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1.Introduction

One of the most exciting research field is undoubtly that one devoted
to attain the direct observation'? of gravitational waves (GW) emitted by
cosmic sources.

Since the Foward’s paper® (1979) till nowadays remarkable progresses and
developments have been done in Michelson interferometry in order to gain
more and more sensitivity in GW detectors.

Let us review the most important achievements of this last ten years, like the
equipment of the Michelson arms with delay lines* or resonant Fabry-Perot
(FP) cavities® in order to enlarge optically the interferometer armlength;
the recycling technique® saving the reflected light in order to have more
power at disposal and therefore more sensitivity; the proposed ”dual mode”
technique’, which introduces a recycling mirror in the transmission branch
of the intereferometer in order to get a hetter stability and less criticity to
noise.

In addition it has been shown that the interferometer can be used® either as
a wide band detector or it can be tuned in order to get a larger sensitivity
in a narrow frequency band.

Besides these technical improvements a noticeable theoretical work®919 has
been done on the interaction of GW with the e.m. field inside an interfero-
metric antenna.

These studies have produced predictions of the intereferometric antenna sen-
sitivities in different configurations (delay lines, F.P. cavities, recycling, syn-
chronous mode, dual mode etc).

Furthermore studies®!!'2?! have been performed on the misalignment effects
of the interferometer optical elements and their functional behaviour as noise
sources.

All these scientific achievements are fundamental milestones for the projects
nowadays in progress of grounded base kilometric scale interferometers.
In this paper it is our aim to review the niatter and to discuss the most
remarkable problems concerning the GW interferometry.

In section 2 the Michelson interferometry is introduced and the S-matrix
technique is briefly described.

In section 3 the theory of the interferometric antennas equipped with FP
cavities in the Michelson arms and recycling technique is discussed, giving
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the field expressions and the associated resonance conditions.

In section 4 the previous section achievements are applied to the VIRGO
project case.

In section 5 the antenna sensitivity is discussed in the case of broad band
configuration of the interferometer.

In section 6 the antenna sensitivity is presented in the case of narrow band
optical version.

In section 7 a brief discussion is given on the validity limits of results achieved
in the previous sections.

Finally four appendices are added in order to supply the possibility to go
deeper in the matter and,in some cases, to facilitate the deduction of formu-
las given in the text.

It is worth while to remark that the given results, involving the effect of the
gravitational field, have been obtained working in the Fermi Normal Coordi-
nates (FNC) reference system !.

In fact, if the interaction of the gravitational field with the e.m. field is con-
sidered, it is very important the reference system chosen in describing the
interaction.

Two important frames are a possible choice: the transvers traceless (TT)
reference frame travelling with the gravitational wave and the FNC frame at
rest with the interferometer.

In the TT reference system the optical elements of the interferometer are
seen fixed and the gravitational-electromagnetic interaction produces a time
phase shift corresponding to the delay time in a round trip of the light trav-
elling into the intereferometer arns.

The interaction between the gravitational and e.m. field is just the perturbed
invariant (ds)?, that in the TT frame is written :

(ds)* = A (dt) = da®* (L + h (1)) = dy? (1 = h(2)) =0 (1)

where h(t) = hcos (2t) and the GW, polarized along the interferometer
arms, travels in the normal direction of the interferometer plane.
It results that the total phase shilt &y4(2) registered by the interferometer

'Note that so far in the literature (see refs.8.9) the gravitational-e.m. field interaction
has been studied in the TT reference systen.



of armlength do at first order in A (h << 1) is:

sin (do§2/c)

b7 (t) = w (At — At,) = hk2d, /e

cos (Ot — Qdy/c) (2)
The (2) shows that the effect of the gravitational wave on the interferometer
is just a delay time of the light path along the interferometer arms.

On the other hand, as shown by Fortini and Ortolan!®, in the FNC frame
the crossing of a GW gives a phase shift as sum of two components: the in-
teraction with the e.m. field producing a time phase shift ®,, and the space
deformation producing a space phase shift ®4,.

In fact in the FNC reference system the optical elements of the interferome-
ter are no longer at rest, because they feel the ripple of the space curvature
produced by the GW crossing. The space and time phases are:

D ps = hk2dg cos (2 — Qdy/c) (3)

_ sin (do/c)
Dp; = hk2dg cos (Ut — Qdo/c) (l - N )

and the total phase shift ®pnc (1) is :

sin (Qdo/c)

t) = da, — = hk2d
Qrne (1) as — Par = hk2d, ENE

cos (0t — Qdy/c) (4)
the expression (4) turns out to be equal to expression (2) according to the
gauge invariance character of the total phase shift.

As stressed by Fortini and Ortolan'3, the gravitational phase shift measured
by an interferometric antenna is a combined effect of both space and time
phases. However in the FNC reference system, also for kilometric arm in-
terferometers, the time phase is negligible with respect to the spatial one
( as it is apparent by the expression (3)) as long as the interferometer
armlength dy is much smaller than the gravitational wave armlength A,
(Qdo/c = 2mdo/ A, ~ 1072).

That is the reason why in the calculations it has been put sinc(Qdy/c) ~ 1
throughout this paper.



2.Michelson interferometry and S-matrix

The Michelson interferometer!*!®, by splitting an incoming laser beam in
two symmetric propagating fields, is an optical device, which supplies two
interfering output beams : the reflected beam directed toward the source
and the transmitted beam directed transversally to the source direction (see
Fig.1a).

The interference characters of the output beams (constructive or destructive
interference) are complementary for evident energy flux conservation.

It is well known that the Michelson interferometer can detect very small
optical length difference between the two interferometer arms by observing
the intensity variations in the transmitted beam. It can be shown that the
best sensitivity is obtained in the condition of destructive interference (the
so called dark fringe operating point). Therefore in the standard conditions
almost the total laser intensity is reflected backward.

Since the interferometer sensitivity is proportional to the square root of the
laser power, it is in general convenient to use the reflected intensity by adding
a reflecting mirror capable to recycling the power back again toward the in-
terferometer (see Fig. 1b).

This technique® increases the power circulating into the interferometer as if
fed by a larger power laser by the so called recycling factor.

Going on in the quantitative discussion of the Michelson inteferometry,the
technical tools and the relative notations will be given.

The Michelson interferometer is built up by optical elements capable of re-
flecting and transmitting the light and therefore characterized by a reflectiv-
ity R and a transmittivity 7 defined as follows :

R=r? T =t (1)

where r is the reflectance and ¢ the transmittance of the optical element.
The energy conservation requires the fulfillment of the relation :

R+T=0c=1-¢* (2)

where €2 is the term describing the energy-losses into the optical element.
A typical reflecting optical element is constituted by a glass having a por-
tion of its surface coated by rare-earth oxide. The thickness of this coated
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layer and in general its deposition technique, as the multi-layers interferential
coating, fixes the parameters r,t and € for a given light beam wavelength .
By the S-matrix technique'® the fields reflected and transmitted by an opti-
cal element can be calculated taking into account properly the external and
internal reflection phase change:

/
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where Ajy,Ar and Apg indicate the incoming, the transmitted and the re-
flected fields and A’ is a back incoming field (see Fig. 1d).

In addition a field of amplitude A, propagating between two reflecting op-
tical elements separated by an optical path length [/, gets a phase change

ki, i.e:A* = Aexp[ikl], where k = 2x/)\, being A the field wavelength
(see Fig. le).




3.Interferometric antennas

By using these rules, the transmitted and reflected fields can be calculated
relatively to a Michelson interferometer equipped (or not) with recycling mir-
ror distant [ from the beam splitter and having at the arm ends, /; and [,
distant from the beam splitter respectively, two reflecting resonant optical

devices (see Fig 2a).
The reflectance of the p — th resonant optical cavity can be described by the

complex function F, defined as :

A
AR F, = i|Fulexp[iArg (F,)]  (u=1,2) (4)
A?,u.+1

Furthermore the transmittance and the reflectance of the beam splitter (re-
cycling mirror) are indicated by ¢ (7) and r (p) respectively and they obey
to the relations : !

r’ =t = ops/2 pl+ 1t =0p (5)

The fields propagating into the interferometer are shown in detail in Fig.2a
and applying the S-matrix method ,calculations lead to the final result for
the reflected A and transmitted A7 amplitudes :

AR _ .t orT
Arn 1+ pT
T = exp [ik2 (I + 1)] (*F, — 2 Fyexp [ik2 (I — 1y )

(6)

AT _rtrU
Al 14T (7)
U =exp [tk (I +20)] (Fy + Fyexp [ik2 (I, — 1})])

It is trivial to deduce from the relations (6) and (7) the expressions relative
to the case without recycling putting p = 0,7 = 1 and [ = 0.

By the expressions (6) and (7) the Michelson interferometer working condi-
tions can be fully analyzed.



