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1.Introduction 

One of the 1nost exciting resea.rch field is undoubtly that one devoted 
to attain the direct observation1,2 of gravitational waves (GW) emitted by 
cosmIC sources. 
Since the Foward's paper3 (1979) till nowadays relnarkable progresses and 
developments have been done in Michelson interferometry in order to gain 
more and more sensitivity in GvV detectors. 
Let us review the most important achievenlents of this last ten years, like the 
equipment of the Michelson anns with delay lines4 or resonant Fabry-Perot 
(FP) cavities5 in order to enlarge optically the interferometer armlength; 
the recycling technique6 saving the reflected light in order to have more 
power at disposal and therefore nlore sensitivity; the proposed" dual mode" 
technique7

, which introduces a recycling Iuirror in the transmission branch 
of the intereferometer in order to get a. better stability and less criticity to 
nOIse. 
In addition it has been shown that the interfero1ueter can be used8 either as 
a wide band detector or it can be tuned in order to get a larger sensitivity 
in a narrow frequency band. 
Besides these technical ilnprovenlents a. noticeable theoretical work8 ,9,lO has 
been done on the interaction of G\V with the e.nl. field inside an interfero­
metric antenna. 
These studies have produced predictions of the intereferoluetric antenna sen­
sitivities in different configurations (delay lines, F.P. cavities, recycling, syn­
chronous nlocle, dual nl0de etc). 
Furthernlore studies5 ,1l,12,21 have been perfornled 011 the nlisalignment effects 
of the interferOlueter optical elenlents and their functional behaviour as noise 
sources. 
All these scientific achievenlents are fundarnental1nilestones for the projects5,1l 

nowadays in progress of grounded base kilo111etric sca.le interferometers. 
In this paper it is our aiDl to review the nratter and to discuss the most 
remarkable problenls concerning the G\V interferoilletry. 
In section 2 the Michelson interfer0111etry is introduced and the S-matrix 
technique is briefly described. 
In section 3 the theory of the interfer0111etric antennas equipped with FP 
cavities in the Michelson a.r111S and recycling technique is discussed, giving 
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the field expressions and the associated resonance conditions.
 
In section 4 the previous section achieven1ents are applied to the VIRGO
 
project case.
 
In section 5 the antenna sensitivity is discllssed in the case of broad band
 
configuration of the interferolueter.
 
In section 6 the antenna sensitivity is presented in the case of narrow band
 
optical version.
 
In section 7 a brief discussion is given on the validity liluits of results achieved
 
in the previous sections.
 
Finally four appendices are added in order to supply the possibility to go
 
deeper in the Blatter and,in sOlne cases 1 to facilitate the deduction of formu­

las given in the text.
 
It is worth while to remark that the given results, involving the effect of the
 
gravitational field, have been obtained working in the Fermi Norma.l Coordi­

na.tes (FNC) reference systelll 1.
 

In fact, if the interaction of the gravitat.ional field with the e.m. field is con­

sidered, it is very in1portant the reference systen1 chosen in describing the
 
interaction.
 
Two in1portant fralues are a possible choice: the transvers traceless (TT)
 
reference fran1e travelling with the gravitational wave and the FNC frame at
 
rest wi th the interferometer.
 
In the TrI' reference systen1 the optical elelnents of the interferometer are
 
seen fixed and the gravitational-electrolnagnetic interaction produces a time
 
phase shift corresponding to the dcIa..y tirne ill a round trip of the light trav­

elling into the intereferolneter art1ls.
 
The interactioll between the gravitational anel e.n1. field is just the perturbed
 
invariant (ciS)2, that in the 1'1' fraII H:' is written:
 

(dS)2 == ('2 (dt)2 - d:r 2 (1 + h (I)) - ell? (I - h. (t)) == 0 (1) 

where h (t) == h cos (Dt) and t1l(' G \V, polarized along the interferolueter 
arms, travels ill the nornlal d i l'ectioll or the i 11 Lerfer0111eter plane. 
lt results that the total phase sl) i i"t ~rl'(I) f('gistered by the interferometer 

1 Note t.hat so rar in the lit.erat.ure (SCt' I'l'l:,;;.t'l,V) the gl'Clvit.ational-e.m. field interaction 
has been studied in the TT rt'rc)"(~II('t.' syslelll. 



of armlength do at first order in h (h << 1) is : 

sin (don/e)
~TT (t) = w (~tx - ~ty) = hk2do donie cos (Ot - Odo/e) (2) 

The (2) shows that the effect of the gravitational wave on the interferometer
 
is just a delay time of the light path along the interferometer arms.
 
On the other hand, as shown by Fortini and Ortolan10, in the FNC frame
 
the crossing of a GW gives a phase shift as sum of two components: the in­

teraction with the e.m. field producing a time phase shift ~ ~t and the space
 
deformation producing a space phase shift ~ ~S'
 

In fact in the FNC reference system the optical elements of the interferome­

ter are no longer at rest, because they feel the ripple of the space curvature
 
produced by the G\V crossing. The space and time phases are:
 

~ ~s = hk2docos (nt - Odo/e) (3) 

<I? At = hk2do cos (flt - fldo/c) (1 _sin~~o~ofc) ) 

and the total phase shift <I> F NC (t) is : 

sin (ndo/e) 
<PFNC (t) = ~~s - <P~t = hk2do ndo/e cos (Ot - Odo/e) (4) 

the expression (4) turns out to be equal to expression (2) according to the 
gauge invariance character of the total phase shift. 
As stressed by Fortini and Ortolan13, the gravitational phase shift measured 
by an interferometric antenna is a combined effect of both space and time 
phases. However in the FNC reference system, also for kilometric arm in­
terferometers, the time phase is negligible with respect to the spatial one 
( as it is apparent by the expression (3)) as long as the interferometer 
armlength do is much smaller than the gravitational wave armlength Ag 

(ndo/ e = 21rdo/ Ag 10-2 
).rv 

That is the reason why in the calculations it has been put sinc(ndo/e) ~ 1 
throughout this paper. 
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2.Michelson interferometry and S-matrix 

The Michelson interferometer14
,15, by splitting an incoming laser beam in 

two symmetric propagating fields, is an optical device, which supplies two 
interfering output beams: the reflected beam directed toward the source 
and the transmitted beam directed transversally to the source direction (see 
Fig.1a). 
The interference characters of the output beams (constructive or destructive 
interference) are complementary for evident energy flux conservation. 
It is well known that the Michelson interferometer can detect very small 
optical length difference between the two interferometer arms by observing 
the intensity variations in the transmitted beam. It can be shown that the 
best sensitivity is obtained in the condition of destructive interference (the 
so called dark fringe operating point). Therefore in the standard conditions 
almost the total laser intensity is reflected backward. 
Since the interferometer sensitivity is proportional to the square root of the 
laser power, it is in general convenient to use the reflected intensity by adding 
a reflecting mirror capable to recycling the power back again toward the in­
terferometer (see Fig. 1b). 
This technique6 increases the power circulating into the interferometer as if 
fed by a larger power laser by the so called recycling factor. 
Going on in the quantitative discussion of the Michelson inteferometry,the 
technical tools and the relative notations will be given. 
The Michelson interferometer is built up by optical elements capable of re­
flecting and transmitting the light and therefore characterized by a reflectiv­
ity R and a transmittivity T defined as follows: 

(1) 

where r is the reflectance and t the transmittance of the optical element. 
The energy conservation requires the fulfillment of the relation: 

2R + T = (J' = 1 - 6 (2) 

where 6 2 is the term describing the energy-losses into the optical element. 
A typical reflecting optical element is constituted by a glass having a por­
tion of its surface coated by rare-earth oxide. The thickness of this coated 
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layer and in general its deposition technique, as the multi-layers interferential 
coating, fixes the parameters r, t and £ for a given light beam wavelength. 
By the S-matrix technique16 the fields reflected and transmitted by an opti­
cal element can be calculated taking into account properly the external and 
internal reflection phase change: 

S . I t ir I (3)- matr'lX = iT t 

where A1N , AT and AR indicate the incoming, the transmitted and the re­

flected fields and A' is a back incoming field (see Fig. Id).
 
In addition a field of amplitude A, propagating between two reflecting op­

tical elements separated by an optical path length 1, gets a phase change
 
k1, i.e.:A* = Aexp[ik1], where k = 21r/A, being A the field wavelength
 
(see Fig. Ie).
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3.Interferometric antennas 

By using these rules, the transmitted and reflected fields can be calculated 
relatively to a Michelson interferometer equipped (or not) with recycling mir­
ror distant I from the beam splitter and having at the arm ends, II and 12 

distant from the beam splitter respectively, two reflecting resonant optical 
devices (see Fig 2a). . 
The reflectance of the 11- th resonant optical cavity can be described by the 
complex function FJ.L defined as : 

(4) 

Furthermore the transmittance and the reflectance of the beam splitter (re­
cycling mirror) are indicated by t (r) and r (p) respectively and they obey 
to the relations : J 

(5) 

The fields propagating into the interferometer are shown in detail in Fig.2a 
and applying the S-matrix method ,calculations lead to the final result for 
the reflected A R and transluitted AT amplitudes: 

AR .p+aRT 
--=~--- (6)A1N 1 + pT 

T = exp [ik2 (I + ldJ (t 2F 1 - 1,2 F2 exp [ik2 (l2 - lI)J) 

AT r'trU 
(7)A1N 1 + pT 

U = exp [ik (l + 21dJ (F1 + F2 exp [i,,~2 (12 - ldD 

It is trivial to deduce fr0111 the relations (6) a.nd (7) the expressions relative 
to the case without recycling putting p = 0, T = 1 and I = O. 
By the expressions (6) and (7) the l\1ichelson interferometer working condi­
tions can be fully analyzed. 
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The dark fringe oi>erating point requires AT = O,i.e. U = O. In the ideal 
condition, having the reflecting elements equal reflectance (F1 = F2 ), the 
well known Fresnel relation is deduced: 

A 
12 -11 =(2n+l)4" (n=0,1,2 ... ) (8) 

Furthermore the recycling condition requires A R = 0 or p + aRT = O.
 
