simply multiplicative see 
(:3.56)and (3.59). As already mentioned above the functions r ij and Ci,k are scheme 
dependent. In the literature there are two popular factorization schemes i.e. the MS 
--and the DIS-scheme. In these lectures we only present these functions in the MS 
-scheme. For the DIS-scheme we refer to ([27]). In the MS -scheme the transition 
functions take the following form. 

NS 
/

r qq 
1 + a~ SE: (M2

)E: 2[~P(O)] + (a~)2 S2 (M2
)E:

47r /12 c: qq 47r E: /12 

~ {~P(O) 0 p(O) _ (3 P(O)} + ~ {~P(l),NS + ~P(l),NS}] (3.62)[ c: 2 2 qq qq 0 qq c: 2 qq 2 qq 

Psr s 
qq = rNS 

qq + 2n f r 
qq , (3.63) 

rPS = (a~)2 S2 (M2
)E: [~{~P(O) 0 P(O)} + ~ {~P(l),PS}] (3.64)

qq 47r E: /12 c: 2 4 qg gq c: 4 qq 

/
a~ SE: (M2

)E: 2[~P(O)] + (a~)2 S2 (M2
)E: [~{~P(O) 

47r /12 2c: qg 47r E: /12 c: 2 4 qg 

(9 (p(O) + p(O)) _ ~f3oP(O)} + ~ {~P(l)}] (3.65)
gg qq 2 qg c: 4 qg 

(3.66) 

(3.67) 

In order to obtain short expressions we have expressed the transition functions in the 
bare coupling constant a~. The 1 in (3.62) and (3.67) denotes the distribution <5( 1- z). 
The same notations holds for the coefficient functions presented below. Further the 
r ij are sufficiently expanded in order as to render the coefficient functions finite up 
to order a;. After having performed coupling constant renormalization (3.55) we 
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substitute f ij into (3.56)-(3.58) and obtain the coefficient functions. Choosing the 
renormalization scale R to be equal to the mass factorization scale M they read as 
follows. The non-singlet coefficient function is equal to 

CNS = as [e(1)] + (a s )2 [{_a c(1) + ~p(O) 0 e(I)} L + e(2),NS] (3.68)L,q 471" L,q 471" fJO L,q 2 qq L,q M L,q 

cNS = 1 + as [~P(O)L + e(I)] + (as)2 [{~P(O) 0 p(O) _ ~(3 P(O)} L 2 
2,q 471" 2 qq M 2,q 471" 8 qq qq 4 0 qq M 

+ {~ (p(I),NS + p(~),NS) _ a -(1) + ~ p(O) 0 _(I)} L + _(2),NS] (3.69)2 qq qq fJO C2,q 2 qq C2 ,q M C2 ,q 

The singlet coefficient function is given by 

- S - NS - PS . 
Ci,q = Ci,q + Ci,q , (z = 2, L) , (3.70) 

cPS = n (as) 2 [{ ~ p(O) 0 e(I) } L + e(2),PS] (3.71 )L,q J 41r 2 gq L,g M L,q 

cPS n (as) 2 [{ ~p(O) 0 P(O)} L 2 ' + {~P(I)'PS + ~p(O) 0 e(l)} L 
2,q J 471" 8 qg gq M 2 qq 2 gq 2,g M 

_(2),PS]+C2 ,q • (3.72) 

The gluon coefficient function becomes 

(3.73) 

c2 = nJ as [~P(O) L M + e(I)] + nJ (as) 2 [{ ~ p(O) 0 (p(O) + p(O)) 
,g 471" 2 qg 2,g 41r 8 qg gg qq 

_ ~ a p(O)} L2 + {~P( 1) _ a c( 1) + ~ p(0) 0 c( 1)
4 fJO q9 M 2 q9 fJO 2,g 2 99 . 2,g 

+ ~p(O) !VI _(I)} L + _(2)]
2 qg '6' C2 ,q M C2 ,g , (3.74) 

where 

(3.75) 

In the case 1\1 is different from R, the resulting coefficient functions can be very easily 
derived from the above expressions (3.59)-(3.64) by replacing 

(3.76) 
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The explicit expression for the order-a; coefficient functions can be found in [25]-[29]. 
Taking the Mellin transform i.e. 

(3.77) 

they agree with the results computed for n = 2,4,6,8, 10 in [36]. The longitudinal
 
coefficient functions CL,K have been computed earlier in the literature (for a compar­

ison see the discussi~n in [27, 36])'.
 
Because of the scheme dependence indicated by the scale M, Ci,k and f ij (i, j =
 
q, g, and k = 1,2,3, L) satisfy renormalization group equations
 

[ ( M a~ + f3(g) ;g) e5kj - "Ykj ] C~k(Q2 / M
2

) = 0 , (3.78) 

[ ( M a~ + f3(g) ;g) e5kj + "Ykj ] r'J((p.2 /M 2 ) = 0 , (3.79) 

where (3(g) is defined in (3.44) and Iii stands for the anomalous dimension of com­
posite operators which is related to the AP splitting functions as follows 

,~~),n = _ fl dz zn-l p.(~) (3.80)
lJ lJ'io 

The renormalization group equations can be used to resum the large logarithms L M 

when Q2 >> M 2 and to determine the scale dependence of the parton densities 
(3.59)-(3.61) which follows from (3.79). If I is a matrix the general solution is quite 
complicated and we refer to the literature, see e.g. [37]. In the non-singlet case the 
solution of (3.78) simplifies and we get 

NS,n (( 2) 2 2) NS,n (_ 2) {J.9(Q2) ,NS,n(x) }
Ci,q 9 M ,Q /M = Ci,q g(Q), 1 exp - g(M2) dx /3(x) . (3.81) 

Here g( Q2) is the running coupling constant (g( M 2) = g( M 2)) which satisfies the 
renormalization qroup equation 

(3.82) 

Solving the above equation up to next to leading order provides us with the well 
known result (as = g2(Q2)/47r) 

1 (31 1 ( Q2)
--~-- in in- (3.83) 
/30 in ~~ /30 (/30 in ~) 2 A2 

M2exp {_ 47r _ /31 in (/3oa s(M
2
))} (3.84)