\ The dark fringe operating point requires A7 = 0O,i.e. U = 0. In the ideal

condition, having the reflecting elements equal reflectance (F; = Fj), the
| well known Fresnel relation is deduced :

A
\ Furthermore the recycling condition requires Ag = 0 or p + ogT = 0.
Again in the hypothesis of equal reflectance condition,i. e. : F} = F, = F =

|F| exp [iArg (F)], at the resonance we have (Arg (F) = 7), ie. F = —|F|
\ and the full recycling condition becomes :

‘ p—o0psop|Flexp[ik2(I+1)] =0 9)
This complex equation is fulfilled by putting the real and imaginary parts
equal zero. The imaginary equation supplies the so called resonant recycling

condition : (I + {; = mA/2), (m = 1,2...),then the real equation gives the
condition:

\ p = 0psor|F| (10)

| In conclusion the recycling conditions are fulfilled by matching the recycling
mirror distance [ at the resonant value and by setting up the recycling mirror

reflectance in order to match the ogsor |F| value.

The performance of the Michelson intereferometer with recycling is measured

quantitatively by the recycling factor, defined as the ratio of the beam inten-

sity incoming into the Michelson arms with and without the recycling mirror.

\By using the symbols of Fig. 2a the arm intensity without the recycling is
\given by the expression :

|

l"isiz =t* | Ayl (11)

\and, in the case of dark fringe and recycling matching fulfilled conditions,
the intensity with recycling can be calculated as :

|
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t’on

Asl =|A 12
o] = 14l 7 (12)
therefore the recycling factor expression becomes :
o
Recy.Fact. = ng = i (13)

1 — opodg |F|2

It is apparent that, apart the minimization of the energy losses in the recy-
cling mirror and in the beam splitter, the recycling factor is in general mainly
dependent on |F|, the reflectance absolute value of the resonant optical ele-
ments placed at the interferometer arm ends.

As far as the resonant elements placed at the Michelson interferometer arm
ends are concerned, the Fabry-Perot (FP) optical cavity is discussed, being
the case of interest of the VIRGO and LIGO projects.

A dy long F'P optical cavity is considered (see the diagram of Fig. 2b), having
mirror reflectivities r? and r? respectively (again the standard relations hold:
r?+t?=0 (:¢=1,2) and 0 =1 — €%, assuming that the energy-losses into
two mirrors to be quite similar).

It is useful to recall the relation between the FP resonant frequency 1y and
its optical length!"18 :

U (dy, R,
C + (O’R)

—_— !/ ’
=57 |9 (I+m' +n') (14)

Vo
where ¢,m’ and n’ are integer numbers related the longitudinal and trans-
verse resonant modes of the cavity and ¥ is a function depending on the
mirror geometry (R, being the curvature radius of the ¢ — th mirror).

From (14) it is apparent that the optical length variation Ad = d —d, implies
a frequency variation Av = v — 1y and conversely.

Av _ Ad*
T (15)
el 1+m' +n g1+ g2 — 20192 N —Ad

g+ (1 +m/+n')a.rccos(\/g1g2) 2\/g1g2(1 —9192) - E:



where g; = 1 — do/ R;, being R; the i-th reflector radius.

The approximation into (15) depends on the factor 1/¢,generally a very small
quantity, since ¢ measures the nunber of wavelengths in the cavity length.
The (15) tells to us that phase variations due to the length variations are
correlated to frequency variations and conversely.

For next calculations it is vital to know the complex function F,, describing
the p — th FP reflectance of the Michelson interferometer.

To this purpose the As (As) exciting field of the P cavity is considered (see
the diagram of Fig.2a), producing the reflected A; (Ag¢) and the transmitted
Az (Ag) fields respectively.

Again applying to optical cavity mirrors the S-matrix method, the expres-
sions of the transmitted and reflected field ratio over the incident one are
deduced:

AG'HJ - t1t2 €Xp [ZA&N/Q]
A2y+1 1 - ™ T €XP [ZA(S“]

(k=1,2) (16)

Az o orpexp ins, ] = .ory—rp |14 (e —1)sin® A5“/2*
—_— = = — - =1 -
A2u,+1 # 1 - ™ re €Xp [1 A(Sll] 1~ 179 1 + (ﬁZ - 1) sz A&u/2

4 3)tan Ad, /2
exp [z (ﬂ+a1‘cta.1l((a+/) A8/ ))] ~

1 - aftan? A, /2
0Ty — T

i 72 1y exp [i (7 + (a + B) A6,/2)] (a7)

1 —rirs

where the involved symbols follow the definitions :

a:0'72+71 4= + 717y (18)
org — 1 | — rymg
A8, = 2k(d, — dy) = ~—0(g + 1/2)27 (19)
«“'o
do=(q+1/2)M)2 1SR = 7:7 vo = FSR(q+1/2)
=40

Y



Aé, indicates the detuning phase from the resonant condition of the p — th
FP, d, is the actual length around the resonant length dy and v, the res-
onant frequency defined as the free spectral range (FSR) of the resonant
cavity times ¢ + 1/2, where ¢ is a positive integer number (for instance in
the FP cavities of VIRGO project: dy = 3103 m, vy = 2.8310!* Hz it results
q = 5659999999).

A comment is required about the fact that the second expression of Aé, def-
inition is independent of y index, despite of the fact that the phase variation
in two FP can be due to wathever origin, hence in general different. The
explanation is that it is supposed that the phase variation is due to common
exciting field, then producing an equal effect in two cavities.

In (17) the FP reflected field is written giving the argument in explicit form
both in the exact and approximate version, if a very small Ad, value is con-
sidered.
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4.The case of the VIRGO project interferometer

It is well known that an optical cavity stores e.m. energy E = cost * I,
where [ is the averaged intensity on the cavity optical length, and :

inter ferring beam volume
velocity of light

cost =

The function I(z) is evaluated by computing'® the interference of two
beams going back and forth between two mirrors distant dy with reflectivity
r? and r2 respectively :

'————(1 — r1r2)2 [(1 — 7'2) + 475 cos ¢(z)/2]Air (20)

where A;, is the Airy function given by:

I(Z) ‘—':I[N

2
A, =1+ ik (1 + cos (k2do)] ™" (21)

(1 —_ 7'11‘2)
and ¢¥(z) = 2kz being z the current position between the mirrors.

The function I(z) shows the standard interference pattern, its mean value I
results :

oy — r?
(—l.i—rl#)?(l + T‘%)A,’r (22)

The formula (22) at the resonance becomes :

I=1IN

I 71T r? 1+4r?
= 1IN
res 1- TiTo T4/T172

where the cavity finesse defined by the following expression has been intro-
duced:

F (23)

= VN (24)

]. — T

11




In the case r? < 72 ~ ¢y ~ 1 the (23) becomes :

) 1 4
Loy = In2F —12 ~ [0 2P (25)

TA/T1T2 s

otherwise when r? = r2 and 0y ~ 1 :

- 1472 2
Loy = InF*——0 ~ Iin=F* (26)

m\/T1T2

As an exercise it is useful to apply these formulas to Michelson interferome-
ter. Indeed, if A7 = 0, the interferometer is seen as two cavities constituted
by a common optical length ! plus two branches {; and l;, both having end
mirror reflectivities p? and o} |F [ respectively. The two corresponding re-
flected amplitudes are:

ARy _ P F ORIBS |F'|exp (¢k2(1 4 1,.))
Arn 1 F pogs |F| exp (ZkQ(l + lu))

at resonance 2k(l 4+ ;) = 27 with uppersign and 2k(l 4+ l;) = 7 with the
lowersign, thus the average stored intensity in each cavity is at resonance:

(n=1,2) (27)

2
7 7 OR— P 2 2
I+ L) =1(1+1) = A 1+ o0%s |F 28
( 1) ( 2) IN(l__pO_BS‘Fl)z( BSl , ) ( )
These cavities are called recycling cavities.
Since the Michelson interferometer must work with Az = 0,which implies
p = 0rops | F|, then each cavity gets an average intensity equal to :

) ) 1402 2
T+ 0)=I(+1) ~ A?Nl—f—% ~ 2P Ay (29)

It is worth while to note that the intensity calculated in each branch supplies
the following result :

I+ I(L) + I(l) = I+ 1) + T(1 + 1) (30)

12



We report the nuinerical values of the most remarkable parameters discussed
above in the case of the VIRGO interferometric antenna in the matching
conditions of recycling and FP resonance. :

The optical element characteristics of the VIRGO antenna are listed below:

1) - Energy-losses:
the energy-losses are estimated to be of the order of 50 p.p.m. for each optical
component, therefore we have :
oRp~ ogs ~ O ~ 1-—5010_6

i1) - Reflectivities :
the recycling mirror reflectivity is p? = .976
the beam splitter reflectivity is r*> = t? = 1/2
the FP entry mirror reflectivity is r? = .975
the FP end mirror reflectivity is r3 = 1. — 10~*
the FP resonant reflectivity is |F|* = .976
the FP resonant transmittivity is |S|* = 8.110~3

iii) - recycling factor is ng = 41

iv) - cavity finesse :
recycling cavity finesse is F}* = 129
FP cavity finesse is Fj = 259

v) - geometrical lengths :
recycling mirror beam splitter distance is [ = 5.m
beam splitter FP entry mirror distance is [} = I, = 5.m

Given a laser source of total radiant power P,, the intensity distribution
on the beam at radius r from the beam axis expressed as :

2

T i ' ' 2
P(r) =/ Io exp(—21—2)27rr dr = Ioww 2r
0 we

Sl—ep(-1z)] (6D

13



the (31) gives also the total power related to the intensity Io in the limit
r — oo:

2
Twé

Ih=PF (32)
Suppose, as in the VIRGO project case, to have a laser source of power
Py, = 10 W, feeding the Michelson interferometer with recycling, the match-
ing condition with a beam waist diameter 2wy = 4 10~%m supplies an incom-
ing intensity I;y = 210(2107%)"2/7 = 1.610* Wm~2. Hence the following
typical quantities can be evaluated :

i) - energy stored into the recycling cavity :
Egc ~ 2Fy AN % V]e = 2FrPo2l/c = .64 129 % 10 * 2 % 10/(3108) =
5.5107%J

where il volume V is defined as V = nw3(l + ).

ii) - intensity of the beam impinging the FP cavity :
|Asl® = g |Ain|* = 3.310° W m 2

|As|? = rPng | A [? = 3.310° W m~2
with 2 = r?2 = 1/2

iii) - energy stored into each FP cavity :
Epp =~ 2Fip|Av|?1V/e = 2FimrPo2do/c = 64 % 259 x 41 % 10 % 2 * 3 *
10%/310% = 1.35 J
where il volume V is defined as V = mw3d,

iv) - beam intensity transmitted by the FP end mirror :
|A7” = |Ag” = |SI” nr | A [* 2 = 2.6 10° W2

14



5.Broad band interferometric antenna sensitivity

This section is devoted to discuss the recycling Michelson interferometer
sensitivity in detecting GW in a broad region of frequency.
It is well known that the GW effect on the interferometer test masses??,
which are the mirrors of two P cavities, consists in an equal and opposite
length variation Ad, = (—1)*(d — doy) = (—1)*Ad of two FP’s placed along
the orthogonal arms of the interferometer (see ref.3).
According to the formulae (7) and (17) these length variations produce a
total phase variation of 2Aé6 = 4k(d — dy) in the transmitted intensity ex-
pressed by the following relation :

Alr _ [Ar (A6 #0)|* = |Ar (A8 = 0)* _
Iv |Arn|?

ohs (on = p?) |F|* Cy /2
1+ p20ds |F|2 C_[2+4 2pops |F|sin[t'g + ar/2]sin[(a + 8) AJ2 — ar/2)

where :

(33)

Cy =1=xcos[(a+ 3)As+ ]
Yar = kZ(ll—lz) Yr=k2({+ 1) (34)

Putting into the (33) the working condition at the extinction (8) and the
recycling conditions (9) and (10), with a good degrees of accuracy the Alr
expression becomes (an exhaustive discussion of the whole optical system is
given in Appendix-C) :

1 —cos[(a + 3) Ad]
Irn < l —orogs |l

AIT ~ O’Z;SUR

2 nrRAD? (35)

where the phase A®,considered as a small quantity, is given by the expres-
sion :




Into the (36) the finesse parameter has been introduced and the reasonable
approximation o ~ 1 has been performed.

In the case of interferometric antennas the reflectance r2 ~ 1, then the ex-
pression (36) becomes :

* * * Fa- d
F 1+TIA6=F 1+T‘12kAd=F 1+T’12_(10Aw28 A

T r T \r T JT1 ¢ A

having expressed the phase Aé by means of the optical length and frequency
variation?,

By using a standard technique the transmitted intensity is phase-modulated
at high frequency (~ 10 M Hz) in order to get a signal at first order and to
minimize the noisy effects of the laser fluctuations.

In the following calculation the external phase-modulation case is considered??;
i.e. the transmitted field before the photodiode detection is undergone to in-
terference with a small fraction of the main field Ay phase-modulated at high
frequency by means of an electro-optic device.

After photodiode detection, the output current signal is demodulated and
low-pass filtered with a frequency band Af.

The final current signal is shot noise limited and the signal to noise ratio?
(SNR) can be obtained (see for detail of this calculation the Appendix-A) :

AP ~ (37)

2nlone AQ
hl/o \/Ai

where hvg is the photon energy, n the photodiode quantum efficiency and
Ji (m) is the Bessel function relatively to the modulation amplitude m.

The SNR expression given by (38) depicts the sensitivity of the recycling
interferometer in detecting a phase A® given by (36). It is important to
point out that the expression (38) is a ”stationary picture”, because nothing
is told about the time dependence of the phase A®.

In order to get the interferometer sensitivity relatively to the case of a

SNR =+/2J, (m)ops |F| (38)

harmonic modulation of the optical length around its resonant value dop, a
different approch is needed in handling the resonant cavity.

This approch concerns the description of the resonant cavity in term of en-
ergy fluxes.

16



In fact following this line, the resonator behaviour is given in term of general
parameters like the resonance frequency, the storage time and the Q-factor,
hence each resonator is described in the quite similar way, no matter if it is
a "LC” circuit or an optical cavity.

But the general parameters are expressed in terms of different components
describing the particular resonator.

According to the ref.16, in a ”LC” resonator the reflected over incident in-
tensity is given by the formula :

Ir _ [Tr 1+6Q? (39)
Iy 7] 1+ 682Q2

where § = (w — wp) Jwo, @ = woT and @ = wo7. The parameters 7 and 7 are
given by the following definitions :

11,1 1 11 w0
T Te To T T To
where 7, is the decay time relative to the external energy-losses (escaping
energy fluxes) and 7y the decay time relative to the internal energy-losses
(energy lost in the elements) of the resonator.
In the case of an optical resonant cavity the reflected over the incident
intensity ratio can be deduced from the formula (17) taking into account
that, since the free spectral range (FSR) is larger than the cavity width
(FSR >> FWHM), it is allowed the approximation :
sin [2do(w — wo)/2¢] =~ 2do(w — wo)/2¢ :

A2u+2

2 N (O"I"g — r1)2 1+ (a® — 1) [2dp(w ——wo)/Qc]2 _
T \L—rra/ 14 (8% — 1) [2do(w — wo)/2¢]?

do\/OT1T
(UT2 - r1)2 1+ [%2—::1)2]2(“’ —wo)’

1+ [M]z(w — wp)?

c(1-r172)

A2u+1

(41)

1 —rirg

The formulae (39) and (41) show the same structure and it is straightforward
to point out the same meaning of the corresponding terms :

17



_ 2 TS

2do +/
r= F= 20 VIND (42)
c 1—mryryg c Ooro—nm

the Q-factor and the é parameters get a quite similar significance.

Now the differential equations describing the resonator fields can be modi-
fied taking into account the effect of a small harmonic perturbation p(t) =
p cos [(Ut] affecting the optical length or correspondently the field frequency.
By looking for a first order solution in the perturbation amplitude p, the
reflected amplitude is given by the following expression (see for detail the
Appendix-B) :

T —i6Qr\JoT|T
S_(t) = = exp [twt] ! T fz\é/é 7 _ (43)
1Q  exp 1] iQ  exp[—i]

PTi60 T+i6,Q PT4i0 1+w.q |- CR—5B+—5B-

the amplitude (43) describes a carrier field (CR) and two side bands (SB;
and SB_), generated by the perturbation p(t), of frequency v, = v + Q/27
and v_ = v — §}/27 respectively (6x = vi/vo — 1).

The phase A® (v,) of the reflected field'* at the resonance (6 = 0) is :

_2|SB|_2 WoT
“CRl T Vit

if the perturbation is a gravitational wave the (43) and (44) expressions get
the form we ecounter in the gravitational physics literature® with the sym-
bols: p = h, /21 = v, and (2r7)7" =10,

Calculation of SNR leads to the following "dynamical SNR expression”,
where the frequency v, of the harmonic perturbation is present :

A® (v,) (44)

SNR = V3J, (m) ops |F| 1| TR g, L

" ( g)m (45)

21/0/1/3

14 (Vg/u2)2

S(vg) =
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It is straightforward to verify that the expression (45) goes into the ”station-
ary form” (38) if v, is put equal zero.

In fact, reminding that the gravitational perturbation amplitude can be given
as h = Ad/dy and using the formula (42), it results :

2120 = 259y = 25% 20 VT2 _ oo ng 0 A
V0 do do c 1—ryry o

which is the A® definition given in the formula (36) in the approximation
It is also apparent from the expression (45) that the only effect of the recycling
is to enhance the power I, by the factor ng.
The (45) gets the frequency dependence through the function S(v,), which
is a low-pass filter-like function, having the cut frequency at .
It is interesting to plot the function S(v,) in the VIRGO project case at
different cut frequency 1/;’ in the recycling (pg > 1) and without recycling
(nr = 1) cases.(See in Fig. 4 the curves of the function S(v,)\/Mr/v0)
The meaning of the curve labels given in Fig.4 are defined in TABLE I; they
correspond at different frequency cut »?, finesse F* and recycling factor ng
by parametrizing the reflectivity r? of the FP front mirror.
The curves of Fig. 4 tell to us that in the high frequency range of the
perturbation, at low finesse values, a remarkable advantage is got by using
the recycling technique, on the contrary, in the low frequency range of the
perturbation at high finesse values, the recycling use is of scarce usefulness.