Again in the hypothesis of equal reflectance condition,i. e. : F 1 = F2 == F =
 
IFI exp [iArg (F)], at the resonance we have (Arg (F) = 7r), i.e. F = -IFI
 
and the full recycling condition becomes:
 

(9) 

This complex equation is fulfilled by putting the real and imaginary parts 
equal zero. The imaginary equation supplies the so called resonant recycling 
condition: (l + 11 = mA/2), (m = 1, 2... ),then the real equation gives the 
condition: 

(10)
 

In conclusion the recycling conditions are fulfilled by matching the recycling
 
mirror distance 1 at the resonant value and by setting up the recycling mirror
 
reflectance in order to match the aBSaR IFI value.
 
The performance of the Michelson intereferometer with recycling is measured
 
quantitatively by the recycling factor, defined as the ratio of the beam inten­

sity incoming into the Michelson anns with and without the recycling lnirror.
 
By using the symbols of Fig. 2a the an11 intensity without the recycling is
 
given by the expression:
 

(11 )
 

land, in the case of dark fringe and recycling matching fulfilled conditions, 
the intensity with recycling can be calculated as : 

7 



(12)
 

therefore the recycling factor expression becomes : 

Recy.Fact. = 'T/R = aR 
2 12 (13) 

1 - aRaBS IF 
It is apparent that, apart the minimization of the energy losses in the recy­

cling mirror and in the beam splitter, the recycling factor is in general mainly
 
dependent on IFI, the reflectance absolute value of the resonant optical ele­

ments placed at the interferometer arm ends.
 
As far as the resonant elements placed at the Michelson interferometer arm
 
ends are concerned, the Fabry-Perot (FP) optical cavity is discussed, being
 
the case of interest of the VIRGO and LIGO projects.
 
A do long FP optical cavity is considered (see the diagram of Fig. 2b), having
 
mirror reflectivities ri and ri respectively (again the standard relations hold:
 

2rr + t; = a (i = 1,2) and a = 1 - E , assuming that the energy-losses into
 
two mirrors to be quite similar).
 
It is useful to recall the relation between the FP resonant frequency 110 and
 
its optical length17,18 :
 

c [ \I! (do, Rd ( , ')]110 = 2d q + 7r 1 + m + n (14) 
o 

where q, m' and n' are integer nU111bers related the longitudinal and trans­
verse resonant modes of the cavity and \I! is a function depending on the 
mirror geometry (Ri being the curvature radius of the i - th mirror). 
From (14) it is apparent that the optical length variation D..d = d - do implies 
a frequency variation D..11 = 11 - 110 and conversely. 

D..11 D..d
-=--* (15)

110 do 

1 1 + Tn' + n' 91 + 92 - 29192 ] 
* [ + 1rq + (1 + m' + n') arccos (y'glg2) 2)glg2(1 - glg2) 
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where 9i = 1 - dol Ri , being Ri the i-tll reflector radius.
 
The approxima.tion into (15) depends on the factor 1/q,generally a very small
 
quantity, since q measures the lllunber of wavelengths in the cavity length.
 
The (15) tells to us that phase varia.tions due to the length variations are
 
correlated to frequency variations and conversely.
 
For next calculations it is vital to know the conlplex function FJ-L describing
 
the I" - th FP reflectance of the 1Jichelson interferolneter.
 
To this purpose the A3 (As) exciting field of the FP cavity is considered (see
 
the dia.gram of Fig.2a), producing the reflected Aq (A6 ) and the transmitted
 
A7 (Ag ) fields respectively.
 
Again applying to optical cavity 11lirrors the S-nla.trix luethod, the expres­

sions of the transluitted and reflected field ratio over the incident one are
 
deduced:
 

(p. = 1,2) (16) 

where the involved sylnbols follow the definltions : 

(17) 

l + 7'11'2
/3= --- (18)a= 

l - 1'1T2 

(19)
 

c 
PSI? = ­ I/O = PSR (q + 1/2)

:2do 



~51J. indicates the detuning phase from the resonant condition of the JL - th 
FP, dlJ. is the actual length around the resonant length do and 1/0 the res­
onant frequency defined as the free spectral range (FSR) of the resonant 
cavity times q + 1/2, where q is a positive integer number (for instance in 
the FP cavities of VIRGO project: do = 3103 m, 1/0 = 2.831014 Hz it results 
q = 5659999999). 
A comment is required about the fact that the second expression of ~51J. def­
inition is independent of JL index, despite of the fact that the phase variation 
in two FP can be due to wathever origin, hence in general different. The 
explanation is that it is supposed that the phase variation is due to common 
exciting field, then producing an equal effect in two cavities. 
In (17) the FP reflected field is written giving the argument in explicit form 
both in the exact and approximate version, if a very small ~51J. value is con­
sidered. 
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4.The case of the VIRGO project interferometer 

It is well known that an optical cavity stores e.m. energy E = cost * 1, 
where 1 is the averaged intensity on the cavity optical length, and: 

cost = inter/errir:g beam volume 
velocity 0/ light 

The function I(z) is evaluated by computing19 the interference of two 
beams going back and forth between two mirrors distant do with reflectivity 
ri and r~ respectively: 

2 

l(z) = lIN ( <7, - r, )' [(1 - r,)' + 4r, cos' ,p(z)/2]Air (20)
1 - rtr2 

where Air is the Airy function given by: 

2r1r2 -1 
Air = [1 + ( )2 (1 + cos (k2do)] (21 )

1 - rtr2 

and 'lj;( z) = 2kz being z the current position between the mirrors. 
The function I(z) shows the standard interference pattern, its mean value 1 
results: 

(22)
 

The formula (22) at the resonance becomes: 

(23)
 

where the cavity finesse defined by the following expression has been intro­
duced: 

F* = 1ryrIr2 (24)
1 - r1r2 
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In the case ri < T"~ ~ 0"1 ~ 1 the (23) becomes: 

(25) 

otherwise when rf = r~ and 0"1 ~ 1 : 

- I F* 1 + ri I 2 F*1res = IN r,;:;-;;:- ~ IN- (26)
1ryr1r2 1r 

As an exercise it is useful to apply these formulas to Michelson interferome­
ter. Indeed, if AT = 0, the interferometer is seen as two cavities constituted 
by a common optical length I plus two branches II and 12 , both having end 
mirror reflectivities p2 and O"~s IFI 2 respectively. The two corresponding re­
flected amplitudes are: 

AR~ .p =f O"RO"BS IFI exp (ik2(1 + l~)) 
-=z (p,=1,2) (27) 
A IN 1 =f PO"BS IFI exp (ik2( I + l~)) 

at resonance 2k(l + II) = 21r with uppersign and 2k(l + 12 ) 1r with the 
lowersign, thus the average stored intensity in each cavity is at resonance: 

2 

l( [ + [1) = l( [ + [2) = A~N ( an - PIFi)2 (1 + a~s 1F12
) (28)

1 - PO"BS 

These cavities are called recycling cavities.
 
Since the Michelson interferolneter must work with A R = O,which implies
 
P = O"RO"BS IFI, then each cavity gets a.n average intensity equal to :
 

2 
- - 2 1 + p 2 2
I(l + ld = I(l + 12 ) ~ AIN 2 ~ -F*AIN (29)

1-p 1r 

It is worth while to note that the intensity calculated in each branch supplies 
the following result: 

(30) 
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We report the nUlnerical values of the most remarkable parameters discussed
 
above in the case of the VIRGO interferometric antenna in the matching
 
conditions of recycling and FP resonance.
 
The optical element characteristics of the VIRGO antenna are listed below:
 

i) - Energy-losses: 
the energy-losses are estimated to be of the order of 50 p.p.m. for each optical 
component, therefore we have: 
O'R O'BS r-..J 0' 1 - 50 10-6 

r-..J r-..J 

ii) - Reflectivi ties : 
the recycling mirror reflectivity is p2 = .976 
the beam splitter reflectivity is 1'2 = t2 = 1/2 
the FP entry mirror reflectivity is 1'i = .975 
the FP end mirror reflectivity is 1'~ = 1. - 10-4 

the FP resonant reflectivity is IFI 2 = .976 
the FP resonant transmittivity is 131 2 = 8.110-3 

iii) - recycling factor is 1]R = 41 

iv) - cavity finesse : 
recycling cavity finesse is Ft = 129 
FP cavity finesse is FJ = 259 

v) - geometrical lengths : 
recycling mirror beam splitter distance is / = 5.rn 
beam splitter FP entry mirror distance is /1 = /2 = 5.m 

Given a laser source of total radiant power Po, the intensity distribution 
on the bean1 at radius l' froin the bean1 axis expressed as : 

i T 21"2" 1rW5 21'2 
P(1') = I oexp(--2 )211"1' d1' = I o-[1-exp(--2)] (31 ) 

o % 2 % 
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the (31) gives also the total power related to the intensity 10 in the limit 
r ---+ (X): 