/3oa s (M2) /3J 47r 

with dA 2 /dM2 = O. Using the series expansion for Pij and lij 

.. _ 00 (m)(as )m+l 
IlJ - L 47r lij' (3.85) 

m=O 
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we will expand (3.81) up to order a;(Q2). The result becomes for i = 2, L 

- (Q2) { (l),NS (3 (o)}B NS ,n(M2 ) 1 + as c(l) + lqq _ ~ 
[ 47r 2,g 2(30 2(3J 

+ (as(Q2))2 {c(2),NS + ~ (,~~)'NS _ (311~~») c(l) 
47r 2,q 2 (30 (3'5 2,g 

1 (,,\,(1 ),NS (3 "\1(0») 2+_ Iqq _~ 

8 (30 (3J 

1 ("\I(2),NS (3 "\1(1 ),NS (3 ,,\,(0) (32"\1(0»)+_ I9q 1 Iqg _ ..2!.J..:L + --..l.!..J.!L 
4 (30 [3J f3J f33 

(3.86) 

1 (l),NS (3 (o»)}] ~ +2 "(·Po - ';;- c£.~ [a,(Q2)] 211J (3.87) 

with 

(3.88) 

Here the n in ,~~),n has been suppressed. Furthermore one has in lowest order 

"'y(O),NS = "\1(0) As we have mentioned before the coefficients dl) and ,,\,(1) (p(l») are all qq 'qq' J,q Iqq qq 

factorization scheme dependent except for the ones given in lowest order by c£,~ (but 

not c~~~) and ,~~) (pig»)). However in the factors multiplying the running coupling 
constant this scheme dependence is cancelled so that the Q2 -evolution of the coef­
ficient function becomes scheme independent. This phenomenon is one of the nice 
features of the renormalization group equations (3.78), (3.79). Unfortunately this 
has as a consequence that the computation of the second order contribution c~~~,NS 
(3.86) also requires the knowledge of the three-loop (order-a;) contribution to the 

anomalous dimension given by l~)' which can be derived from the the AP splitting 

function Pi~2). The calculation of the latter, which will be an enormous enterprise, 
has still to be done. From the renormalization group technique we infer that the 
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whole factorization scheme dependence of the coefficient functions Ct.',qs (3.86) and 
Cf; (3.87) resides in the factor B NS (3.88). This dependence will be cancelled if 
Cf,qs is multiplied by the non-singlet parton density ~(M2) which satisfies a similar 
equation as given by (3.79). The latter leads to the following solution. 

(3.89)
 

Here Q6 is some input value for Q2 at which the parton density is parametrized. 
Notice that Ll(Q6) is of a non-perturbative origin so that it cannot be determined by 
perturbative QeD. Therefore it has to be determined by fitting the non-singlet part 
of the hadronic structure function, which is given by (k == 2, L) 

Ff:(Q2) = l' dx xn- 1 Fk(x,Q2) = ~6n(M2)cf.qs.n (Q2/M2) (3.90) 

to the data. Although mathematically the cancellation of the factor BNS,n takes place 
on the righthand side of (3.90) in practice (BNS,n)-1 is expanded up to a certain order 
in as (as = a s(M 2 

)) so that in our example 

(3.91)
 

Since the coefficients at depend on the chosen scheme of .,~) (P8») the hadronic 
structure function will therefore become scheme dependent too. This leads to an 
N!-dependence of Fk ( X, Q2) which is revealed when M is varied between e.g. Q/2 
and 2Q. This M -dependence becomes less when higher order-as corr.ections are 
taken into account. Before finishing this section we want to note that the conclusions 
drawn from the above analysis of the non-singlet quantitites also apply to the singlet 
structure functions. 

Summarizing the above we have calculated the order a; contributions to the coef­

ficient functions represented by the coefficients c~~2. This calculation has been carried 
Qut for light flavours where the mass could be put equal to zero (for heavy flavours see 
[38]). In order to determine the full Q2-evolution of the structure functions Fk(x, Q2) 
one also needs to know the order-a; contributions to the AP splitting functions. The 
calculation of these corrections will be one of the major efforts in the future. 

Large corrections to the coefficient functions 

Before discussing the large corrections to the coefficient functions which are important 
for the analysis of the hadronic structure functions we want to point out a pecularity 
which is characteristic for higher order calculations. This is the appearance of the 
triangular fermion loop in the two loop contribution to V + q --t q (first graph in 
fig.5) and in the one loop contribution to V +q --t q +9 and V +9 --t q + ij (last graph 
in fig.6). It indirectly also appears in the interference term between the diagrams A 
andB on the one hand and the diagrams C and D on the other hand. However in 
this case two fermions are on-shell. This triangular loop only contributes if V == Z. 
In the case of V = ., it does not contribute because of Furry's theorem which follows 
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from charge conj ugation (see section 2). A charge conj ugation odd state (the photon) 
cannot couple to a charge conjugation even state (two gluon colour singlet). The same 
applies to the vector part of Z - q - q interaction. Since a charged particle V = W± 
cannot couple to two neutral gluons this contribution vanishes too. Only the axial 
vector part of the Z - q - q coupling contributes (charge conjugation even state). 
The triangular fermion loop graph with the axial vector coupling gives rise to the well 
known Adler-Bell-Jackiw anomaly which disappears when one sums over all flavours 
belonging to one family. This implies that for consistency the number of flavours, 
previously devined by n h has to be chosen to be evenH If these flavours are massless 
the triangular contribution yields zero. However when the flavours are massive like 
e.g. for bottom and top it provides us with a non zero result which for mt » mb 

becomes proportional to In(mt/mb). notice that this graph does not lead to collinear 
divergences because in' the collinear limit the virtual gluons become on shell and a 
spin one vector boson (here the Z) cannot couple to two massless he1icity one particles 
(here the gluons). The latter follows from angular momentum conservation (Yang's 
theorem). The calculation of the coefficient functions Ci,k( Z, Q2 / M 2) (z = Q2 /2pq) 
in the last section reveals two types of large corrections appearing at the two extreme 
values of the scaling variable z i.e. z rv 0 and z rv 1. The large corrections, appearing 
near the boundary of phase space z = 1, originate from soft gluon radiation (figs. 4-7) 
which manifests itself via the large logarithmic terms in the non singlet coefficients 

2i-1 (f j(l ))_(i),NS( ) z~l	 ~ (i) n - z 
Ck,q Z ----t	 ~ aj , (4.1 ) 

j=O 1 - z + 

or 

2i-1 1 
_(i),NS,n n~oo ~ - (i) (IJ )j+1
ck q ----t ~ aj -.-- .{.n n , (4.2) 

, j=O J + 1 

The above logarithmic terms show up for k = 1,2,3 and 91 but not for k = L 
where they cancel in (2.15). They also show up in the AP splitting functions and in 
the corresponding anomalous dimensions. However in the MS -scheme they behave 
themselves in a very mild way. 