TABLE 1
ViR | T F~ Ve T
(Hz) | (msec)
a 1 .14 3. 5.10% | 3.21072
a* || 40. | .14 3. 5.10° | 3.21072

b 1 89 37. 676. .16
b* || 17.8 | .85 37. 676. .16
c 1 975 | 247. | 100. 1.6
c |l 5.6 |.975 | 247. | 100. 1.6
d 1 2995 | 1200. | 20. 8.
d* | 2.5 |.995 | 1200. | 20. 8.
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6.Narrow band version of the interferometric antenna

So far an interferometric antenna has been discussed having a broad band
sensitivity (see Fig. 4), in particular a flat frequency response below the cut
frequency yg and a suppressing behaviour at frequency higher than Vg.

In this section a different version of an interferometric antenna is presented,
using an optical arrangement capable of giving a tunable narrow band sen-
sitivity.

This method, originally proposed by Drever® (1983), has been studied suc-
cessively in a complet theory by Vinet® (1986).

The Drever’s idea is based on the symmetric coupling of two long cavities of
a Michelson interferometer arms with a short cavity, by settling the recycling
mirror beyond the beam splitter (see the optical arrangement in Fig. 5a).
As extensively described in Appendix-D, this symmetric system made of
three coupled cavities (the symmetry involves the optical path lengths as
well as the reflectivities of the optical elements) shows two resonant oscilla-
tion modes at the circular frequencies wgs and wy, where the labels indicate
the character symmetric and antisymmetric of the longitudinal oscillation
modes of the optical system.

The narrow band behaviour of the antenna is reached by matching the laser
frequency on the symmetric or antisymmetric resonant mode, then the an-
tenna sensitivity becomes resonant at a gravitational perturbation frequency
equal to the difference of two resonat modes of the coupled cavities.

In the following this mechanism is described in detail. By referring to the
Fig. 5a, the feeding laser field Aq is shared in two fields by means of the
beam splitter of reflectivity »? and transmittivity ¢2, being r? = t? = ogg /2.
These two fields are converging through two symmetric optical paths [; and
l, on the recycling mirror, which gives access to the optical short cavity of
total path length a.

The two long FP optical cavities along the interferometer arms are defined
by the front and end mirrors at a distant do with reflectivities 7? and r2
respectively.

Of course, by the symmetry of the optical lay out, back to beam splitter, two
similar fields, the reflected and the transmitted ones, are present.

In the reasonable hypothesis that the corner mirrors along the paths {,
(0 = 1,2) get an almost unitary reflectivity (r? ~ 1), the two fields Ao,
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reaching the recycling mirror of reflectivity p? and transmittivity 72 get the
form :

A = irgirAgexp (tkly) ~ —rAgexp (ikly)
Aoy = irctAgexp (tkly) ~ it Agexp (iklz) (46)

The field configurations originated by two incoming fields Ao; and Aoz prop-
agating into the optical system are shown in Fig 5b and 5c separately for
semplicity sake, but, of course, they are to be considered superimposed.

By applying the S-matrix method to these configurations one obtains back
from the recycling mirror four fields Ar, and Ap, having the expression :

72F, exp (ika) .
P— Z — %
Tw zAO“I — p?F F, exp (1k2a) tAou X
: 1 - F\F. k2 .
Ag, = tAoup 1F exp (ik2a) =1Ao.Y (47)

1 — p?2Fy F, exp (ik2a)

where F, is the complex parameter describing the reflectance of the u — th
FP optical cavity and holding the definitions :

72F, exp (tka) . 1 — F1Fyexp (ik2a)

X, = =
1 — p?Fy Fyexp (1k2a) g p?Fy F; exp (i1k2a)

(48)

The p =1 (u = 2) case corresponds to the diagram of Fig. 5b (5c¢).
It is straightforward to deduce the resulting transmitted field back to beam
splitter :

Ar =t (A11 + AR2) exp (¢kly) + ir (Ag1 + Are) exp (ikl2) =
Tt Ao [ X, exp (1k21)) + X, exp (1h20)] +
1Ag0Bs [r2 — t2] Yexp [ik(l, + 1)] (49)

the term in Y of (49) vanishes by using the given condition t? = r? = ogg/2.
From (49) the intensity of the transmitted beam can be deduced :
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|Ar|®
| Ao|?

P27t | F|?

= r%? | X, exp [ik20,] + X, exp [tk20L]]* = (50)

2 4 (exp [i(ArglFi] — Arg[Fy] + k2(l — )] + cc)
1+ p* |F[* = p? |[F|* (exp [i( Arg[F1] + Arg[F3] + k2a)] + cc)
By referring to the formulae (17) and (36), in the case of GW perturba-
tion it results that A®; = —Ad;, = Ad = gAw2dy/c, hence Arg[Fi] —
Arg[Fy] = 2A®. On the other hand by using the energy flux conserva-

tion (see formula (7) of Appendix-D with the condition ¥ = 1), one obtains
Arg(Fy) + Arg(F,) + ¢ = 27 mod(27), hence the (50) becomes:

|Ar|?
| Aol?

o 1+ cos 2AQ + k2(1, — 13)]

L= |FP)? 51

= 2% ||

Putting into the (51) the values of r? = ¢ ~ 1/2 as well as the extinction
condition, the (51) takes the form :

Arl (1= )2 P
[Aol* (1= p? |F[*)?
The result (52) is analogous to the broad band case of the interferometer
discussed above and given by the formulae (35) and (36).
However it is important to point out the difference of this case. In fact, as
will be clear by the following argumentations, in the narrow band optical
system the stationary case doesn’t exist by definition.

sin? A® (52)

In order to calculate the relaxation times of the optical system, the same
procedure followed in the broad band case will be adopted.

The original expression (47) of the transmitted field Ar, is considered. Since
the phase effects are given by the exciting field Ao, and therefore equal into
the two long cavities, it is allowed to put F; = F; = |F|exp (iArg[F]).
Thus the transmitted intensity is given by the expression :

|Arul® _ |72 F, exp (ik2a)|*
| Aou|? !1 — p? |F [P exp (12Arg[F]) exp (ik?a)|2
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the result (53) can be written in the following form directly comparable with
the expression (22) of Appendix-B:

2 _ 2 2
Aol _ 0=l -
| Aoyl 1 —p?|F|
1
)
1+ [(w — wo)(e + B)(2do/c)p |F| /(1 = p? |FI*)]
The relaxation time constant 7* results defined as :
1—p?|F|
_ 2d0 _ 2d0 27‘2(0’ — 7‘%)
0= c (a+P) = ¢ (org—r)(1 —ryry)

The value of the time constant O is roughly four times 7 (© = 47) in the

reasonable approximations ¢ ~ rZ ~ 1, \/ry/r; &~ 1 and /o + r; = 2.

On the base of the transmitted field expression (23) of Appendix-B relative to
the harmonic perturbation h(t) = & cos (2t) of a resonator connected to two
guides, the analogous expression of the field transmitted by the three coupled
cavities can be written. However the existence of two resonant modes allows
to performe a choice. In the case of exciting the w, mode the following pa-
rameter definitions are to be considered:

wizw:tﬂ

1 . 1 i
YA = 7 —Jwa VS = —JwWs

T T
Qs =wsT™  Qa=wurt  f=2_2A (56)

wy
w4+ 0 —wg w—0 —wy

6 E(S = 6_:6 =
+ s e A y
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Thus the perturbed transmitted field gets the expression :

k22 * . -
S-(t) = So———lQ— [exp (jwt)— (57)
. (Vs exp (Jwt) | yaexp (]w_t))] : , '
h : - , )| =CR-SB, -~ $SB.
( 1+76s@s 1+ 764Qa +
At the resonance w = wy the parameters get the values : § = 0, 64 =—Q/wys

and 85 = (wa4 — ws + N)/ws. In particular §s vanishes for @ = wg — wy.
That means that the transmitted field gets a peaked behaviour at the fre-
quency @; = wy + Q due to term SB,. The other perturbation term SB_
remains actually limited and doesn’t play any role in the narrow band mech-
anism.

That can be seen quantitatively by lookmg at the phase A®(v,) deﬁned in
the present case as (see Appendix-B) : '

ISB+| 1-— jWST*
A = = (58
) =Tem =" 157505 (5%
at the resonance (w = wy) the phase (58) becomes
B 1+ (wsT*)? . N
vs2nT* : o (59)

\/1+ va — Vs + vy)?(2nT*)?

By using the result (55) : 7* >~ 74p |F| /(1 — p'2 |F|?) together with the rela-
tion vg — va = 1/77 given in Appendix-D, the expression (59) can be put in
the form : :

I/s/l/o .
A®(v,) = hng Z (60)
O T ub (v - )0
where the cut frequency v) = 1/77 gets a different definition with respect to

the previous definition of the broad band case and an expansion factor ng is
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defined as :

2
0 _ _ _ C 1 - rl — SplFl 61
Vg =Vs—Va= 27 d, arctan (21*1 sin ¢/2) 5 1—p? |F|2 (61)

Let us go back to the expression (51) of the transmitted intensity in the form :

M = 2t2r2———zﬂ——-— [1 + cos (2AD(v,) + k2(1; — 12))] (62)
Aol? 7 (1= 2 IFPY ’ L

it is worth while to remark that the cosinus argument is the sum of two

terms, each being characterized by the frequency vs and v, respectively.

In fact the phase A®(y,) is carried by the frequency vg as it is obvious from

the expression (62) and the factor £ of the second term has to be defined as

k = wy/c accordingly with the laser frequency matching the frequency v4.