2 
= PO-- (32)10 2

7rWo 

Suppose, as in the VIRGO project case, to have a laser source of power 
Po = 10 W, feeding the Michelson interferometer with recycling, the match­
ing condition with a beam waist diameter 2wo = 4 10-2 m supplies an incom­
ing intensity lIN = 210 (210- 2)-2/7r = 1.6104 Wm- 2 

• Hence the following 
typical quantities can be evaluated: 

i) - energy stored into the recycling cavity : 

ERG ~ ~Ft IA IN I 
2 * Vic = ~Ft P02l/c = .64 * 129 * 10 * 2 * 10/(310S 

) ­


5.510- S J
 
where il volume V is defined as V = 7rW~(l + ld.
 

ii) - intensity of the beam impinging the FP cavity: 
2 2 2IA3 1 = t27JR lAIN 1 = 3.3 lOs W m-

IAs l
2 = r 27JR lAIN 12 = 3.310s VV m-2 

with t 2 = r 2 = 1/2 

iii) - energy stored into each FP cavity: 

EFP ~ ~Fd7JR IA IN I 
2 
~ Vic = ~Fd7JRP02do/c = .64 * 259 * 41 * 10 * 2 * 3 * 

103 /3 lOs = 1.35 J 
where il volume V is defined as V =7T"w~do 

iv) - beam intensity transmitted by the FP end mirror: 
2 2 t2 2IA71 = IAs I2 = 151 2 

TJR IA IN I = 2.6103 
Vf!171­
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5.Broad band interferoilletric antenna sensitivity 

This section is devoted to discuss the recycling Michelson interferometer 
sensitivity in detecting GW in a broad region of frequency. 
It is well known that the G\V effect on the interferolneter test masses20

, 

which are the Inirrors of two FP ca.vities, consists in an equal and opposite 
length variation I::1dJ-l = (-l)IL(d - do) = (-l)J.t l::1d of two FP's placed along 
the orthogonal anus of the interfero111eter (see ref.:3). 
According to the fonnulae (7) and (17) these length variations produce a 
total phase variation of 21::18 = 4k(d - do) in the transmitted intensity ex­
pressed by the following relation : 

I::1lT = jAT (1::18 i= 0)1
2 

,- IAT (1::18 = 0)1 
2 

(33) 
IAIN I 

2 
lIN 

a1s (an - p2) IFI 2 
C+/2 

where: 

C± = 1 ± cos [(0: +;3) 1::18 + 'I/'Jf] 
'l/JAf=k2(11-12) 'lj)R="~2(1+ld (34) 

Putting into the (33) the working condition at the extinction (8) and the 
recycling conditions (9) and (10), wit.h a good degrees of accuracy the I::1lT 
expression beco111es (a.n exhaustive discussioll of the whole optical system is 
given in Appendix-C) : 

,6.lT ~ a1Sa R IFI2 1 - cos [(0: -+ ;3) ~8] _ 2 1112 A;r.,.2 
-? _ 2 -, 2 - aBS F T]RU'!! (35) 

lIN... 1 - an aBS' 11· I 

where the pha.se 1::1<I>,considcred as a. sJnall quantity, is given by the expres­
SIon : 

~8 "f .F'" f!,") 1 - .. (36),6. <I> = ((\ + /-J) -.- ~ - -=- :J.b
 
2 Ii 1'1 "1 - 1'1
 

I :j 



Into the (36) the finesse parameter has been introduced and the reasonable
 
approximation a ~ 1 has been performed.
 
In the case of interferometric antennas the reflectance r~ ~ 1, then the ex­

pression (36) becomes:
 

~<I> ~ F* 1 + r1 ~8 = F* 1 +r12k~d = F* 1 + r1 2do~w ~ 8F*~d(37) 
1r 1r 1r Cvr;. vr;. vr;. A 

having expressed the phase ~8 by means of the optical length and frequency
 
variation21.
 

By using a standard technique the transmitted intensity is phase-modulated
 
at high frequency ('"V 10 MHz) in order to get a signal at first order and to
 
minimize the noisy effects of the laser fluctuations.
 
In the following calculation the external phase-modulation case is considered22 

;
 

i.e. the transmitted field before the photodiode detection is undergone to in­

terference with a small fraction of the main field Ao phase-modulated at high
 
frequency by means of an electro-optic device.
 
After photodiode detection, the output current signal is demodulated and
 
low-pass filtered with a frequency band ~f.
 

The final current signal is shot noise limited and the signal to noise ratio23
 

(SNR) can be obtained (see for detail of this calculation the Appendix-A) :
 

(38) 

where hvo is the photon energy, 1] the photodiode quantum efficiency and 
J1 (m) is the Bessel function relatively to the modulation amplitude m. 
The SNR expression given by (38) depicts the sensitivity of the recycling 
interferometer in detecting a phase ~<I> given by (36). It is important to 
point out that the expression (38) is a "stationary picture", because nothing 
is told about the time dependence of the phase ~<I>. 

In order to get the interferolneter sensitivity relatively to the case of a 
harmonic modulation of the optical length around its resonant value do, a 
different approch is needed in handling the resonant cavity. 
This approch concerns the description of the resonant cavity in term of en­
ergy fluxes. 
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In fact following this line, the resonator behaviour is given in term of general
 
parameters like the resonance frequency, the storage time and the Q-factor,
 
hence each resonator is described in the quite similar way, no matter if it is
 
a "LC" circuit or an optical cavity.
 
But the general parameters are expressed in terms of different components
 
describing the particular resonator.
 
According to the ref.16, in a "LC" resonator the reflected over incident in­

tensity is given by the formula:
 

lR [T] 2 1+ 82Q2 
(39)

lIN = f 1 + 82Q2 

where 8 = (w - wo) /wo, Q = WOT and Q = wof. The parameters T and fare 
given by the following definitions : 

111 1 1 1 
-=-+­ (40) 
T T e TO 

where T e is the decay time relative to the external energy-losses (escaping 
energy fluxes) and TO the decay time relative to the internal energy-losses 
(energy lost in the elements) of the resonator. 
In the case of an optical resonant cavity the reflected over the incident 
intensity ratio can be deduced from the formula (1 7) taking into account 
that, since the free spectral range (FSR) is larger than the cavity width 
(FSR » FWH M), it is allowed the approximation: 
sin [2do(w - wo)/2c] ~ 2do(w - wo)/2c : 

(41 ) 

The formulae (39) and (41) show the saIne structure and it is straightforward 
to point out the same meaning of the corresponding terms: 
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2do J r lr2 _ 2do Jarl r2 
r=-----=--- r = ----:-- ­ (42) 

c 1 - rlr2 C ar2 - rl 

the Q-factor and the 8 parameters get a quite similar significance. 
Now the differential equations describing the resonator fields can be modi­
fied taking into account the effect of a small harmonic perturbation p (t) = 
p cos [nt] affecting the optical length or correspondently the field frequency. 
By looking for a first order solution in the perturbation amplitude p, the 
reflected amplitude is given by the following expression (see for detail the 
Appendix-B) : 

r . [1 - i8Q.jaf/r
S_ (t) = f exp [zwt] 1 + i8Q (43) 

iQ exp[int] _ iQ eXP[-int]] =CR-SB -SB 
PI + i8Q 1 + i8+Q PI + i8Q 1 + i8_Q - +­

the amplitude (43) describes a carrier field (CR) and two side bands (SB+
 
and SB_), generated by the perturbation p(t), of frequency V+ = v + n/21r
 
and v_ = v - n/21r respectively (8± = v±/vo - 1).
 
The phase .6.<P (vg ) of the reflected field l4 at the resonance (8 = 0) is :
 

.6.<P (v ) = 2ISB! = 2 wor (44) 
9 \CRI p Jl + n2 r 2 

if the perturbation is a gravitational wave the (43) and (44) expressions get
 
the form we ecounter in the gravitational physics literature3 with the sym­

bols: p == h, n/21r == V g and (21rr)-1 == v~.
 
Calculation of SNR leads to the following "dynamical SNR expression",
 
where the frequency vg of the hannonic perturbation is present :
 

2'rJ1o'rJRS( )_h_SNR = ViJl (m) aBS IPI g (45) 
hvo v y'7S:J 

S(v ) = 2vo/v~ 
g Vi + (vg M)2 
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It is straightforward to verify that the expression (45) goes into the "station­

ary form" (38) if vg is put equal zero.
 
In fact, reminding that the gravitational perturbation amplitude can be given
 
as h = 6.d/do and using the formula (42), it results:
 

Vo 6.d 6.d 2do Vrl r2 F*
2ho = 2-21rvo7" = 2-21rvo- = -2k2D.d ~ 6.<1> 

v9 do do c 1 - rl r2 1r 

which is the D.<I> definition given in the formula (36) in the approximation 
(1 + rl) / VT1 ~ 2. 
It is also apparent from the expression (45) that the only effect of the recycling 
is to enhance the power 10 by the factor "lR. 

The (45) gets the frequency dependence through the function S (vg) , which 
is a low-pass filter-like function, having the cut frequency at v~. 

It is interesting to plot the function S( vg ) in the VIRGO project case at 
different cut frequency v~ in the recycling ("lR > 1) and without recycling 
("lR = 1) cases.(See in Fig. 4 the curves of the function S(vg)VTiii/vo) 
The meaning of the curve labels given in Fig.4 are defined in TABLE I; they 
correspond at different frequency cut v~, finesse F* and recycling factor TJR 

by parametrizing the reflectivity r~ of the FP front mirror. 
The curves of Fig. 4 tell to us that in the high frequency range of the 
perturbation, at low finesse values, a remarkable advantage is got by using 
the recycling technique, on the contrary, in the low frequency range of the 
perturbation at high finesse values, the recycling use is of scarce usefulness. 