(4.3) 

or 

~(i),NS.n n~) a(i)fn n 
'qq ,	 (4.4) 

The second type of corrections which dominate the z o regIon show up in the 
singlet coefficients 

-(i),PS( ) Z~~ b. In i-2 (z) 
Ck,q Z t,q	 (4.5) 

Z 

(4.6) 
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for i ~ 2 and k = 1,2, L. In the case of the splitting functions the singular behaviour 
is much more complicate to predict. In any case in all order i they behave like 

p(i)	 ~ ~O(1n z) p(i) ~ ~O(1n z) (4.7) 
9q Z 99 Z 

which is revealed by the lowest order calculations. The above singular behaviour can 
be traced back to the Bethe-Heitler process in fig.7 and fig. 8 (C,D). In this process 
the incoming vector boson V decays into a light quark - anti quark pair where one 
of the (anti) quarks interacts with the incoming gluon or quark via the exchange of 
multiple gluons in the t-channel. The above singularities originate from the region 
where all exchanged gluons become soft. The singularities of the type presented 
in (4.5) - (4.7) are characteristic for the unpolarized coefficient functions and AP 
splitting functions. They only appear if the incoming gluon or quark helicity is not 
flipped. In the case of polarized lepton- hadron scattering the helicity has to flip and 
therefore these type of corrections do not appear in the calculation of the polarized 
coefficient functions and AP splitting functions. Notice that there exists a similarity 
between the multiple gluon exchange mechanism and the pomeron exchange in Regge 
theory. Here the pomeron can only contribute to the unpolarized structure functions 
whereas it decouples in 91(X,Q2) 

25	 Order 0:s contributions to the hadronic structure func­
tions 

In spite of the fact that the three-loop AP splitting functions Pi~2) are still missing we 
can still estimate the effect of the order-Q'~ corrections to the deep inelastic proton 
structure function which can be wholly attributed to the coefficient function. An 
exception is the longitudinal structure function where the scheme dependence of the 
order ex; contribution to the longitudinal coefficient function CL,k is cancelled by the 

two-loop AP splitting functions pS) (,8)) which are known [13]-[17] (see expression 

(3.84) ).
 
The hadronic structure functions follow from (3.26), (3.30), (3.31), the mass factoriza­

tion formulae (3.53)-(3.55) and the definitions for the parton densities (3.56)-(3.58).
 
They can be expressed into convolution integrals of products of scale dependent par­

tall densities and coefficient functions. In the case V = , we have
 

1 
2 ai(x) 1 dz { -5 [ 2)CS(iq z,Q21 2)Fi(x,Q ) = - E(x/z,M M 

x z 18 

+	 G(xlz, M 2)Ci ,9(Z, Q21M2 )] + ~~(xi z, M 2)Cf.S(z, Q21M2)} (5.1) 

where ai(x) (i == 1,2, L) is defined in (3.7). The charged current (V = W) hadron 
structure functions for an isoscalar target are given by 

dz 2 S 2 2 
-; E(x/z,M )C2 ,q(z,Q 1M )	 (5.2) 

dz 2 NS 2/ 2-; V (x/z, M )C3 ,q (z, Q M)	 (5.3) 
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Here the singlet and non-singlet combination of parton densities, which are denoted 
by 2: and ~, V respectively, are defined in the same way as their bare analogues in 
(3.28), (3.29) and (3.32). The spin structure function 91 (x, Q2) has the same form as 
F1(x, Q2) where now the parton densities and the coefficient functions are replaced 
by their polarized expressions [29]. 
Furthermore we have chosen the mass factorization scale M to be equal to the renor­
malization scale R. Notice that in all existing parametrizations in the literature for 
the parton densities one has taken M = R. Our analysis will be carried out in the MS 
-scheme. The latter has the advantage that the soft gluon corrections occurring in the 
region Z = 1 can almost be wholly attributed to the coefficient function (4.1) whereas 
these corrections show a mild behaviour in the AP splitting functions (4.3). Notice 
that the latter determine the scale (M) behaviour of the parton densities. Therefore 
in the limit x -t 1 of (5.1)- (5.3) the large corrections to the structure functions 
are due to the soft gluon corrections to the coefficient function Ci,q( Z, Q21M2 

) which 
dominates the integrand near Z = 1. The longitudinal structure function receives 
very small corrections near x == 1 because the soft gluon contributions in the corre­
sponding coefficient function CL,q(z, Q 21M2 