Therefore the transmitted intensity depends on two frequencies v4 and vg,

but the settling of the Michelson interferometer at the extinction eliminates

the component at frequency v4, leaving the transmitted intensity at the fre-

quency vs.

If a hetherodyne detection is performed between the carrier v4 and the side

band vg, one obtains a signal proportional to:

|Ar| = |Ao| AS(v,) = (63)
IAlh(l—p2)|FI nEVS/U.g
PRI
(L= P2 IF1) /1 + nE((vg — 12)/ Q)
where S(v,) gets the same meaning as in the broad band case; if p? = |F|?
the (63) supplies the following expression for S(v,):

0
S(l/g) nE VS/I/g

2 L+ 1B (v — 10)/03)
In Fig. 6 the (64) is plotted for different values of the phase ¢ (¢ = 7, 7/3,7/6
and 7/9) corresponding to the frequencies v? ~ 40,80,154 and 230 Hz te-

spectively. The curves shown in Fig. 6 are computed for the following set of
values:

(64)




-

=.995 12=.99999 o = .999995

7

Finally a relevant problem arises about the scientific use of the narrow band
gravitational antenna.

The problem concerns how low in frequency can be tuned the antenna. That
is directly connected to the detection of gravitational periodic signals emit-
ted by rotating neutron stars, whose frequency spectrum is located to low
frequency (3 Hz).

As it is shown in Appendix-D (see formula (18)) the frequency difference of
two resonant modes,corresponding to the minimim tunable frequency of an-
tenna, is reached by doing the minimum coupling between the long cavities
(¢ = 7). It results that the minimum tunable frequency is of the order of the
cavity FSR times the factor 1 — r#, therefore the narrow band optics of the
antenna requires high values of the front mirror reflectivity, or high finesse!®
of the long cavities.

Another limitation of the minimum tunable frequency could be given by the
widths of resonant peaks.

However it has been shown that such a width is 1/;’/773, therefore, as the peak
position 1/;’ is moved more and more down in frequency, the ratio of the width
over the peak position is constant and equal to 1/ng. Hence the tuning of
antenna in the low frequency limit results remarkable favorable.
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7.Validity conditions of sensitivity formulas

It has been undoubtedly noticed that the conditions r? < r3 ~ ¢ ~ 1 has
been widely used throughout the paper. That is due to the fact that these
inequalities are the standard settling of the long FP optical cavities of a GW
interferometer detector.

Besides these conditions are directly tied to the condition |F|* ~ 1, which is
to the base of most important results presented in this paper and it is also
connected to the frequency cut v, which characterizes the frequency range
where the antenna is capable to detect GW with good efficiency.

Hence in this section the validity limits of these conditions are discussed.
By defining the characteristic time constants Trsg, 7' and 7" as :

TFSR = % T = 2;do(l - 7’17‘2)—l T = %
c c c

(1 —+/ory)™! (65)

the conditions r} < r2 ~ o ~ 1 imply the following inequalities:

TFSR < < (66)

Following the adimensional notations t,, = 7psgp/7” and t = 7 /7", used in
the Vinet’s paper®, the (66) corresponds to the inequalities :

tm<t<l1 (67)

At the resonance of the FP cavity the expression of |F|* can be written as
function of ¢ and t,,:

- 2 1+ tt,, — 2t\?
|F|2 = (M) = <_j___—_) ~ (1 —2t)° (68)

1 —riry 79

being the approximation in (68) allowed by the smallness of ¢, .

It is clear from (68) that the validity of the approximation |F|* o~ 1 depends
on the smallness of ¢t = (1 — \/ory)/(1 — ry73) with respect to unit.

Since r ~ ¢ ~ 1, that, in turn, depends on the value of 72 or, if you want,
on the choice of the finesse F™.
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That becomes apparent by showing the ¢t dependence on the different param-
eters :

!

T
t=— =
T

1 1 _1—\/37‘2_1—-\/-0'_7'2‘}?* (69)

7" 2100 1—riry T+/T1T2

By using the numerical values of section 4 : 72 = 1—-10"*and 0 = 1 -501075,
it results that 7" = .2666 sec and t = .597/v2.

This function is plotted versus v? in Fig.9, and two more horizontal scales
are added reporting the corresponding values of the reflectivity r? and the
finesse F™.

The Fig.9 shows that in the finesse range so far considered for the interfero-
metric antennas (20 < F* < 400) the condition |F|* ~ 1 is fairly well fulfilled
(t < 1072). -

We point out that 1/;’ is also limited at high frequencies, because it is required
to be a small fraction of the free spectral range ( for instance in the VIRGO
case vpgp = 50 KHz).
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Appendix-A

This appendix is devoted to deduce the expression of the signal to noise
ratio (SNR) of the intereferometer in the case the technique of the external
modulation is used.

In Fig. 3 the considered optical lay out is shown : the intereferometer is
represented as a black box excited by a field Ay, giving in output the trans-
mitted field A7. Furthermore the interferometer is supposed to work at the
extinction.

As represented in the figure, the external modulation is obtained by the ex-
traction of a small fraction Aro of the incoming field Ap by means of a beam
splitter « of reflectance r, and transmittance ¢,. Successively this field is
phase-modulated at high frequency (= 107 Hz) by an electro-optical device
and recombined with the output field A7 on the beam splitter 3 of reflectance
rg and transmittance ¢g.

The interferring field A = r3Aro +t3Ar is detected by a photo-diode, whose
output current is demodulated, filtered and finally through the lock-in tech-
nique the significative interferometer signal is extracted.

In the given hypothesis the intensities of the involved fields are quantitatively
given by the inequalities :

|Ao|2 >> ’AL0|2 >> |AT|2 (1)

The intensity |A|* hitting the photo-diode is given by the expression:

|A]” = rors |Ao|® + 1% |AT|* + 2rarsts | Ao| |Ar| cos [0 + msin (wart)] (2)

where 6 is the interfering field phase, m and wys the amplitude and the fre-
quency of the external phase-modulation.

The phase 0 can be adjusted to the value 7/2 in order to express the interef-
erence term of |A|* in odd Bessel’s function series (actually limited to the
fundamental frequency by means of electronic filtering) and neglecting |Az|?
the expression (2) becomes:

A = r20% | Ao[® — drargts | Aol | Az| Jy (m) sin (wrt) 3)
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The current  of a photo-diode, excited by a light of power |A|? integrated
on: the photo-diode surface, is given by the expression:

. AP?
i = en|h—l|/ (4)

where e is the electronic charge,  the quantum efficiency and hv the photon
energy. It results that the photo-diode output current is given by a ”dc”
component and an ”ac” component of frequency wys/2.

The current signal ¢, given by the lock-in technique is written as :

. en
zs_hu

and the noise current 7,,, coming from the photo-diode shot noise relatively
to the "dc” component, is given by the formula :

n=V<i®?>= \/QCAfZ—ZTaTﬁ | Aol (6)

Therefore the signal to noise ratio can be written :

_ s _ 2n _
SNR = Z— \/hVAthﬁlATlJl =

27 Aol AD (v,
nthI MR \/A(‘f) 7

having taken into account that tz =1/ V2.

4Ta7‘ﬁtﬁ IAOI |AT| J] (5)

\/§J10'BS |F|
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Appendix-B

According to the ref.16, the field of a resonant device can be given by
means of a couple of differential equations of the first order (instead of a sec-
ond order differential equation), no matter the frequency range be involved.
Such a couple of differential equations gets the form :

A+ = — (; —]WO) A+ + I’CS+
A= (F +on) A+ kST (1)

where the dot means time-derivation and the star complex conjugation.
Ay indicates the field into the resonator; Sy = Spexp [jwt] is the exciting
field, wy the resonance circular frequency;furthermore the following defini-

tions are given :

1 1 1 1 1 1
_— + J— - —— — k 2 —
Te To0 T Te T0

(2)

2
=

+

where 74 is the relaxation time due to the resonator energy-losses and 7, the
relaxation time due to the energy escaping from the resonator.

Following the ref.16 notations, the field S_ reflected by the resonator is writ-
ten as :

S_ =-S5, +kA (3)

where by A the fields A} or A_ are indicated.

The explicit expression of S_ (or S*) can be obtained by using the first (or
the second) equation of the system (1), being the first equation the complex
conjugate of the second one :

1-j6Q . T —j6Q
1+6Q “°1+;56Q

where the following definitions hold :

S-(t) =5+ ()T exp (jwt) (4)
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Q=wr Q=wT TI= (5)

il

If a small harmonic perturbation A (t) = hcos () is supposed to affect the
resonant device in such a way that neither the resonance frequency wgy nor
the relaxation time 7 be longer constant, then the time dependent expression
of these parameters can be given in the form :

= e = T e (1) + 5 ©)

2
If the expression (6) is applied to an optical cavity of optical length dg and if
the perturbation is responsible of a harmonic vibration Ad (t) of the cavity
optical length around the resonant value dy (h = Ad/dy), then the expression
(6) becomes :

Jwo (t) —

juwo (8) — % - [jwo - %] (1 — hcos (Q)) (1)
remembering the following relations : Awg/we = —Ad/dy and 7 = F*2dy/7c
concerning the cavity.