TABLE I 

VTiii r 2 
1 F* V O 

9 

(Hz) 
7" 

(msec) 

a 

a* 

b 
b* 
c 

c* 

d 
d* 

1 
40. 
1 

17.8 
1 

5.6 
1 

2.5 

.14 

.14 

.85 

.85 
.975 
.975 
.995 
.995 

3. 
3. 

37. 
37. 

247 . 
247 . 
1200. 
1200. 

5.103 

5.103 

676. 
676. 
100. 
100. 
20. 
20. 

3.210- 2 

3.210- 2 

.16 

.16 
1.6 
1.6 
8. 
8. 
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6.Narrow band version of the interfero111etric antenna 

So far an interferometric antenna has been discussed having a broad band 
sensitivity (see Fig. 4), in particular a flat frequency response below the cut 
frequency v~ and a suppressing behaviour at frequency higher than v~. 

In this section a different version of an interferometric antenna is presented, 
using an optical arrangement capable of giving a tunable narrow band sen­
sitivity. 
This method, originally proposed by Drever6 (1983), has been studied suc­
cessively in a complet theory by Vinet9 (1986). 
The Drever's idea is based on the symmetric coupling of two long cavities of 
a Michelson interferometer arms with a short cavity, by settling the recycling 
mirror beyond the beam splitter (see the optical arrangelTIent in Fig. 5a). 
As extensively described in Appendix-D, this symmetric system made of 
three coupled cavities (the sym111etry involves the optical path lengths as 
well as the reflectivities of the optical elements) shows two resonant. oscilla­
tion modes at the circular frequencies Ws and WA, where the labels indicate 
the character symmetric and antisymmetric of the longitudinal oscillation 
modes of the optical system. 
The narrow band behaviour of the antenna is reached by matching the laser 
frequency on the symmetric or antisymmetric resona.nt mode, then the an­
tenna sensitivity becomes resonant at a gravitational perturbation frequency 
equal to the difference of two resonat n10des of the coupled cavities. 
In the following this mechanislTI is described in detail. By referring to the 
Fig. 5a, the feeding laser field Ao is shared in two fields by means of the 
beam splitter of reflectivity 1'2 and transmittivity t 2 , being 1'2 = t 2 = aBS /2. 
These two fields are converging through two symmetric optical paths 11 and 
1 on the recycling mirror, which gives access to the optical short cavity of2 

total path length a.
 
The two long FP optical cavities along the interferometer anTIS are defined
 
by the front and end 111irrors at a distant do with reflectivities 1'~ and 1'~
 

respectively.
 
Of course, by the symmetry of the optical lay out, back to bealTI splitter, two
 
similar fields, the reflected and the transmitted ones, are present.
 
In the reasonable hypothesis that the corner 111irrors along the paths IJ1.
 

(/-l = 1,2) get an almost unitary reflectivity (1'~ ~ 1), the two fields A oJ1.
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reaching the recycling mirror of reflectivity p2 and transmittivity r 
2 get the 

form: 

AOI = i1'ci1'Aoexp (ikl l ) ~ -1'Aoexp (ikl l ) 

A 02 = iretA oexp (i kl2) ~ it A oexp (i kl2) (46) 

The field configurations originated by two incoming fields AOI and A02 prop­
agating into the optical system are shown in Fig 5band 5c separately for 
semplicity sake, but, of course, they are to be considered superimposed. 
By applying the S-matrix method to these configurations one obtains back 
from the recycling mirror four fields ATJL and ARJL having the expression: 

, r 2FJL exp (ika) .
 
A TJL = zAoJL 1 2F F ('k2) = zAoJLXJL
- P I 2 exp z a 

- 'A 1 - FIF2exp (ik2a) - 'A }/A RJL - Z OJLP - z 0JL (47) 
1 - p2FIF2exp (ik2a) 

where FJL is the complex parameter describing the reflectance of the I-" - th 
FP optical cavity and holding the definitions: 

X = 7
2 FJL exp (ika) y = P 1 - FIF2exp (ik2a)

JL 1 - p2FI F2exp (i k2a ) 1 - p2 F I F2exp (i k2a ) (48) 

The p, = 1 (I-" = 2) case corresponds to the diagram of Fig. 5b (5c).
 
It is straightforward to deduce the resulting transmitted field back to beam
 
splitter:
 

AT = t (ATI + A R2 ) exp (iklt) + iT (ARI + A T2 ) exp (ikl2) = 

1'tAo [Xl exp (ik2l I ) + X 2exp (iA:2l2)] + 
iAoO"BS [1'2 - t2] Y exp ['ik(ll + l2)] (49) 

the term in Y of (49) vanishes by using the given condition t2 = 1'2 = O"Bs/2. 
From (49) the intensity of the trans111itted bean1 can be deduced: 
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2IATI: ~ r 2e IXI exp [ik2/1] +X 2 exp [ik212] 1 = (50)
IAol 
2 2 41FI2 2 + (exp [i(A1·g[FI ] - Arg[F2]+ k2(l1 -/2))] + cc) 

r t T 4 2 
1 + p4 1F/ - p2 1FI (exp [i(Arg[FI ] + Arg[F2]+ k2a)] + cc) 

By referring to the formulae (17) and (36), in the case of GW perturba­
tion it results that ~4>1 = -~4>2 = ~4> = q~w2do/c, hence Arg[FI ] ­

Arg[F2] = 2~4>. On the other hand by using the energy flux conserva­
tion (see formula (7) of Appendix-D with the condition / = 1), one obtains 
Arg(Fd + Arg(F2) + ¢ = 27r mod(27r), hence the (50) becomes: 

IAT I 
2 

2 2 41F/2 1 + cos [2~4> + k2(l1 - /2)]
-- = 2r t T (51 )2IAol (1 - p21F1 2)2 

2 t 2Putting into the (51) the values of r = ~ 1/2 as well as the extinction 
condition, the (51) takes the forn1 : 

2 2
IAT I = (1 - p2)21F1 sin2 ~q> (52)
IAol

2 (1 - p2 1F12)2 

The result (52) is analogous to the broad band case of the interferometer 
discussed above and given by the forn1ulae (35) and (36). 
However it is important to point out the difference of this case. In fact, as 
will be clear by the following argulnentations, in the narrow band optical 
system the stationary case doesn't exist by definition. 
In order to calculate the relaxation times of the optical systeln, the same 
procedure followed in the broad band case will be adopted. 
The original expression (47) of the translnitted field AT/-L is considered. Since 
the phase effects are given by the exciting field AoJ.L and therefore equal into 
the two long cavities, it is allowed to put FI = F2 = IF/ exp (iArg[F]). 
Thus the transmitted intensity is given by the expression: 

(53) 
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the result (53) call be written in the following form directly comparable with 
the expression (22) of Appendix-B: 

2IATJl l = [(1 - p2) IFI] 2 * (54)
IAoJl l

2 1 - p2 1F\2 
1 

The relaxation time constant T* results defined as : 

T* = p IFI e (55)
1 - p2 1FI2 

e = 2do (a + (3) = 2do 2r2(a - ri)
 
c c (ar2-rl)(1-rlr2)
 

The value of the time constant e is roughly four times T (e ~ 4T) in the 

reasonable approximations a ~ r~ ~ 1, Jr2/1~1 ~ 1 and va + rl ~ 2. 
On the base of the transmitted field expression (23) of Appendix-B relative to 
the harmonic perturbation h(t) = h cos (nt) of a resonator connected to two 
guides, the analogous expression of the field transluitted by the three coupled 
cavities can be written. However the existence of two resonant modes allows 
to performe a choice. In the case of exciting the WA mode the following pa­
rameter definitions are to be considered: 

W± = w ±n 
1 . 1 . 

IA = - - JWA IS = - -JWs 
T* T* 

W-WA
8=--­ (56) 

WA
 

c _ c _ W +n -ws W - n -WA
 
u+ = us- 8_ == 8A = ----­

Ws WA 
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Thus the perturbed translnitted field gets the expression: 

k22T* 
S_(t) = So 2. [exp (jwt)- (57)

1 +J8QA 

hr* ('S expo (jw+t) + IA ex~ Uw-. t )).] =CR _ SB+ _ BB_ 
1 +J8sQs 1 +J8AQA 

At the resonance w == WA the parameters get the values: 8 = 0, 8A = -n/WA
 
and 8s == (WA - Ws + n)/ws. In particular 8s vanishes for n ~ Ws - WA.
 
That means that the transmitted field gets a peaked behaviour at the fre­

quency w+ = WA + n due to term SB+. The other perturbation term SB_
 
remains actually limited and doesn't play any role in the narrow' band mech­
anlsm.
 
That can be seen quantitatively by looking at the phase ~<I>( ZIg) defined in
 
the present case as (see Appendix-B) :
 

~<I>(v ) == ISB+I == h 11 - jwsr* I , (58) 
9 IGRI 1 + j8s Qs 

at the resonance (w == WA) the phase (58) becomes: 

1 + (WST*)2
~<I>(Vg) = h ) ~. 