) are absent (see the remark below (4.2)). 
Large corrections to all structure functions also appear in the small x-region which 
will be explored by the HERA experiments. In the limit x -t 0 the integrand in (5.1)­
(5.2) either receives large contributions from the region Z X where xlz rv 1 or fromrv 

the region z = 1 where x Iz rv O. The region z X is dominated by the singlet andrv 

gluonic coefficient functions which show the characteristic behaviour ;- fn i z (see (4.5), 
(4.6)). For z = 1 where xl z rv 0 the gluon and sea-quark densities (the latter show 
up in L:(xI z)) will dominate the integrand because they rise very steeply if xI z -t 0 
and the coefficient functions behave logarithmically like fn i (1 - z) for z -t 1. In 
practice it will turn out that the analysis of the large corrections near x == 0 is much 
more complicated than that carried out for x == 1. It depends very heavily on the 
parametrization for the parton densities which one has used to compute Fk(x, Q2). 
In particular at z = x (x I z = 1) the parton densities tend to zero so that the singular 
terms ~ fn i z in the coefficient functions will be compensated. Therefore the size of the 
corrections will become very dependent on the behaviour of the parton densities near 
z = 1 (xl z rv 0). Finally we want to note that the singular terms';' fn i z are absent 
in the polarized coefficient functions so that in the small x-region 91 (x, Q2) is rather 
determined by the gluon or sea quark densities than by the coefficient functions. 
The above findings will be illustrated by the plots discussed below. There exist a 
wealth of parametrizations for the parton densities which are based on past [7] as 
well as recent [8]-[12] experiments. The parton densities are either computed by the 
inverse Mellin transformation of (3.86) or via the Altarelli-Parisi equations [6] which 
follow from the renormalization group equations in (3.75), (3.76). In the plots we will 
use the following set of parton densities which are corrected up to next to leading 
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order (NLO) MS -scheme) 

a. MTBI-MS, Table /4-FIT Bl - MS, 1\ = 0.190 GeV [39] 

b. MTB2-MS, Table /6-FIT B2 - MS, 1\ = 0.191 GeV [39] 

c. HMRSB , 1\ = 0.190 GeV [40] 

d. J\1RS (DO), A = 0.215 GeV [41] 

e. MRS (D-) , A = 0.215 GeV [41] 

where n J is chosen to be four in the densities as well as in the coefficient functions.
 
Here the MTB2-MS and the MRS (D-) parametrizations are characterized by the
 
steeply rising behaviour of the gluon and sea quark densities near z = 0 i.e. z G( z) '"
 
z-1/2, zs(z) '" z-1/2 (Lipatov pomeron). Furthermore we use the two-loop corrected
 
running coupling constant (3.80) with n J = 4 and the same A (3.81) as in a-e.
 
Finally we put the factorization scale M2 = Q2. For other choices of M see [27].
 
In order to investigate the effect of the O(a~) correction to the coefficient functions
 
on the hadronic structure function F2(x, Q2) (5.1) we plot the ratio
 

/«(2) (x, Q2) = FJ2) (x, Q2) (5.4) 
FJl)(X, Q2) 

Here F}n)(x, Q2) denotes the structure function which contains the NLO parton den­
sities and the coefficient functions are corrected up to O(a~). Note that in principle 
for F~Z)(x, Q2) the NNLO parton densities should be used but they are not available 
since the AP splitting functions are not known up to O( a~). The NLO parton den­
sities are determined in such a way that F~l)(X, Q2) fits the data. The deviation of 
/«(2) from one will then indicate how the free (non-perturbative) parameters describ­
ing the z-dependence of the parton densities have to be modified in order to bring 
Fz[2)(x, Q2) in agreement with the data. In fig. 9 we have plotted 1«2) for various 
Q2--values in the range 10-4 < X < 1. The corrections for x > 0.5 are large and 
positive which can be attributed to soft gluon radiation. The corrections in the small 
x-region (x < 0.01) which are negative can be attributed to the second order gluonic 

coefficient c~~~(z). The corrections get smaller, when Q2 increases due to the effect 
of the running coupling constant. We do not expect that this picture will be altered 
when the three-loop AP non-singlet splitting functions Pi7) are included except for 
the small x-region where the calculation of this missing contribution will be neces­
sary. The dependence of /«2) on the various parametrization for the parton densities 
is shown in fig. 10 for Q2 = 10 GeV2. The figure reveals that the parametrization 
with the steepest behaviour of the gluon density provides us with the smallest cor­
rection. Since the sea quark density is correlated with the gluon density there must 
be a cancellation in the singlet part of Fi 2 

)(x, Q2) due to the opposite signs of c~~~ 
(2) 

and C2,y' 

vVe now focus our attention on the effect of the order-a~ correction to the longi­
tudinal structure function FL ( x, Q2). In particular we are interested in the ratio of 
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the longitudinal and transverse cross section defined by R = aLIaT. The order O'~ 

corrected R denoted by R(n) is given by 

R(n) (x, Q2) '" 2 Fin)(x, Q2)2 (5.5 ) (1 + 4~p,t ) FJn-t)(x, Q2) - Fin)(x, Q2) 

where M p stands for the proton mass. In fig. 11 we have plotted R(2) in the range 
10-4 < X < 1 for various Q2-values and the chosen set MRS(DO). The figure reveals 
that R(2) is very small in the large x-region (0.1 < x < 1). When x gets smaller R(2) 

increases very rapidly and then flattens out. Further we observe a turning point at 
x = 0.001. On the left-hand side of this point R(2) increases when Q2 gets larger 
whereas on the right-hand side R(2) decreases when Q2 grows. In fig. 12 we have 
compared R(1) with R(2) for the same parton density set as in fig. 11. In the small 
x-region the lowest order term R(1) gets very negative corrections (f".J -50%) which 

is due to the second order gluonic coefficient c~,~. The reason that the gluonic coef­
ficient function has a much larger effect on FL than on F2 can be attributed to its 
absence on the Born level in the case of FL' In fig. 13 we studied the sensitivity of 
R(1) and R(2) on the input parton density set. Here we compared MRS (DO) with 
MRS (D-) [41] where the latter contains the steeply rising gluon density near z = O. 
The figure shows a strong dependence on the two different parametrizations in par­
ticular in the small x-region. The result obtained from MRS (D-) lies significantly 
above the one given by MRS (DO). The difference becomes even larger when higher 
order QCD corrections are included(compare R(1) (D-) - R(l) (DO) with R(2) (D-) ­
R(2) (DO). In the case of MTB2 (see [27]) which also contains a steeply rising gluon 
density we observe a completely different picture. First R(n) (MTB2-MS) < R(n) 