The calculation leading to the expression of the reflected field S_ (t) can be
repeated in the case of the perturbed condition (7).

The differential equation gets the perturbed form :

A(t) = — G — jion) [L~ heos ()] A (1) + £S, (8)

The field A (¢) can be expanded in series of the perturbation amplitude A :

A(t) = Ao (t) + kA () + O (R) (9)

by using the hypothesis of the perturbation smallness, the terms O (k) can
be neglected.
The expression (9) and its time derivative allow to write the equation

(8) as:



Ao +7A0 — Sy = —h [y (A1 — Ao cos (1)) + Ay (10)

where v is defined as : v = 1/7 — jwo.
The equation (10) requires the fulfillment of the following system of differ-
ential equations:

Ao +7A0 —kS; =0
Ay 4+ v [A; — Agcos ()] = 0 (11)

The system (11) supplies the following solution for Ao (¢) and A; (¢) :

Tk‘So

Ao (1) = T+760 P (Jwt) (12)
A (t) _ 7T2k50/2 exp (]w-f-t) exp (]w—t)
YW 56Q | 1+56,Q T 1+456.Q
where :
6i=w:i:Q—w0 (13)

wo

Therefore the expression (9) can be rewritten as:

T 1+456Q 1+76:0Q ' 1+346-Q

By using the expression (14) into the (3), the reflected field S_ () gets the
form :

A1) 7kSo {exp (jwt) + h’g_r (exp (Jw4t) n exp (jw_t))] (14)

S_(t) = So exp (Jwt)+

1+T |[T'—36Q
1+6Q | 1+T
77 [exp (jwit) | exp (jw-t)

h— . . 15
2 <1+J5+Q 1+356_Q (15)

In the optical cavity case the expression (15) can be simplified. In fact the
energy-losses due to the escaping energy from the cavity are much larger
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than the energy-losses into the optical components of the cavity, thus it
results 7, << 7o or 1/7 = 1/ therefore I' ~ 1. In addition the factor
47 =1—3jQ ~ —jQ, since the parameter Q gets a large value in comparison
to the unit.

By using this approximation the expression (15) gets the simplified expres-
sion :

S-.(0) = 1o (1 — 36Q) exp i) -

hio (exp (jwst) . exp (jw—t)>] (16)

1+76,Q W 1+36-0Q

By comparing the expression (16) with the unperturbed field (4) it is appar-
ent that the harmonic perturbation of frequency {2 originates the rising of
two side band (SB4 and SB_) terms of frequency va = v £+ Q/27 besides
the carrier (CR) term of frequency v :

S_(t)=CR— SB, — SB._ | (17)

By matching the carrier frequency at the cavity resonance v, one obtains
the resonance conditions : § = 0 and é; = +Q/w.

We are also interested to get the perturbed expression of the transmitted
intensity relatively to the resonator connected to two guides.

In fact such a structure is quite similar to the optical configuration used in
the narrow band version of the interferometric antenna.

In this case the equation corresponding to the first equation of the system
(1) of the previous calculation is: *

A = —(]_/T — ij)A + k15+1 + k25+2 (18)

where the relaxation time 7 and the coupling factor k, are defined as:

+—+ — k2= — (19)
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being 7y the relaxation time of the resonator and 7., the relaxation time due
to the energy escaping from the y — th guide.

Besides the field Sy, indicates the field exciting the resonator coming from
the p — th guide (g = 1,2).

The reflected wave S_, is evaluated using a generalization of (3):

S_,=—Si,+k,A | (20)

The field transmitted by the resonator can be expressed by the field ex-
changed by two guides; hence, substituting the (20) into (18), the transmit-
ted field S_, becomes:

2T/~/T,31Te2 |
S o=kA=S d 21
2 2 +11—|—j(w—wo)r (21)

the transmitted intensity is given by the expression:

472 [ (To1Te2)
S_ 2 — S 2 € € 22
| 2| l +1| ].+(UJ—LU0)2T2 ( )
The field transmitted by the resonator, if a harmonic perturbation is present
in the system, is easily obtained by substituting the perturbed field (14) into
(21), adding to parameters k and 7 the lower index indicating that the guide
2 is considered:

k35S, . y72 [exp (jwyit)  exp (Jw_t)
S_Z_1+j5Q exp(]wt)+h2 (1+j5+Q+ T+ 6.0 (23)

the comparison of definition (2) and (19) supplies the relation between the
relaxation times 7 and 79: 7 = 27.
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Appendix-C

Since the optical system of an interferometric antenna is rather a complex
one, as it is apparent throughout this paper, it is not unusual, in discussing
about the antenna behaviour, to be confused in considering partial charac-
teristics of the optical system as characteristics of the antenna itself or in
estimating the phase sensitivity without performing an accurate analysis of
the phase perturbation the antenna is subjected.

For these reasons we feel it is useful to discuss in details the global charac-
teristics of the antenna optical system, i.e. in considering this system as a
black box and studying its response if subjected to some typical phase per-
turbation.

The optical system we study is a Michelson interferometer having optical
cavities as reflecting elements in its arms and a front reflector (recycling mir-
ror) in order to send back the interferometer energy flux.

We call this optical system resonant if the following four conditions are ful-

filled :

1) The interferometer arm cavities are resonant at laser frequency vy :

2d
exp (i27r1/02—do) =— [exp (i27rA1/—0)] =-1 (1)
¢ Av=0

ii) The optical length difference I; —; gives the Michelson extinction con-
dition :

12—11)=_[ . Av

exp (127 vo2 =1 (2)

iii) The optical lengths [ + /; and [ + [; of the recycling cavities are reso-
nant at laser frequency vy :

I+1 A
exp (127 + 12y = [exp (i27r_y)
c

o ]Au=0 =1 3)

iv) The recycling mirror reflectance p gets one suitable value in order to

vanish the back field :

36



p:o‘RO'B5IF| (4)

where in all used expressions the symbols have been already defined in the
text (see also Fig.2).

If we consider the perturbation, the gravitational antenna has been de-
signed for, i.e. opposite length variations of the interferometer arm optical
cavities, only the condition i) is violated.

We point out that in this case the fields reflected by the FP cavities supply
the information of the length variation through their phases and no through
their amplitudes. That because their amplitude is almost unitary (|F| ~ 1).
In other words the FP cavities behave as phase objects'.

On the contrary, if we look at the response of the optical system in the
case the perturbation be due to the laser frequency variation Av around the
resonant frequency v, we observe that the conditions i),ii) and iii) are not
fulfilled. Therefore the optical system behaviour will be completely different
from the previous one.

In the following we report calculations of the optical system response in these
two mentioned typical cases of phase perturbation in order to focus the in-
volved differences.

That is done by calculating the transmitted and reflected intensity of the
optical system and studying the phase dependence in order to explor the
involved time constants of the system.

First we consider the case where the optical system is resonant and the phase
perturbation is due to the opposite length variations of the Michelson arm
cavities.

By using the formulae (7) and (14) of the text we calculate the transmitted
intensity taking into account that the following relations hold between the
complex reflectances F, (¢ = 1,2) of the FP’s cavities :

~ Ab/2
Fy 5 = |F|exp [i(7 £ arctan ( iiiyg)t‘:; A5§2))] ~ (5)
Av/v
o~ — |F'| exp [£¢ arctan (1 3(?2A1{/5:,z)2)

being :

37



aro—i1\2 2Av\2
() + o2 o

1 + (2Au)2

VFP

I =

in the approximations 77 < r2 ~ ¢ ~ 1 and sin (A§/2) ~ A§/2 (remember
the formulas (18) of text defining a and f).

By the symbol vpp the FP cavity width is indicated, defined as the free spec-
tral range divided by the finesse F* (vpp = ¢/2doF™).

By using the formula (7) of text in calculating the transmitted intensity and
having taken into account the conditions i),ii),iii) and iv) in the Fj , expres-
sion given by (17), one obtains the result :

2
Ar 2, 2 2(\/Mr 2Av/vEp)
A = 0Opgs lF| 1+0Ro? IF'2 x>
IN 1+ —aﬁ-"—(,/nn 2Av [vpp)?

(7)

~9 [ (v2nr 24v/vpp) r _
1+ (V2nr2Av/[vEp)?

1.
=3 sin? [2 arctan (1/2ng 2Av /vEp)]

and for the reflected intensity one obtains :

2 1 2AV\ 2
:'z'(VQ"R )

VFpP

2

Ar

A

Ar
Arn

(8)

where the approximation orokg |F|? ~ 1 has been done and having put the
transmitted intensity in the form of squared sinus of the argument

2arctan (\/2ng 2Av/vep).

That gives the functional character of the transmitted and reflected intensity
versus the argument /2nr2Av/vpp (see Fig. 7).