1 + (WA - Ws +n 2r *2 '. 

h Zls27rr* (59) 
}1 + (VA - Vs + vg )2(27rr*)2 

By using the result (55) : T* ~ T4p IFj /(1 - p2 1F1 2) together with the rela­
tion VS-ZlA = l/7fT given in Appendix-D, the expression (59) can be put in 
the form: 

v /VO
~<I>(Vg) == h1]E S 9 ... (60)

}1 +11k((vg - vg)/vgp 

where the cut frequency Zl2 == 1/1rT gets a different definition with respect to 
the previous definition of the broad band case ai1d an expansion factor 1]E is 

24
 



defined as : 

V~ = - VA = 2:d 
o 

arctan (2r~ s~nrJ/2) = 1 ~P;~~12 (61)Vs 1/E 

Let us go back to the expression (51) of the transmitted intensity in the form: 

\ATI: =2t2r2 r4lFI 
2

2 
[1+cos(2Ll<I>(lIg)+k2(11-12))] (62)

IAol (1 - p21FI )2 
it is worth while to remark that the cosinus argument is the sum of two 
terms, each being characterized by the frequency liS and 11A respectively. 
In fact the phase ~<I> (119 ) is carried by the frequency liS as it is obvious from 
the expression (62) and the factor k of the second term has to be defined as 
k = wAf c accordingly with the laser frequency matching the frequency 11A. 
Therefore the transmitted intensity depends on two frequencies 11A and liS, 

but the settling of the Michelson interferometer at the extinction eliminates 
the component at frequency 11A, leaving the transmitted intensity at the fre­

quency liS'
 

If a hetherodyne detection is performed between the carrier 11A and the side
 
band liS, one obtains a signal proportional to:
 

IATI = IAol hS(lIg) = (63) 

IAol h (1 - p2) I~I TJEIIS/ II~
 
(1 - p2 IFI ) )1 + TJk( (lIg - IIg) / IIg)2
 

where S( vg ) gets the same meaning as in the broad band case; if p2 = IFI 2 

the (63) supplies the following expression for 5(v
9 

): 

5 (11g) = 'rJ EllS / II~ (64) 
2 )1 + TJ1( (V9 - IIg) / IIg)2 

In Fig. 6 the (64) is plotted for different values of the phase </> (</> = 1r, 7r /3, 7r /6 
and 1r/9) corresponding to the frequencies II~ ~ 40,80,154 and 230 Hz re­
spectively. The curves shown in Fig. 6 are computed for the following set of 
values: 
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7-i == .995 r~ == .99999 == .999995(J 

Finally a relevant problem arises about the scientific use of the narrow band 
gravitational antenna. 
The problem concerns how low in frequency can be tuned the antenna. That 
is directly connected to the detection of gravitational periodic signals emit­
ted by rotating neutron stars, whose frequency spectrum is located to low 
frequency (3 Hz). 
As it is shown in Appendix-D (see formula (18)) the frequency difference of 
two resonant modes,corresponding to the minimim tunable frequency of an­
tenna, is reached by doing the minimum coupling between the long cavities 
(<p == 7r). It results that the minimum tunable frequency is of the order of the 
cavity FSR times the factor 1 - r~, therefore the narrow band optics of the 
antenna requires high values of the front mirror reflectivity, or high finesse16 

of the long cavities. 
Another limitation of the minimulll tunable frequency could be given by the 
widths of resonant peaks. 
However it has been shown that such a width is v~/T/E, therefore, as the peak 
position v~ is moved more and more down in frequency, the ratio of the width 
over the peak position is constant and equal to liT/E. Hence the tuning of 
antenna in the low frequency liluit results remarkable favorable. 
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7.Validity conditions of sensitivity fOrl11Ulas 

It has been undoubtedly noticed that the conditions ri < r~ ~ a ~ 1 has 
been widely used throughout the paper. That is due to the fact that these 
inequalities are the standard settling of the long FP optical cavities of a GW 
interferometer detector. 
Besides these conditions are directly tied to the condition IFI 2 

~ 1, which is 
to the base of most important results presented in this paper and it is also 
connected to the frequency cut v~, which characterizes the frequency range 
where the antenna is capable to detect GW with good efficiency. 
Hence in this section the validity limits of these conditions are discussed. 
By defining the characteristic time constants TFSR, T' and T" as : 

2do ,,2do r=-1 
TFSR = ­ T = -(1 - yar2) (65) 

c c 

the conditions ri < r~ ~ a ~ 1 in1ply the following inequalities: 

, 
TFSR < T < T (66) 

Following the adimensional notations tm = TFSR/ T" and t = r' /T", used in 
the Vinet's paper8 , the (66) corresponds to the inequalities: 

t m < t < 1 (67) 

At the resonance of the FP cavity the expression of IFI 2 can be written as 
function of t and t m : 

1 + ttm - 2t) 2 ( )2
( ~ 1 - 2t (68) 

1'2 

being the approximation in (68) allowed by the srnallness of tm .
 

It is clear from (68) that the validity of the approximation IFI 2 
~ 1 depends
 

on the smallness of t = (1 - va1'2)/(1 - 1'11'2) with respect to unit.
 
Since r~ ~ a ~ 1, that, in turn, depends on the value of 1'i or, if you want,
 
on the choice of the finesse F*.
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That becomes apparent by showing the t dependence on the different param­
eters : 

(69) 

By using the numerical values of section 4 : r~ = 1-10-4 and (7 = 1-5010-6 ,
 

it results that T" = .2666 sec and t = .597/ v~.
 

This function is plotted versus v~ in Fig.9, and two more horizontal scales
 
are added reporting the corresponding values of the reflectivity r~ and the
 
finesse F*.
 
The Fig.9 shows that in the finesse range so far considered for the interfero­

metric antennas (20 < F* < 400) the condition IFI 2 

~ 1 is fairly well fulfilled
 
(t ~ 10-2 ). '
 

We point out that vg is also limited at high frequencies, because it is required
 
to be a small fraction of the free spectral range ( for instance in the VIRGO
 
case VFSR = 501<Hz).
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Appendix-A 

This appendix is devoted to deduce the expression of the signal to noise 
ratio (SNR) of the intereferon1eter in the case the technique of the external 
modulation is used. 
In Fig. 3 the considered optical layout is shown : the intereferometer is 
represented as a black box excited by a field A1N , giving in output the trans­
mitted field AT. Furthermore the interferometer is supposed to work at the 
extinction. 
As represented in the figure, the external modulation is obtained by the ex­
traction of a small fraction A LO of the incoming field Ao by means of a beam 
splitter Q' of reflectance r a and transmittance t a . Successively this field is 
phase-modulated at high frequency (~ 107 Hz) by an electro-optical device 
and recombined with the output field AT on the beam splitter f3 of reflectance 
r(3 and transmittance t(3. 
The interferring field A = r(3ALO +t(3AT is detected by a photo-diode, whose 
output current is demodulated, filtered and finally through the lock-in tech­
nique the significative interferolneter signal is extracted. 
In the given hypothesis the intensities of the involved fields are quantitatively 
given by the inequalities: 

(1) 

The intensity IAI 2 hitting the photo-diode is given by the expression: 

where () is the interfering field phase, Tn and WM the an1plitude and the fre­

quency of the external phase-modulation.
 
The phase () can be adjusted to the value 7r /2 in order to express the interef­

erence term of IAI 2 in odd Bessel's function series (actually limited to the
 

2fundamental frequency by IHeans of electronic filtering) and neglecting IAT I 

the expression (2) becomes: 

(3) 
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The current i of a photo-diode, excited by a light of power IAI 2 integrated 
on the photo-diode surface, is given by the expression: 

. IAI2 

Z = eTJ-­ (4)
hv 

where e is the electronic charge, "I the quantum efficiency and hv the photon 
energy. It results that the photo-diode output current is given by a "dc" 
component and an "ac" component of frequency WM /2tr. 
The current signal is given by the lock-in technique is written as : 

(5) 

and the noise current in' coming from the photo-diode shot noise relatively 
to the "dc" cOluponent, is given by the formula: 

(6) 

Therefore the signal to noise ratio can be written: 

is [2:;J IS NR = i;: = V~2t{3 ATI J1 = 

2"1 IAol

2
TJR!2J IFI ~<I> (vg )

hv V~ laBS ~ (7) 

having taken into account tha.t t{3 = 1/V2. 
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Appendix-B 

According to the ref.16, the field of a resonant device can be given by 
means of a couple of differential equations of the first order (instead of a sec­
ond order differential equation), no matter the f~equency range be involved. 
Such a couple of differential equations gets the form: 

A+ = - (~ - jWo) A+ + kS+ 

L = - (~ + jWo) A_ + kS~ (1) 

where the dot means time-derivation and the sta,r complex conjugation. 
A± indicates the field into the resonator; S+ = So exp [jwt] is the exciting 
field, Wo the resonance circular frequency;furthermore the following defini­
tions are given: 

III 1 1 1 
-=-+­ (2) 
T Te TO f 

where TO is the relaxation time due to the resonator energy-losses and Te the
 
relaxation time due to the energy escaping from the resonator.
 
Following the ref. 16 notations, the field S_ reflected by the resonator is writ ­

ten as :
 

(3) 

where by A the fields A+ or A_ are indicated.
 
The explicit expression of S_ (or S:.) can be obtained by using the first (or
 
the second) equation of the systelll (1), being the first equation the complex
 
conjugate of the second one :
 

1-j8Q f-j8Q . 
S_ (t) = S+ (t) f 1 + j8Q = So 1 + j8Q exp (Jwt) (4) 

where the following definitions hold : 
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8= w_-_w_o Q =WOT Q =WOT (5)
Wo 

If a small harmonic perturbation h (t) = h cos (Ot) is supposed to affect the 
resonant device in such a way that neither the resonance frequency Wo nor 
the relaxation time T be longer constant, then the time dependent expression 
of these parameters can be given in the form: 

. 1. 1. ~T(t) 
JWo (t) - -() = J Wo - - +J ~wo (t) + 2 (6) 

T t T T 

If the expression (6) is applied to an optical cavity of optical length do and if 
the perturbation is responsible of a harmonic vibration ~d (t) of the cavity 
optical length around the resonant value do (h = ~d/ do), then the expression 
(6) becomes : 

(7) 

remembering the following relations : ~wo/wo = -~d/do and T = F*2do/1rc
 
concerning the cavity.
 