(MRS(DO)) (n = 1,2) and second the gap between both becomes less when higher 
order corrections are taken into account. Therefore R provides us with a beautiful 
quantity to measure the still unknown gluon density in the small z-region. For large 
x-values Le. x > 0.1 the various parton densities predict the same R which is in 
agreement with the BCDMS data [10] (fig. 14). In this region the 0(0'3) corrections 
turn out to be small. In fig. 15 we have presented the 0(0'8) corrected and the O(a~) 

corrected charged current structure function denoted by FJl)(X, Q2) and FJ2)(x, Q2) 
respectively. Since the target is an isoscalar F3(x, Q2) is purely non-singlet. The fig­
ure shows that the O(a;) corrections are small and they lie within the range given by 

the mass factorization scale variation of FP)(x, Q2) Le. Q /2 < M < 2Q. We do not 
expect that the still missing three loop AP splitting function will appreciably alter 
this picture since it is supposed to be small in the MS -scheme. The same picture 
also holds for the charged current structure function F2(x, Q2) (see [28]). 
As a last application of our calculations we call attention to the higher order correc­
tions to the spin structure function 91(X, Q2) which has the same form as F1(x, Q2) 
in (5.1). Taking the Mellin transform (nth moment it becomes equal to 

n9~(Q2) l dx x - 19t(X, Q2) '" ~ [15 {I;n(M2)c;·n (Q2/M 2)
8 

+ Cn(M2)C; (Q2/M2)} + ~t>.n(M2)c~s.n (Q2/M 2)] (5.6) 
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The first moment (n = 1) represents the Ellis-Jaffe sum rule [42]. Experiments have 
shown [43, 44] that the measured sum rule is below the theoretical zeroth order pre­
diction which is based on the constituent quark model (see [42]). This discrepancy 
came as a great surprise because one expected that sum rules corresponding to con­
served quantities, which are derived in the context of the constituent quark model 
at low energy scales, would also be valid at large energy scales characteristic for the 
current (parton) quark regime. Notice that sum rules which correspond to conserved 
quantities do not show scaling violating effects dus to QCD corrections. This implies 
that the anomalous dimensions defined in (3.77) for n = 1, which rule the scale evo­
lution M of the parton densities, are zero. This principle, which seems to work for 
unpolarized quantities is apparently violated in the polarized case. 
i\1any theorists have tried to explain the above discrepancy, for reviews see [45, 46]. 
One of the issues was the question whether the experimental result for the Ellis-Jaffe 
surn rule, which turned out to be much smaller than expected, can either be ex­
plained by a large positive polarized gluon density or by a large negative polarized 
sea-quark density inside the proton, although a combination of both is also possible. 
Here we adopt the point of view advocated in [33, 47] that the above parton densities 
which were used to explain the measured size of the sum rule depend on the mass 
factorization scheme chosen for the polarized AP splitting functions and the polarized 
coefficient functions. From (5.6) we infer that the gluon density can only contribute 
if higher order QCD corrections are taken into account in particular the gluonic co­
efficient function Cg • The sea quark density enters via ~ already on the lowest order 
level. Notice that C: on the Born level is non-vanishing. Unfortunately in the MS 
-scheme the first moment of Cg i.e. C: vanishes in all orders of perturbation theory 
which is confirmed by our calculations up to O(a;). Therefore in this scheme the 
large negative correction, necessary to bring (5.6) in agreement with the data can be 
only achieved by a negative polarized sea quark density. Using the parametrization 
for the polarized parton densities in [48] we have shown the O(a:) corrected structure 
function denoted by g~k)(x, Q2) for Q2 = 10 Gey2 in fig. 16. The figure reveals that 
the O(O:s) and 0(0:;) corrections are very small and all lie between the error bars of 
the data in [43, 44]. In fig. 17 we have shown the Q2-evolution of 92(X, Q2), which 
is hardly noticeable. Apart form the vanishing of C; the MS -scheme also entails 
the nonvanishing of the first moment of the singlet anomalous dimension 1;/ up to 
second order. This means that the conservation of the singlet quark helicity is broken 
at the two loop level. 
Therefore some theorists prefer a scheme where 1:;/ = 0 and C; < O. The latter value 
l"equires a large positive gluon density to bring the Ellis-Jaffe sum rule in agreement 
with experiment. Choosing the last scheme and the gluon density in [48] we have 
plotted gfk)(x, Q2) for k = 0,1,2 and Q2 = 10 Gey2 (see fig. 18). The zeroth order 
result, where the sea quark density is put equal to zero, is the original prediction 
of Ellis and Jaffe [42]. The correction due to the gluonic part of (5.6) is large and 
negative. The 0(0';) corrections hardly modify the O(as) corrected structure func­
tion. In the case of a large gluon density we also observe an appreciable Q2-evolution 
in 91(X,Q2) (see fig. 19) which will be detected when higher statics data become 
available. Hopefully they will be obtained by future experiments [23, 24]. A sum rule 
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which is from the theoretical point of view even more fundamental than the Ellis-Jaffe 
one is given by Bjorken in [49]. It originates from the non-singlet part of (5.6). For 
n = 1 we get (p = proton, n = neutron). 

(5.7) 

Recently the above sum rule is confirmed by the EMC experiment [50]. A recent 
measurement of the Bjorken sum rule is done by the E142 experiment at SLAC 
[51]. Here one finds a value which is lower (two (J' effect) than the one theoretically 
predicted. 

References 

[1]	 D.H. Coward et al., Phys. Rev. Lett. 20 (1968) 292; 
E.D. Bloom et al., Phys. Rev. Lett. 23 (1969) 930; 
H.	 Breidenbach et al., Phys. Rev. Lett. 23 (1969) 935. 

[2]	 R.P. Feynman, "Photon-Hadron Interactions", W.A. Benjamin, New York 1972. 

[3]	 H. Fritsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B74 (1973) 365, 
W. Marciano and H. Pagels, Phys. Rep. 36C (1978) 137. 

[4]	 K. Wilson, Phys. Rev. D10 (1974) 2455. 

[5]	 D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343; 
H.D. Politzer,Phys. Rev. Lett. 30 (1973) 1346. 

[6]	 V.N. Gribov and L.N. Lipatov, Sov.J.Nucl.Phys. 15 (1972)438, 675; 
G. Altarelli and G. Parisi, Nucl. Phys. B126 (1977) 298. 