It is important to discuss the form of the field reflected by the FP cavity in
the case of a harmonic perturbation of frequency /2% of the cavity length
around the resonant length dy (d = do + Adsin Qt); in general we have :

a(t) = apexp [twot — 1P sin Q] ~
ag exp (twot)[1 — ¢ P sin Q] ~

38



ag exp (twpt)[1 — %(exp (182t) — exp (—i82))] =

aolexp (iwot) + %exp (twyt) — %exp (—tw-t)] (9)

where the circular frequencies wy are defined as :

wi =wg £ (10)

the (9) tells to us that a harmonic perturbation produces side bands at cir-
cular frequencies w, and w_, thus the phase amplitude ® can be evaluated as :

o — lao% exp (iw+t)| + ‘a[)%exp(—iw_t)‘ an
- |ap exp (—iwpt)|

From (11) (see the calculation of Appendix-B) one obtains the formula (44)
of text :

Ad woT
AP(Q) = 22— —— 12
) =23 S 12)
where 7 = 1 /7vpp (see formula (42) of text).
The result (12) can be put into (7) performing the following reasonable ap-
proximation of the phase : A® ~ —4Av/vrp. One obtains the expression :

2
1
=3 sin? [2 arctan (/2nr A®(Q)/2)] =

Ar
AN

Ad woT
—_— 13

in the case of GW detection Ad/dp is given by the strain of the wave and it
is a very small quantity, therefore in practice the (13) becomes :

1
5 sin? [2 arctan (1/2nr

2 2.2
wiT Ad .,

~ TIR——1+Q2T2(d—O) (14)

=
Arn
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however, as showu in the text, we are able to look at squared root of (14),
linear in the perturbation amplitude, by means of the modulation technique
(see the formula (45) of text) .

The time constant 7 appearing into (14), which characterizes the time re-
sponse of the interferometric antenna, is actually depending only on the FP
cavity width and just it determines the frequency cut reducing to one half
the transmitted intensity (7 = 1).

The time constants characteristic of other parts of the interferometer don’t
play any role in GW detection.

This fact is understandable for several reasons.

First in this type of perturbation only the long cavities are excited and the
other parts of the system remain in the resonant state.

Second, in the GW detection case, the FP cavity perturbation is so small
that the AQ variation involved is of the order of 1019, therefore the relative
change in the stored energy is extremely small. That makes sure that the
cavity behaves really as a phase object.

It can be also proved that under this type of phase perturbation the energy
stored into the recycling cavities is subjected to a percentage variation as
small as the long arm cavities.

In order to compare this case with the case where the phase perturbation is
generated by a laser frequency variation around the resonance frequency vy,
we report in the following the calculation of the transmitted and reflected
intensity of the optical system as function of the detuning Av.

This case is characterized by the fact that the conditions i),ii),and iii) are
violated at same time and that the phase variations into the FP cavities are
equal :

. . 2(2Av /v
Fu = Fy = [Flexp (i8) = |Flexp li(r + arctan (2 r) ) —
|F|exp [¢(m + arctan (1—_2%;—)2))] (15)
where by definition is settled :
A
e=Br e 2 (16)
Yy Vrp VFpP
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Starting from the formulae (6) and (7) of text we obtain the expressions of
the reflected and transmitted intensities :

AR |* p2[1 + cos? (2x) + 2 cos (¢ + S7x) cos(’2r z)] (a7
Anl T 14 (p?/oRr)? cos? (3z) + 2(p?/oR) cos (¢ + 2rz) cos (3z)
AT 2 — [p2(0R_ 2)/0R] Sil’lz(; ) (18)
AN 1+ (p2/oRr)? cos? (2z) + 2(p?/oR) cos (¢ + 2rz) cos (3x)

where the value of p? is fixed by the condition iv).
In discussing the (17) and (18) it is convenient to evaluate them in two sep-
arated ranges of x parameter :

0<z<1072 1072<z<1 (19)

because in two cases the (17) and (18) can be approximated in different way.
In fact in the first range it is legal the sinus, cosinus series expansion neglect-
ing powers larger than the second one.

Thus, in studying first the reflected intensity expression (17) for the former
range, the term cos (¢ + 37z ) cos (5) can be approximated as :

5 5
cos (¢ + §7r:1:) cos (gm) ~ (1 - 13(%:1:)2) cos ¢ — 57T sin ¢ (20)
and the (17) gets the expression :

Agr |? p2[2—(% )? +2((1——l3( z)?) cos ¢ — 27z sin @)]

— 21)
AN 1-{—((’: 21— (52)%) + [( —13(%7)?) cos ¢ — Sxzsin ]
recalling the ¢ definition (15) the cos ¢, sin ¢ expressions become :
_ =) 2(p7)
cos (@) = ¥ (p2)? sin (¢) = g TE (22)
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By substituting the (22) into (21) one obtains :

AR
AN

3 PPlA(pe)? + 5ra(pe) + 25(32)?) _
(1= 202+ (1 + Z)(pa)? + [0ma(pe) + (26 — £)(52)11
) Pl + (30)? + %o )
(I2Lory2 4 g2[(1 4 2292 + £(Z)2(26 — £) + 107 2]

p P PR

2p0R 2 z?
~ ( 2) > (23)
OR+p (aa—pz) /p? + 22

orto?

having neglected into the brakets of (23) the terms divided by p, being p a
very large quantity (p =~ 10'1).

Recalling the condition iv), one realizes that p/,/0r is a quantity very close
to unit; therefore expressing p/,/0r = 1 — ¢, where ¢ << 1, and neglecting
terms O(¢) the following factors appearing into (22) can be written as :

2p0 2 o p?
R R—

~ ~1 € 24
(0’R+P2) R (O’R+p2) (24)

thus the (22) becomes :

(25)

AR }2 ~ 0'R1:2
Al (e/p)? + a?

The functional behaviour of (25) is very clear : it gets the value og &~ 1 for
r > ¢/p ~ 1071 and goes to zero limit as z?; in particular it reaches the
value 1/2 for z,/, = ¢/p.

Recalling the p definition (16), one can calculate the optical system width
FWHM as Avewanm = vo2¢e/p.

We point out that Avpwpm gets a noticeable expression by using the €,p
and the recycling factor ng definitions :

1—-p/\/Or op — p? VEP
_QUD_VFP = pn (26)

Avrwam = 200 vVF —

rR+p? T 2np
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the (26) shows that the optical system width is given by the FP cavity width
reduced by the recycling factor.

Besides the corresponding relaxation time 2pgrF*2dy/c can be compared with
the relaxation time coming from the Q-value of the resonant system. Follow-
ing the VIRGO project numbers (see in section 4 the iii) calculation data),
it results :

2.7 Joul
Q= QWVOWOZJ = 27wy = woT or T = .27 sec (27)
by using the same numerical values of iii) in evaluating the relaxation time
coming from (26), one obtains 7 = .42 sec in reasonable agreement with (27).
As far as the transmitted intensity (18) is concerned, by using the same ap-

proximations, one gets the following expression :

2 2 2 2

Ar | P Py T (28)
Ainl — or oR"2p (a_a;zﬁ)z/ 2 4 g2
oR+p? p

which shows a functional behaviour as (23), but tremendously suppressed by
the factor 1/p? =~ 10722,

In the case of the latter « range (19) we point out that with excellent ap-
proximation the following inequality holds :

arctan (%) ~ ‘— a1-ctan(}%) o~ pi'c << -g-ﬂ:c (29)
therefore the (17) can be written as :
Ar |* p?[1 + cos® (5z) — 2 cos (37z) cos ()] (30)
Anl 14 (p?*/oRr)? cos? (3x) — 2(p?/oR) cos (2nz) cos (32)
By putting into (30) the following typical numerical values :
oRr = .9999 OBs — .999 p2 = (URUBS ‘F|)2 = .9938 (31)
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we deduce that p*/o% = .987864 and 2p%/or = 1.987827.

The equality of the first four decimal digits of these factors makes sure that
the behaviour of (30) versus = begins to fall for z values smaller than 1074,
therefore the (30) holds the value p? in the whole range (1072 < 1) and it
matches correctly the value of the former case.

The transmitted intensity in the latter range (19) gets the expression :

2

Ar
Arn

(p)or)(or — p*) sin? (33)

" 1+ (p2/oR)? cos? (2z) — 2(p?/oRr) cos (27 z) cos (£z) (32)

the (32) exhibits a gentle rising in the z region (1072 « .5) up to value
~ 2(or — p?) (note that or — p? ~ 1072), then rises quickly crossing o — p*
at z = .66 and reaches its maximum value 2(or — p?) at = = .77; at last it
decreases to op — p? value in the z — 1 limit.
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Appendix-D

In this Appendix the symmetric system of three coupled optical cavities
is studied.
The coupling study of resonant cavities started in the early 1944, when
Bethe?! presented a solution to the field problem of coupling two identical
microwave cavities through a small circular aperture in a common conduct-
ing plane of zero thickness.
A nice experimentation of this method was made later by Melissinos et a
(1985) on two superconducting coupled microwave cavities (two connected
cilinders 4 cm long and 4 ¢m in diameter).
The authors were able of detecting the displacement amplitude of a harmonic
perturbation of one cavity end wall as small as 3.107° m//Hz.
That demonstrates the powerfull of such method in detecting very small har-
monic displacement by using the multiresonant modes of coupled cavities.
In the following the system, consisting of two equal optical cavities dp long
connected by a short optical cavity of length a (a << dp), is studied.
The end mirrors of the long cavities have very high reflectivity (r? ~ 1) and
the front mirrors a lower reflectivity, furthermore the energy losses into the
optical elements will be considered negligible.
The entry point of the optical system is given by the recycling mirror bending
the short cavity in the middle (see Fig. 5a).
As it will be shown in the following, this coupled cavities system exhibits
two resonant modes and therefore it is comparable to a linear system of two
equal cavities dy long, coupled by a common mirror of reflectivity r? (see Fig.
5d).
It can be shown that, by applying S-matrix method to three mirrors (r? =
r2 = r? ~ 1), this optical system gets two resonant modes at circular fre-
quencies w,; and w_ given by the expression :

1.25

Wy =w0i—c-K(rm) (1)
do

the two frequencies are located symmetrically around the resonance frequency
wo = me/do(g + 1/2) and shifted by K(r;)c/dy, where K(r,) is the coupling
factor of the two cavities depending on the reflectance r, as given by the

45

-



following formula :

K(r;) ~ arctan ( 1 =7 ) (2)

The (2) shows that the maximim coupling is reached for r, — 0, and the
resonances go to limit wg & w¢/4dp; on the other hand the minimum coupling
is reached for r2 = 1, when the two cavities are completely decoupled and
therefore each one gets the single resonance wy.