The calculation leading to the expression of the reflected field S _ (t) can be
 
repeated in the case of the perturbed condition (7).
 
The differential equation gets the perturbed form:
 

A(t) = - (~ - j wo) [1 - h cos (flt)1A (t) + kS + (8) 

The field A (t) can be expanded in series of the perturbation amplitude h : 

A (t) = Ao (t) + hAl (t) +0 (h) (9) 

by using the hypothesis of the perturbation sluallness, the terms 0 (h) can 
be neglected. 
The expression (9) and its tinle derivative allow to write the equation 
(8) as: 
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(10) 

where, is defined as : , = I/T - jwo.
 
The equation (10) requires the fulfillment of the following system of differ­

ential equations:
 

Ao + ,Ao - kS+ = 0
 

Al +, [AI - Ao cos (n t)] = 0 (11)
 

The system (11) supplies the following solution for Ao (t) and Al (t) : 

(12) 

where: 

8± = w ± n - Wo (13)
Wo 

Therefore the expression (9) can be rewritten as: 

A ( ) = TkSo [ (.) h ,T (exp (jw+t) exp (jW_t))] (14)t 1 + j8Q exp ]wt + 2 1 + j8+Q + 1 + j8_Q 

By using the expression (14) into the (3), the reflected field S_ (t) gets the 
form: 

(15) 

In the optical cavity case the expression (15) can be simplified. In fact the 
energy-losses due to the escaping energy froln the cavity are much larger 
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than the energy-losses into the optical components of the cavity, thus it 
results T << TO or 1/T ~ 1/T ,therefore r ~ 1. In addition the factore,T = 1 - j Q ~ - j Q, since the parameter Q gets a large value in comparison 
to the unit.
 
By using this approximation the expression (15) gets the simplified expres­
sIon:
 

(16) 

By comparing the expression (16) with the unperturbed field (4) it is appar­
ent that the harmonic perturbation of frequency fl originates the rising of 
two side band (SB+ and SB_) terms of frequency v± = v ± fl/21r besides 
the carrier (CR) term of frequency v : 

S_ (t) = CR - SB+ - SB_ (17) 

By matching the carrier frequency at the cavity resonance Vo, one obtains 
the resonance conditions: 8 = 0 and 8± = ±fl/w. 
We are also interested to get the perturbed expression of the transmitted 
intensity relatively to the resonator connected to two guides. 
In fact such a structure is quite similar to the optical configuration used in 
the narrow band version of the interferometric antenna. 
In this case the equation corresponding to the first equation of the system 
(1) of the previous calculation is: • 

(18) 

where the relaxation tiIne T and the coupling factor klJ. are defined as: 

1 1 1 1 
-=-+-+- (19) 
T TO Tel T e2 
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being 70 the relaxation time of the resonator and 7 eJi- the relaxation time due
 
to the energy escaping from the Ji - th guide.
 
Besides the field S+Ji- indicates the field exciting the resonator coming from
 
the Ji - th guide (Ji = 1,2).
 
The reflected wave S-Ji- is evaluated using a generalization of (3):
 

(20) 

The field transmitted by the resonator can be expressed by the field ex­
changed by two guides; hence, substituting the (20) into (18), the transmit­
ted field S-2 becomes: 

-kA-S 27/~S-2 - 2 - +1 . (21 ) 
1 + J(W - WO)7 

the transmitted intensity is given by the expression: 

(22) 

The field transmitted by the resonator, if a harmonic perturbation is present 
in the system, is easily obtained by substituting the perturbed field (14) into 
(21), adding to parameters k and 7 the lower index indicating that the guide 
2 is considered: 

(23) 

the comparison of definition (2) and (19) supplies the rela.tion between the 
relaxation times 7 and 72: 72 = 27. 
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Appendix-C 

Since the optical system of an interferometric antenna is rather a complex 
one, as it is apparent throughout this paper, it is not unusual, in discussing 
about the antenna behaviour, to be confused in considering partial charac­
teristics of the optical system as characteristics of the antenna itself or in 
estimating the phase sensitivity without performing an accurate analysis of 
the phase perturbation the antenna is subjected. 
For these reasons we feel it is useful to discuss in details the global charac­
teristics of the antenna optical system, i.e. in considering this system as a 
black box and studying its response if subjected to some typical phase per­
turbation. 
The optical system we study is a Michelson interferometer having optical 
cavities as reflecting elements in its arms and a front reflector (recycling mir­
1'01') in order to send back the interferometer energy flux. 
We call this optical system resonant if the following four conditions are ful­
filled: 

i) The interferometer ann cavities are resonant at laser frequency Vo : 

z27rvo-2do) [ ( . A 2dO )]exp ( . = - exp z27ruv- = -1 (1) 
c c ~v=o 

ii) The optical length difference 12 -11 gives the Michelson extinction con­
dition : 

12 - 11 [ . ~V] exp (i27rvo2 ) = - exp (Z7r-) = -1 (2) 
c Vo ~:I=O 

iii) The optical lengths 1+ 11 and 1+ 12 of the recycling cavities are reso­
nant at laser frequency Vo : 

. 1+ 11 2 [ . ~V] exp (z27rvo ' ) = exp (z27r-) = 1 (3) 
c Vo ~v=O 

iv) The recycling mirror reflectance p gets one suitable value in order to 
vanish the back field : 
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(4) 

where in all used expressions the symbols have been already defined in the 
text (see also Fig.2). 

If we consider the perturbation, the gravitational antenna has been de­
signed for, i.e. opposite length variations of the interferometer arm optical 
cavities, only the condition i) is violated. 
We point out that in this case the fields reflected by the FP cavities supply 
the information of the length variation through their phases and no through 
their amplitudes. That because their amplitude is almost unitary (IFI ~ 1). 
In other words the FP cavities behave as phase objects14 • 

On the contrary, if we look at the response of the optical system in the 
case the perturbation be due to the laser frequency variation l:::i.v around the 
resonant frequency vo, we observe that the conditions i),ii) and iii) are not 
fulfilled. Therefore the optical system behaviour will be completely different 
from the previous one. 
In the following we report calculations of the optical system response in these 
two mentioned typical cases of phase perturbation in order to focus the in­
volved differences. 
That is done by calculating the transmitted and reflected intensity of the 
optical system and studying the phase dependence in order to explor the 
involved time constants of the system. 
First we consider the case where the optical system is resonant and the phase 
perturbation is due to the opposite length variations of the Michelson arm 
cavities. 
By using the formulae (7) and (14) of the text we calculate the transmitted 
intensity taking into account that the following relations hold between the 
complex reflectances FJ.1. (f.l = 1,2) of the FP's cavities : 

. (a +,8) tan l:::i.8/2F1,2 = IFI exp [z(1r ± arctan ( ,8 2 / ))] ~ (5)
1 - a tan l:::i.8 2 

. 2(2l:::i.v / IJpp) 
~ - IFI exp [±z arctan ( (l:::i. / )2)]1 - 2 V Vpp 

being: 
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(6) 

in the approximations ri < r~ ~ 0' ~ 1 and sin (~8/2) ~ ~8/2 (remernber
 
the formulas (18) of text defining a and (3).
 
By the symbol VFP the FP cavity width is indicated, defined as the free spec­

tral range divided by the finesse F* (VFP = c/2doF*).
 
By using the formula (7) of text in calculating the transmitted intensity and
 
having taken into account the conditions i),ii ),iii) and iv) in the F1,2 expres­

sion given by (17), one obtains the result :
 

(7) 

and for the reflected intensity one obtains: 

~12 _~ ( 21]R 2~V)21~12 (8) 
- 2 ~ VFP1 A1N A1N 

where the approximation O'R0'1s IFI 2 
~ 1 has been done and having put the 

transmitted intensity in the fonn of squared sinus of the argument 
2 arctan (..j2iiR2~v/VFP). 

That gives the functional character of the transmitted and reflected intensity 
versus the argument J21]R2~v/ l/FP (see Fig. 7). 
It is important to discuss the forn1 of the field reflected by the FP cavity in 
the case of a harmonic perturbation of frequency n/27r of the cavity length 
around the resonant length do (d = do + ~d sin nt); in general we have: 

a(t) = ao exp [iwot - i<I> sin nt] ~
 

ao exp (iwot)[1 - i<I> sin nt] ~
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ao exp (iwot)[l - : (exp (int) - exp (-int))] = 

ao[exp (iwot) + : exp (iw+t) - : exp (-iw_t)] (9) 

where the circular frequencies w± are defined as : 

w± = Wo ± n (10) 

the (9) tells to us that a harmonic perturbation produces side bands at cir­
cular frequencies w+ and w_, thus the phase amplitude <I> can be evaluated as : 

<I> = laot exp (iw+t)1 + laot exp (-iw_t)/ 
(11 )

lao exp (-iwot)1 

From (11) (see the calculation of Appendix-B) one obtains the formula (44) 
of text: 

~<I>(n) = 2~d WOT (12)
2do VI + n2 T 

where T = 1/7rvFP (see formula (42) of text).
 