[7]	 R.G. Roberts and M.R. Whalley, J. Phys. G.; Nucl. Part. Phys. 17 (1991) D1­
D151. 

[8]	 I.J. Aubert et. al. (EMC), Nucl. Phys. B293 (1987) 740. 

[9]	 J.P. Berge et. al. (CDHSW), Z. Phys. C49 (1990) 187. 

[10]	 A.C. Benvenuti et. al. (BCDMS), Phys. Lett. B223 (1989) 485; ibid. B237 (190) 
599. 

[11]	 E. Oltman et. al. (CCFR), Z. Phys. C53 (1992) 51. 

[12]	 P. Amaudruz et. al. (NMC), Nucl. Phys. B371 (1992) 3. 

[13]	 E.G. Floratos, D.A. Ross and C.T. Sachrajda, Nucl. Phys. B129 (1977) 66, 
Erratum B139 (1978) 545; Nucl.Phys. B152 (1979) 493. 

[14]	 A. Gonzalez-Arroyo, C. Lopez and F.J. Yndurain, Nucl. Phys. B153 (1979) 161. 

[15] A. Gonzalez-Arroyo and C. Lopez, Nucl. Phys. B166 (1980) 429. 

31 



[16]	 E.G. Floratos, P. Lacaze and C. Kounnas, Phys. Lett. B98 (1981) 89,225. 

[17]	 G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys. B175 (1980) 27; 
W. Furmanski and R. Petronzio, Phys. Lett. B97 (1980) 437. 

[18]	 W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Phys.Rev. D18 (1978) 
3998. 

[19]	 G. Altarelli, R.K. Ellis and G. Martinelli, Nucl. Phys. B143 (1978) 521, Erratum 
B146 (1978) 544; ibid. B157 (1979) 461. 

[20]	 B. Humpert and W.L. van Neerven, Nucl. Phys. B184 (1981) 225. 

[21]	 Proceedings of the Workshop "Physics at HERA", vols. 1,2,3. Hamburg, October 
29-30, 1991. Edited by W. Buchmiiller and G. Ingelman. 

[22]	 Proceedings of the Large hadron Collider Workshop, vol. 2 p. 829. Aachen, Oc­
tober 4-9, 1990. Edited by G. Jarlskog and D. Rein. 

(23]	 J. Beaufays et. al. (SMC), CERN/SPSC 88-47, SPSC/p.242 (1988). 

[24]	 M. Duren and K. Rith, "Polarized Electron-Nucleon-Scatterng at HERA. The 
HERMES Experiment". Proceedings of the workshop "Physics of HERA", vo. 
1, p. 427. Hamburg, October 29-30, 1991. Edited by W. Buchmiiller and G. 
Ingelman. 

[25]	 W.L. van Neerven and E.B. Zijlstra, Phys. Lett. B272 (1991) 127. 

[26]	 E.B. Zijlstra and W.L. van Neerven, Phys. Lett. B273 (1991) 476. 

[27]	 E.B. Zijlstra and W.L. van Neerven, Nucl. Phys. B383 (1992) 525. 

[28]	 E.B. Zijlstra and W.L. van Neerven, Phys. Lett. B297 (1992) 377. 

[29]	 E.B. Zijlstra and W.L. van Neerven, Leiden preprint, INLO-PUB-3/93 

[30]	 D. Bailin and A. Love, "Introduction to Gauge Field Theory". Adam Hilger 
L. Ryder, "Quantum Field Theory", Cambridge Univ. Press. 
C. Itzykson and J.B. Zuber, "Quantum Field Theory" , Me. Graw-Hill. 

[31]	 G. 't Hooft and M. Veltman, Nucl. Phys. B44 (1972) 189. 

[32] P. BreiLenlohller and D. Maison, Commun. Math. Phys. 52 (1977) 11,39,55 

[:33] J. C. Collins, Nucl. Phys. B394 (1992) 169 and references therein. 

[34]	 D.R.T. Jones, Nucl. Phys. B75 (1974) 531 

[35]	 a.v. Tarasov, A.A. Vladimirov and A.Yu. Zharkov, Phys. Lett. B93 (1980) 429 

[36]	 S.A. Larin and J.A.M Vermaseren, Z. Phys. C57 (1993) 93. 

32 



[:37] A.J. Buras, Rev. Mod. Phys. 52 (1980) 199. 

[:38] E. Laenen, S. Riemersma, J. Smith and W.L. van Neerven, Nucl. Phys. B392 
(1993) 162, 229. 

[:39] J.G. l\1orfin and vVu-Ki Tung, Z. Phys. C52 (1991) 13. 

[40]	 P.N. Harriman, A.D. Martin, R.G. Roberts and W.J. Stirling, Phys. Rev. D42 
(1990) 798. 

[41]	 A.D. Martin, W.J. Stirling and R.G. Roberts, DTP-92-16, RAL-92-021, 1992. 

[42]	 J. Ellis and R. Jaffe, Phys. Rev. D9 (1974) 1444; ibid. DI0 (1974) 1669 

[43]	 M.J. Alguard et. al. (SLAC), Phys. Rev. Lett. 37 (1978) 1262, ibid. 46 (1978) 
70. 
G. Baum et. al. (SLAC), Phys. Rev. Lett. 51 (1983) 1135. 

[44]	 .1. Ashman et. al. (EMC), Phys. Lett. B206 (1988), Nucl. phys. B328 (1989) 1. 

[4.5]	 G. Altarelli, "Polarized Structure Functions at HERA, Introduction and 
Overview" , Proceedings of the Workshop: Physics at HERA, Hamburg, October 
29-30, 1991, eds. W. Buchmiiller and G. Ingelman, vol. 1, p. 379. 

[46]	 E. Reya, Dortmund preprint DO-TH 92/17 

[47]	 G.T. Bodwin and J. Qiu, Phys. Rev. D41 (1990) 2755. 

[48]	 Hai-Yang Cheng and C.F. Wai, Phys. Rev. D46 (1992) 125 

[49]	 J.D. Bjorken, Phys. Rev. 148 (1966) 1467, Phys. Rev Dl (1970) 1376 

[50] B. Adeva et. aI., Phys. Lett. B302 (1993) 533. 

(51] R. Arnold et. aI. (EI42), SLAC proposal, unpublished. 

Figure captions 

Fig.	 1 Kinematics of the deep inelastic process 11 + H -+ 12 +"X" . 

Fig.	 2 The Born contribution to the subprocess q(q) + V -+ q(q). 

Fig.	 3 The one loop correction to the subprocess q(q) + V -+ q(q). 

Fig.	 4 Diagrams contributing to the subprocess q(q) + V -+ q(q) + g. The graphs 
corresponding to the subprocess g + V -+ q + q can be obtained from those 
presented in this figure by interchanging the incoming (anti )quark line with the 
outgoing gluon line. 

Fig.	 5 The two loop corrections to the subprocess q(q) + V -+ q(q). The ghost 
contribution to the gluon self energy is included but not shown in the figure. 
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Fig.	 6 The one loop corrections to the subprocess q(q) + V ---t q(q) + g. The graphs 
corresponding to the subprocess g + V ~ q + q can be obtained from those 
presented in this figure by interchanging the incoming (anti)quark line with the 
outgoing gluon line. 

Fig.	 7 Diagrams contributing to the subprocess q(q) + V ---t q(q) + g+ g. The graphs 
corresponding to the subprocess g + V ---t g + q + q can be obtained from those 
presented in this figure by interchanging the incoming (anti)quark line with one 
of the outgoing gluon lines. 

Fig.	 8 Diagrams contributing to the subprocesses q + V ---t q(l) + q(2) + q and 
q + V ---t q(l) + q(2) + q. If q(l) f. q(2) or q(l) f. q(2), only combinations A 
and C have to be considered. If q(l) == q(2) or q(l) == q(2), combinations B 
and D have to be added to A and C. 

Fig.	 9 The quantity 1«2)(x, Q2) (5.4) (MTBIMS) in the region 0.01 < x < 0.9 for 
Q2 == 10 Gey2 (solid line), Q2 == 100 Gey2 (dashed line) and Q2 = 104 Gey2 
(dashed dotted line) and in the region 10-4 < x < 10-2 for Q2 = 10 Gey2 (solid 
line), Q2 == 50 Gey2 (dashed line) and Q2 = 100 Gey2 (dashed dotted line). 

Fig.	 10 Structure function dependence of 1«2)(x, Q2) at Q2 == 10 Gey2 in the region 
10-4 < x < 0.9: l\1TBIMS (solid line), MTB2MS (dashed line), H~1RSB 

(dashed dotted line). 

Fig.	 11 The quantity R(2)(X, Q2) (.5.5) (MRS(DO)) in the region 0.01 < x < 0.9 for 
Q2 = 10 Gey2 (solid line), Q2 == 100 Gey2 (dashed line) and Q2 == 104 Gey2 
(dashed dotted line) and in the region 10-4 < x < 10-2 for Q2 = 10 Gey2 (solid 
line), Q2 == 50 Gey2 (dashed line) and Q2 = 100 Gey2 (dashed dotted line). 

Fig.	 12 The quantity R(i)(x, Q2) (5.5) (MRS(DO)) at Q2 == 10 Gey2 in the re­
gion 10-4 < x < 0.9 : R(1)(x, Q2) (solid line), R(2)(x, Q2) (dashed line) and 
R(3)(x, Q2) (dashed dotted line). 

Fig.	 13 Parton density dependence of R(i)(x, Q2) (5.5) at Q2 == 10 Gey2 in the re­
gion 10-4 < x < 0.9 : R(l)(X, Q2) (MRS(DO), solid line), R(2)(x, Q2) (MRS(DO), 
short dashed line), R(l)(X, Q2) (MRS(D-), dotted line), R(2)(x, Q2) (~1RS(D-), 

long-dashed line). 

Fig.	 14 Comparison of R(i)(x, Q2) (5.5) (MRS(DO)) with the BCDMS data ([10]) : 
R(1)(x, Q2) (dashed dotted line), R(2)(x, Q2) (solid line). 

Fig.	 15 Factorization scale dependence of FP)(x, Q2) and a comparison with 
Fj2)(X, Q2). Dotted line: FP)(x, Q2), M == 4Q. Solid line: FJ!)(x, Q2), M = 

Q. Short-dashed line: FJl)(x, Q2), M == 2Q. Long-dashed line: FJ2)(X, Q2), 
Al = Q. 

Fig.	 16 The order-Q~ corrected spin structure function xg~k)(x, Q2). The parton 
densities are obtained from ([48]) with a large negative polarized sea quark 

34
 



density and the gluon density equals zero. M 2 = Q2 = 10 Gey2; solid line: 
xg~O)(x, Q2); dotted line: xgp>(x, Q2); short-dashed: xg~2)(x, Q2); The data are 
obtained from ([44]). 

Fig.	 17 The Q2-dependence of the'order -Q~ corrected spin structure function 

xg~2)(X, Q2). The parton densities are the same as mentioned in fig. 16. M 2 = 
10 Gey2. Solid line: Q2 = 10 Gey2; dotted line: Q2 = 50 Gey2; short-dashed 
line: Q2 = 100 Gey2. The data-are obtained from ([44]). 

Fig.	 18 The same as in fig. 16 but now with a large positive polarized gluon density 
and the sea quark density is set equal to zero. 

Fig.	 19 The same as in fig. 17 but now with the parton densities used in fig. 18. 
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DIS subprocesses 

0'.0. 
s· V + q(q) ---+ q(q) 

O'.l. 
s· V + q(q) 

V + q(q) 

V+g 

---+ 

---+ 

---+ 

q(q) 

q(q) + g 

q+q 

(one loop correction) 

0'.2. 
s· V + q(q) 

V + q(q) 

V + q(q) 

V + q(q) 

V + g 

V+g 

---+ 

---+ 

---+ 

---+ 

---+ 

---+ 

q(q) 

q(q) + g 

q(q) + g + g 

q(q) + q(q) + q(q) 

q+q 

q+q+g 

(two loop correction) 

(one loop correction) 

(one loop correction) 

Table 1. List of deep inelastic lepton-parton subprocesses up to O(a;). 