The result (12) can be put into (7) performing the following reasonable ap­

proximation of the phase : ~ <I> ~ -4~v / VFp. One obtains the expression :
 

2 
AT 1 1. 2 ~ A = 2: SIn [2 arctan (V 27]R ~<I>(n)/2)J = 

1 1N 

1 . 2 [ (~ ~d WoT - SIn 2 arctan 27]R -d )J (13)
22 0 VI +n2

T 

in the case of GW detection ~d/do is given by the strain of the wave and it 
is a very small quantity, therefore in practice the (13) becomes: 

(14) 
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however, as ShOWll in the text, we are able to look at squared root of (14), 
linear in the perturbation amplitude, by means of the modulation technique 
(see the formula (45) of text) . 
The time constant 7 appearing into (14), which characterizes the time re­
sponse of the interferometric antenna, is actually depending only on the FP 
cavity width and just it determines the frequency cut reducing to one half 
the transmitted intensity (n7 = 1). 
The time constants characteristic of other parts of the interferometer don't 
play any role in GW detection. 
This fact is understandable for several reasons. 
First in this type of perturbation only the long cavities are excited and the 
other parts of the system remain in the resonant state. 
Second, in the GW detection case, the FP cavity perturbation is so small 
that the f:,.Q variation involved is of the order of 10-19 , therefore the relative 
change in the stored energy is extremely small. That makes sure that the 
cavity behaves really as a pha.se object. 
It can be also proved that under this type of phase perturbation the energy 
stored into the recycling cavities is subjected to a percentage variation as 
small as the long arm cavities. 
In order to compare this case with the case where the phase perturbation is 
generated by a laser frequency variation around the resonance frequency vo, 
we report in the following the calculation of the transmitted and reflected 
intensity of the optical system as function of the detuning f:,.v. 

This case is characterized by the fact that the conditions i),ii),and iii) are 
violated at same time and that the phase variations into the FP cavities are 
equal : 

where by definition is settled: 

f:,.v 2vo 2f:,.v 
x=­ p=­ px=-­ (16)

Vo Vpp Vpp 
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Starting from the formulae (6) and (7) of text we obtain the expressions of 
the reflected and transmitted intensities: 

AT 
2 [p2(aR - p2)/aR] sin2 (IX) 18
 

1 A1N 

1 

1 + (p2/ aR)2 cos2 (Ix) + 2(p2 / aR) cos (¢J + ~1rx) cos (Ix) ( )
 

where the value of p2 is fixed by the condition iv).
 
In discussing the (17) and (18) it is convenient to evaluate them in two sep­

arated ranges of X parameter:
 

(19) 

because in two cases the (17) and (18) can be approximated in different way_
 
In fact in the first range it is legal the sinus, cosinus series expansion neglect­

ing powers larger than the second one.
 
Thus, in studying first the reflected intensity expression (17) for the former
 
range, the term cos (¢J + ~1rx) cos (%x) can be approximated as :
 

5 1r 1r 5 
cos (¢J + -1rx) cos (-x) ~ (1 - 13( _X)2) cos ¢J - -1rX sin ¢J (20)

2 2 2 2 

and the (17) gets the expression: 

2AR _ p2[2 - (~x)2 + 2((1 - 13(~x)2) cos ¢J - ~1rX sin ¢J)] ()1 

-- - 2 2 21 
I AIN 1 + (:R)2 (1 - (~x)2) + ;:R [( 1 - 13(~ x )2 ) cos 4> - ~ 1rXsin ¢J] 

recalling the ¢J definition (15) the cos 4>, sin 4> expressions becon1e : 

A.) 1 - (px)2 . 2(px)
cos (I.f/ = --~-- SIll ( ¢J) = - ()2 (22)

1 + (px)2 1 + px 
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By substituting the (22) into (21) one obtains: 

having neglected into the brakets of (23) the terms divided by p, being p a 
very large quantity (p ~ 1011). 
Recalling the condition iv), one realizes that pi~ is a quantity very close 
to unit; therefore expressing pi~ = 1 - c, where c « 1, and neglecting 
terms O(E) the following factors appearing into (22) can be written as : 

(24) 

thus the (22) becomes: 

2 2 
AR aRx1 (25) 

1 A1N ~ (clp)2 + x2 

The functional behaviour of (25) is very clear: it gets the value aR ~ 1 for
 
x > clp ~ 10-13 and goes to zero limit as x2; in particular it reaches the
 
valu~ 112 for Xl/2 = cIp.
 
Recalling the p definition (16), one can calculate the optical system width
 
FWHM as ~VFWHM = vo2clp.
 
We point out that ~VFWHM gets a noticeable expression by using the c, p
 
and the recycling factor 1]R definitions:
 

1 - pi ~ aR - p2 VFP 
~VFWHM = 2vo VFP = 2 VFP - (26)

2vo aR + p 
r-.J 

21]R 
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the (26) shows that the optical system width is given by the FP cavity width
 
reduced by the recycling factor.
 
Besides the corresponding relaxation time 2"lRF*2do/ c can be compared with
 
the relaxation time coming from the Q-value of the resonant system. Follow­

ing the VIRGO project numbers (see in section 4 the iii) calculation data),
 
it results :
 

2.7 Joule 
Q = 27rvo 10 Watt = .27wo = WOT or T = .27 sec (27) 

by using the same numerical values of iii) in evaluating the relaxation time 
coming from (26), one obtains T = .42 sec in reasonable agreement with (27). 
As far as the transmitted intensity (18) is concerned, by using the same ap­
proximations, one gets the following expression: 

(28) 

which shows a functional behaviour as (23), but tremendously suppressed by
 
the factor l/p2 ~ 10-22 .
 

In the case of the latter x range (19) we point out that with excellent ap­

proximation the following inequality holds:
 

larctan ( 2~X )2)1 ~ 1- arctan (~)I ~ ~ « ~7rX (29)
1 - px px px 2 

therefore the (17) can be written as : 

(30) 

By putting into (30) the following typical nUlnerical values: 

(31 ) 
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we deduce that p4/ak = .987864 and 2p2jaR = 1.987827.
 
The equality of the first four decimal digits of these factors makes sure that
 
the behaviour of (30) versus x begins to fall for x values smaller than 10-\
 
therefore the (30) holds the value p2 in the whole range (10-2 +-+ 1) and it
 
matches correctly the value of the former case.
 
The transmitted intensity in the latter range (19) gets the expression;
 

AT 2 (pjaR)2(aR p2) sin2 (~x)1 ­
I A1N = 1 + (p2 j aR)2 cos2 (~x) - 2(p2 jaR) cos (~7rx) cos (~x) (32) 

the (32) exhibits a gentle rising in the x region (10-2 +-+ .5) up to value 
"" .2(aR - p2) (note that aR - p2 ~ 10-2 ), then rises quickly crossing aR _ p2 
at x = .66 and reaches its luaximum value 2(aR - p2) at x = .77; at last it 
decreases to an - p2 value in the x ----+ 1 limit. 
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Appendix-D 

In this Appendix the symmetric system of three coupled optical cavities 
is studied. 
The coupling study of resonant cavities started in the early 1944, when 
Bethe24 presented a solution to the field problem of coupling two identical 
microwave cavities through a small circular aperture in a common conduct­
ing plane of zero thickness. 
A nice experimentation of this method was made later by Melissinos et al. 25 

(1985) on two superconducting coupled microwave cavities (two connected 
cilinders 4 cm long and 4 cm in diameter). 
The authors were able of detecting the displacement amplitude of a harmonic 
perturbation of one cavity end wall as small as 3. 10-19 m/J Hz. 
That demonstrates the powerfull of such method in detecting very small har­
monic displacement by using the multiresonant modes of coupled cavities. 
In the following the system, consisting of two equal optical cavities do long 
connected by a short optical cavity of length a (a << do), is studied. 
The end mirrors of the long cavities have very high reflectivity (ri ~ 1) and 
the front mirrors a lower reflectivity, furthermore the energy losses into the 
Qptical elements will be considered negligible. 
The entry point of the optical system is given by the recycling luirror bending 
the short cavity in the middle (see Fig. 5a). 
As it will be shown in the following, this coupled cavities system exhibits 
two resonant modes and therefore it is comparable to a linear system of two 
equal cavities do long, coupled by a common mirror of reflectivity r; (see Fig. 
5d). 
It can be shown that, by applying S-matrix method to three nlirrors (ri = 
r~ == r2 ~ 1), this optical system gets two resonant modes at circular fre­
quencies w+ and w_ given by the expression: 

(1)
 

the two frequencies are located symmetrically around the resonance frequency 
Wo = 7rc/do(q + 1/2) and shifted by ]«(1'x)c/do, where ]«(rx) is the coupling 
factor of the two cavities depending on the reflectance rx as given by the 
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following formula : 

I{(rx ) ~ arctan ( ~) (2)V1+G 
The (2) shows that the maximim coupling is reached for rx ~ 0, and the 
resonances go to limit Wo ± 'lre/4do; on the other hand the miniInum coupling 
is reached for r; = 1, when the two cavities are completely decoupled and 
therefore each one gets the single resonance Wo0 

Going back to three coupled cavities under study, the short cavity plays the 
same role as the common mirror does to two cavities of the previous case. 
The only difference consists that this times the coupling factor depends on 
two parameters: on the reflectivity r; and also on the short cavity length. 
As described in the text, the three cavities system is excited by two fields 
A OtL (/1 = 1,2), given by the expressions (46), and four fields ATJ.i and ARJ.i 
are obtained back, whose expressions are given by (47) and (48) of the text. 
In the hypothesis that the energy flux neither escapes through the FP cav­

2ities (IFI = 1) nor is lost into the optical cOlnponents (p2 + 7 = 1), the 
energy conservation leads to the equation: 

(3)
 

Our aim is to calculate the resonant Inodes of the coupled cavity system. 
Hence by detuning the laser frequency around the resonance frequency 1/0 of 
the FP cavity, the FJ.i expression (J-l = 1,2) beC0111es: 

Cll (A [F]) 0-1'2-1'1 1+(n2-1)sin2(<1>-~0)/2F1 = 2 = Ir exp 1'9 -j = *p. 
1 - 1'11'2 1 + (;32 - 1) sin2 (<1> - ~0)/2 

"[ ( (0' + ;3) tan (<I> - <I>0)/2 ])
exp 'l 7r + arctan (J 2 ih )/,)( 1 - 0'1.1 tan (<I> - '110 2 

'V 

. 2qtan(<I>-4>u)/2 ) 
exp ( 'l [7r + arctan ( 2. 2 ( q, <1» / ' ) ] (4)

1 - q tall - 0 2 

having used the following definitions: 
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2du 1 + 1'1
<P - <Po = - (w - wo) q= (5) 

c 1 - r1 

By substituting the expression (4) into the equation (3), one verifies that it 
is identically fulfilled for any value of the cosinus argument: 

__T_ = 14 _+_2_p---:;.2[_1_-_c_o_s2_(_ka_+_A_r_g...;..[F.....;].....;)]_ (6)
(1 - p2)2 + 2p2[1 - cos 2(ka + Arg[F])] 

therefore it is allowed to write: 

2Arg[F] + 2ka = ,21r mod(21r ) (7) 

where, is a parameter defined in the range (0 ~ 1). 
For simplicity sake we rewrite (7) in the form: 

Arg[F] = 'ljJ 'ljJ = ,1r - ka (8) 

and by using the expression (4), we have: 

2qtan (<p - <Po)/2 
1r + arctan ( 2 2 ( <P <p) / ) = 'ljJ (9)

1 - q tan - 0 2 

the (9) leads to a second order algebric equation in the variable tan (<p - <Po)/2, 
which gives the following solution: 

cot~'/2)<P 1 = <Po - 2 arcta.n q( 

ta.n '~)2)<P 2 = <Po + 2 arctan q (10)( 

The (10) gets a general va.liditY1 howC'ver, since we want to detect the an­
tenna response on the translnitting bean1, we impose the condition IAJ,LTI 2 = 1 
(IA/-tRI 2 = 0), which is fulfilled for I = 1. 
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Hence the solution (10) becomes: 

ill! = ilia + 2 arctan (COt:/4) 
i11 2 = ilia - 2arctan Can:/4) (11) 

having defined ¢ = 2ka.
 
From (11) the circular frequencies of the optical system resonant TIl0des can
 
be easily obtained:
 

c (cot ¢/4)
w+ = Wo + do arctan q 

c (tan ¢/4)
w_ = Wo - do arctan q (12) 

as it is apparent from the (12) the two frequencies are located around the 
frequency wo, which is, of course, the resonance frequency of a single optical 
cavity do long. The symmetric configuration around Wo is reached for 1> = 1r. 

It is interesting to investigate about the character of the fields into the cavi­
ties, when they are excited on the frequency w+ or w_. 
It will be demonstrated in the following that the case of the w+ (w_) ex­
citation corresponds to the sYlll11letric (antisYlllnletric) configuration of the 
fields inside the long cavities. 
We consider in general two cavities and we suppose the field aJ.L(t) be present 
inside the 11 - th cavity d tL long (/t = 1,2), having the resonance frequency 
WJ.L = (q + 1/2)7rc/dw 
In the coupled configuration the fields obey to the following systenl of differ­
ential equations : 

al(t) = jWlal(t) + !{12(l2(t)
 

a2(t) = jW2a2(t) + l\r21a dt) (13)
 

where 1<12 and 1<21 are the coupling fa.ctors.
 
In the hypothesis of requiring for the systenl (1:3) the harnl0nic solution
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at-t(t) = aOt-t exp (jwt), by using the necessary condition that the determinant 
of (13) be vanishing, the following solution can be obtained: 

(14) 

having taken into account that the coupling factors are tied by the relation16: 

!<12 + !<;1 = O. 
In particular the (14) gives the formula (1) if WI = W2.
 
Putting the solution (14) into the (13) the following equation system can be
 
written:
 

aOljw± - jWl aOl - !<12a02 = 0
 

a02jw± - j W2a02 - !<21aOl = 0 (15)
 

which implies that the coupling factors are pure imaginary quantities: !<12 =
 

j 1!(12\ and !<21 = j 1!(211·
 
It is straightforward to deduce froin both equations of the system (15) the
 
following relations between the fields aOl and a02:
 

a02 = _1_ [WI - W2 ± t 1 
; w ] 

2 
)2 + lI<d2 

aOl !(12 2 

aOl = _1_ [W2 - WI ± t 1 2 
; w )2 + II<211 2

] (16)
a02 !(21 2 

the (16) for WI = W2 leads to the C01111110n result: aOl/ a02 = ±1 in the rigor­

ous correspondence to the solutions W+ and w_.
 
By extending this result to the coupled cavities under study, it results that
 
the excitation of the W+ (w_) resonances produces sY111I11etri c (antisymmet­

ric) field configuration in the long cavities.
 
Therefore it is convenient to renan1e the resonance frequency labels indicat­

ing the corresponding field character; i.e.:
 

i.4,,'_ == i.4,,'A (17) 
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The difference of two circular frequencies (12) gets the expression: 

c ( tan (</> / 4) cot (</> /4) )
Ws - WA = do arctan [ q ] + arctan [ q ] =I 

c 1 - ri 
-d arctan [ . (</>/2)] (18)

o 2rl SIn 

As it is shown in the text, the difference (18) allows the tuning of the an­
tenna, hence it is important to investigate its functional dependence on the 
involved parameters rl and </>. 
Since rl is not an easy variable parameter, the variation of (18) can be 
achieved through the phase </> = k2a (see Fig. 8). 
In fact for </> = 0,27r the (18) gives Ws - WA = 7rc/2do , which is the maximum 
difference reachable and it corresponds to the maximum coupling between 
the two long cavities. 
On the contrary </> = 7r gives Ws -WA = arctan [(1 - ri)/2rt]c/do, which is the 
minimum difference reachable and it corresponds to the minimum coupling 
between the long cavities. 
In the rough approximation rl ~ 1 the maximum and minimum frequency 
difference results: 

c
</> = 0, 27r Vs - VA = ­ (19)

4do 
1 c 1

</>=7r Vs - VA ~ --(1- rd ~- (20)
7r 2do 7rT 
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FIGURE CAPTIONS 

Fig. 1 - a) Optical diagram of Michelson interferometer. b) Michelson 
interferometer equipped with recycling mirror. c) Reflecting optical element 
showing the incoming and outcolning fields as used in the S-matrix technique. 
d) Field propagation between two reflecting optical elements. 

Fig. 2 - a) Diagram of Michelson interferometer equipped with recycling 
mirror and resonant FP cavities at its arm ends, showing the detailed field 
propagation. b) Diagram showing the optical structure of the FP resonator. 

Fig. 3 - Diagram of Michelson interferometer equipped with recycling 
mirror and resonant FP cavities, showing the external modulation and de­
tection scheme. 

Fig. 4 - Curves of the function S( v~) / Vo versus the GW frequency rela­
tively to an interferometric antenna with and without recycling in the broad 
band case (see TABLE I for notations). 

Fig. 5 - a) Optical diagram of the interferometric antenna in the narrow 
band version. b), c) Partia.l view of diagram a) showing the field structure 
relatively to the incoming fields A01 and A02 respectively. d) Diagram of two 
equal and colinear resonators coupled by a COlnn10n mirror. The transmitted 
intensity of the system, given by the expression: 

(21 ) 

The two resonance frequencies v± of the systen1 are given by the formula: 

, 1/2[21' - (1 + 1''2 )1':1.:]
v± = Vo ± --C 

arctan '. 2 (22)
27rdo 21' + (1 + l' )1'x 

The formula requires that 'l'x :::; 21'/(1 + 1.2 ). In the case of equality the 
coupling between the two resonators is 111inin111ITI and each resonator gets 
the proper resonance frequency Yo. If 1'x is zero, the coupling is maximum 
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and it is also maXImum the difference between the two resonant modes: 
V+ - v_ = c/4do. 

Fig.6 - Curves of function S(vg ) / Vo versus the GW frequency of the inter­
ferometric antenna in the narrow band case. The function S(vg)/vo is peaked 
to v~ frequency and exhibits a V~/1]E width. The figure shows the tuning of 
four frequencies of antenna corresponding to the coupling phases <p = 1r, 1r /3, 
7r /6 and 1r /9 respectively. 

Fig. 7 - Transmitted and reflected intensities of the interferometric an­
tenna optical system versus the paraineter x = ~2~v / VFP in the case of 
GW perturbation. 

Fig. 8 - Phase behaviour of symmetric and antisymmetric resonant modes 
of the optical system in the narrow band version of the interferolnetric an­
tenna. Phases are plotted versus the phase <p = 2ka changing the coupling 
between the two long FP cavities of antenna. 

Fig. 9 - Behaviour of parameter t giving the goodness of the approxima­
tion IFI 2 

~ (1 - 2t)2 ~ 1 relatively to the conditions r~ < r~ ~ (J' r'-I 1. The 
t plot is given versus the cutoff frequency v~ and two more horizontal scales 
are added showing the corresponding values of the front mirror reflectivity 
r~ and the FP finesse F*. 
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