Px.~
H 

Fig. 1 

) )7 
/ 

/ 
/ 

Fig. 2 

Fig. 3 

) ) 
/ /' 

/' /' 
/ / 

) 7 



Fig. 5
 



)/0) 
/ / 

/ / 
/ / 

) 7 
/ / 

/ / 
/ / 

/ 
/ 

/ 

--------------__~Fig. 6 



)/L)2
 
/ 

/ 
/ 

) 7 

)/L)! 
/ / 

/ 

/L
2 

/ 
/ / 

/ 
/ 

/ 

Fig. 7 

) 7 /L! 
/ 

/ 
/ 



2 2
 

) L=A 7 
,/ ,/ 1 

,/ ,/
 

,/ ,/
 

1 1 

) L=B > 
,/ 2 ,/ 2 

,/ ,/
 

,/ ,/
 

- - - - - -r----~- - - - - - ~-"ll;---

2 

c 
2 

1 1 

- - - - - --.---~- - - - - - -r-~E'----

1 

D 
1 

2 2 

Fig. 8 



---------
--------------

- - - --

--- --

Fig. 9 

1.2 

1.15 

1.1~ 
C\I a ...
,---)<

"1.05 
C\I 
"'''-'' 
~ 

1 -_.--- -- .-- -- ---~ -~-.:-- -~--~- --=.~- =-='::":'-::"::'~-':': ':::"'--.:.:-..=...~ 

.95 

.01 .1 1 

x 

1 

-- .,..,_.­
_.- .-­ ­

-
--' 

­
.95 

.--- .--­~ .. --­.. --_.- -­
N a -

x 
.... 

--1 - ­

.85 

.0001 .001 
)( 

.01 



Fig_ 10
 

.01 .1 1 

x 

1 

.9 

1.1 

1.05 

~ 
0

2
=10 

N a .. 
x 1.........." .,...... 

N 
~ 

~ 

.95 

.95 
~~-~--

~ 
N a.. 

x 
'-../ .9 

.,...... 
N 
~ 

~ 

.85 

~~~ --------

." 

--. --­ _.- .­

.0001 .001­ .01 

x 

. 

.8 



--
--

Fig. 11
 

.3 

.2
 
~ 

N a.. -
0.' 

"'~,." .......fI
 

,,-, 
N 
'-'" 

c:r::: 
.1 '- . 

o 
.01 1.1 

x 

.3 

-
'- . -'-

--
............. '­.25 

~ --
N 

a 
.r...
 

'---'
 - ' ­
' ­

"N...... ----. 
' ­OL 

' ­

..... 

.15
 
.0001 .001
 

x 

--

.2 

.01 



- --- --- --

--------------------

- - --

Fig. 12 

~ 
N a 

.-. 
x 

..........."
 

0::: 

.2 

.1 

o 
.01 .1 

x 

.35 

~ 

N 

a 
.-. .3 

.---- ­ ------- ­
.25 

.2 '---__..J.-..---l'---~__l___~--L.-...L__L...._______J....__~~_.....__J.._...J-.L-....J.....J 

.0001 .001 

x
 

1 

.01 



Fig. 13
 

.3
 

.2 

cr 
.1 

o 
.01 

..... 
..... 10 , , 

..... , , , , , , , , , , ,, , , " , " , ' .... , " 

" , 
" ,, ..... 

...., ..... 
..... 

.............., ...., .... .. . 

.1 1
 

x 
.6 

...... 
..........
 

..........
 
...... 

0
2 

..........
.5 - 10..........
 
...... 

...... 
..........
 

...... 
...... 

..........
 
..........
 

..........
 

..........
 

..........
 

..........
 

.3 

.2 

--------------­

.001.0001 

x
 
.01 



Fig. 14 

.2 

~ 

N a.. 
x 
~ 0 

-.2 

o .2 .4 .6 

x 



--

- --- -, - ,~ .. """' ........... 

-""-":::.- ­-....- ­-....;- ­
_.~.~.~-

'"'"-4: ... 
~ .... 

...::t .....--....:::::::-~ 

] 

.6 

X 
'-.../ 

t') 

LIe., 

.8 

.75 

.7 

.65 

.6 

.16 

14 

.12 

.1
 

.08 

.06 

Fig. 15 

, 

--- .......
 

x = 0.65 

.........:,:. ....
 
...........
 _.... _..... _....-".
_....:.:.....:.:....:.:... ..:.:...~.... 

-- -....... .:.:.... -.:--.
 

10 100 

-- -- -~_:-:"'._:-=-•. ;-:""_.~.-;-:"" .• ~.--.. ;-:-_.~.-_.-

x = 0.045 

- .. -- .-::'..... 
---:.. --::..... 

x = 0.275 

, - ' ­

1 



. . . 
o o o . o I\) en ex:> 

o 
-oil. 



-4 

. . . . 
o o o o . o I\) ~ (j) OJ 

o 

• 

.,
\, 
\, 
'., 
\, 
\,'. ,

'.' 

~ 
I 

J 

1 



x 

.
 
o 
~ 

"" " 

" " " '.
" " " 

• 

. 
o 
I'\) 

, '. , '. , '. , '." '. 
" '1.

" '." "" '." '."_..... 

•,,\ 
'\ 

\ 
\ 
~.,.

\.,'. 
• • I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~. 
I 

". \ 
" \ 
" \ .\

'" I,\ 

o 

I 
I 
I 
I 
I 

~I :. 



j 

'Il • " • f 2 
xg,(X,Q ) 

J 

. 
o 
0') 

. 
o 
~ 

. 
o 
J\)o 

I 

~ 

. 
o 
-.L 

I , , 
, ,I ,

,, l 

,,,,,,,,,, 
" ,,,, 

, ,
" , 

'" , 

,,,,,,,,, 

.... ' " .'........ ' 
' .... ' .",.,:... ... .' .... ' .... ' 

.",. --: .. -
....~.~ ... 

" .."..".. 
~.-

~--+l__----'':'i- \ \ 

\ 
\ ,,, 

\ 

~ J 

l 