Going back to three coupled cavities under study, the short cavity plays the
same role as the common mirror does to two cavities of the previous case.
The only difference consists that this times the coupling factor depends on
two parameters : on the reflectivity r? and also on the short cavity length.
As described in the text, the three cavities system is excited by two fields
Ao, (1 = 1,2), given by the expressions (46), and four fields Ar, and Ag,
are obtained back, whose expressions are given by (47) and (48) of the text.
In the hypothesis that the energy flux neither escapes through the FP cav-
ities (|F'| = 1) nor is lost into the optical components (p? + 7% = 1), the
energy conservation leads to the equation:

|Au|? = |A7u* + |AR,|? (3)

Our aim is to calculate the resonant modes of the coupled cavity system.

Hence by detuning the laser frequency around the resonance frequency v, of
the F'P cavity, the F), expression (4 = 1,2) becomes:

, ory —r1 |14 (@? —1)sin? (@ — &y)/2
by = By = [Flexp (ArglF]) = 1= 7'11’2\J g EB'Z — I;Sin2 Ecp — <I>0§§2*
(e + B)tan (O — $g)/2
1 —aptan® (P — <I>0)/‘2) ) =

2qtan (® — &y)/2 )])
I — ¢2tan? (P — Pp)/2

exp (i[7r + arctan (

exp (i[ﬂ' + arctan ( (4)

having used the following definitions:
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2d l+r
<I>—<I>0=Tu(w—w0) qzl—ri

(3)

By substituting the expression (4) into the equation (3), one verifies that it
is identically fulfilled for any value of the cosinus argument:

7 4+ 2p*[1 — cos 2(ka + Arg[F])]

(1 — p?)? 4 2p%[1 — cos 2(ka + Arg[F])] =1 (6)
therefore it is allowed to write:
24rg[F] 4 2ka =427 mod(27) (7)

where ~ is a parameter defined in the range (0 < 1).
For simplicity sake we rewrite (7) in the form:

Arg[F] = ¢ Y =1 — ka (8)
and by using the expression (4), we have:

2gtan (P — @)/2
1 —g?tan?(® — ®g)/2

)= (9)

7 + arctan (

the (9) leads to a second order algebric equation in the variable tan (® — ®4)/2,
which gives the following solution:

cot /2
®, = ¢y — 2arctan ( v/ )

q

tany /2
®, = &y + 2arctan (M~> (10)
q

The (10) gets a general validity, however, since we want to detect the an-
tenna response on the transmitting beam, we impose the condition |A“T|2 =1
(|Aurl* = 0), which is fulfilled for 4 = 1.
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Hence the solution (10) becomes:

to/4
&, = ¢+ 2arctan (CO q¢/ )

d, = &y — 2arctan (tan ¢/4) (11)

q
having defined ¢ = 2ka.

From (11) the circular frequencies of the optical system resonant modes can
be easily obtained:

cot 45/4)

c
wy =wo + I arctan (

0 q
Wo = wg — Ec_ arctan (tan ¢/4> (12)
0 q

as it is apparent from the (12) the two frequencies are located around the
frequency wo, which is, of course, the resonance frequency of a single optical
cavity dg long. The symmetric configuration around wy is reached for ¢ = .
It is interesting to investigate about the character of the fields into the cavi-
ties, when they are excited on the frequency wy or w_.

It will be demonstrated in the following that the case of the w, (w_) ex-
citation corresponds to the symmetric (antisymmetric) configuration of the
fields inside the long cavities.

We consider in general two cavities and we suppose the field a,(t) be present
inside the yu — th cavity d, long (1 = 1,2), having the resonance frequency
w, =(¢+1/2)rc/d,.

In the coupled configuration the fields obey to the following system of differ-
ential equations :

ay(t) = jwia(t) + Kaay(?)
a2(t) = jwaas(t) + Noyay(t) (13)

where K, and Ky, are the coupling factors.
In the hypothesis of requiring for the system (13) the harmonic solution
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a,(t) = ao, exp (jwt), by using the necessary condition that the determinant
of (13) be vanishing, the following solution can be obtained :

Wy =¥i\/(%)2+|f(l2lz (14)

having taken into account that the coupling factors are tied by the relation!®:
K2+ K3, =0.

In particular the (14) gives the formula (1) if w; = ws.

Putting the solution (14) into the (13) the following equation system can be
written :

anjws — jwiao — Kiz2a02 = 0

agzjwt — Jwaaos — Ky1a01 =0 (15)
which implies that the coupling factors are pure imaginary quantities : K, =
j |[(12| and I{Zl = j II{zll
It is straightforward to deduce from both equations of the system (15) the
following relations between the fields ag; and ags:

a 1 Wy —w Wy —w
Qo2 _ 1 Q:E\/( 1 2)2+|K12|2

ann  Ki2 2 2
Qo1 1 -wg — W Wy — Wy, . 12 ]
e Y (16)

the (16) for w; = w, leads to the common result : ag;/ap; = £1 in the rigor-
ous correspondence to the solutions wy and w_.

By extending this result to the coupled cavities under study, it results that
the excitation of the w; (w-) resonances produces symmetric (antisymmet-
ric) field configuration in the long cavities.

Therefore it is convenient to rename the resonance frequency labels indicat-
ing the corresponding field character; i.c.:

wy = ws wo =wa (17)
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The difference of two circular frequencies (12) gets the expression:

e tan (¢/4) cot (6/4)) _
wg — Wy = d_o (arctan [—q————] + arctan [T]) =
c 1—r?
& et 5oy (18)

As it is shown in the text, the difference (18) allows the tuning of the an-
tenna, hence it is important to investigate its functional dependence on the
involved parameters r; and ¢.

Since 7 is not an easy variable parameter, the variation of (18) can be
achieved through the phase ¢ = k2a (see Fig. 8).

In fact for ¢ = 0,27 the (18) gives ws —wa = 7¢/2dp, which is the maximum
difference reachable and it corresponds to the maximum coupling between
the two long cavities.

On the contrary ¢ = 7 gives ws—wy = arctan [(1 — r2)/2r;]c/dy, which is the
minimum difference reachable and it corresponds to the minimum coupling
between the long cavities.

In the rough approximation 7; & 1 the maximum and minimum frequency
difference results :

¢=0,2m VS—VA=Z% (19)
1 ¢ 1
¢=7r Vs—VAZ;%(l—TI)ZF (20)
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FIGURE CAPTIONS

Fig. 1 - a) Optical diagram of Michelson interferometer. b) Michelson
interferometer equipped with recycling mirror. ¢) Reflecting optical element
showing the incoming and outcoming fields as used in the S-matrix technique.
d) Field propagation between two reflecting optical elements.

Fig. 2 - a) Diagram of Michelson interferometer equipped with recycling
mirror and resonant FP cavities at its arm ends, showing the detailed field
propagation. b) Diagram showing the optical structure of the FP resonator.

Fig. 3 - Diagram of Michelson interferometer equipped with recycling
mirror and resonant FP cavities, showing the external modulation and de-
tection scheme.

Fig. 4 - Curves of the function S(v0)/ve versus the GW frequency rela-
tively to an interferometric antenna with and without recycling in the broad

band case (see TABLE I for notations).

Fig. 5 - a) Optical diagram of the interferometric antenna in the narrow
band version. b), c) Partial view of diagram a) showing the field structure
relatively to the incoming fields Ag; and Ao, respectively. d) Diagram of two
equal and colinear resonators coupled by a common mirror. The transmitted
intensity of the system, given by the expression:

At
Arn

The two resonance frequencies vy of the system are given by the formula:

(21)

2 _ [1 [(1 + 7‘2)1*;,;/27‘ -+ COS (471-Vd/c)]2j| -1
(= )1 = 1,)/ar?

(22)

M —(1 ,2 = 1/2
I/i:llo:t 7 ( Rl ),}

rcta
arctan l:zl n (1 n 1‘2)7‘1,

wdy

The formula requires that r, < 27/(1 + r%). In the case of equality the
coupling between the two resonators is minimum and each resonator gets
the proper resonance frequency vo. If 7, is zero, the coupling is maximum
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and it is also maximum the difference between the two resonant modes:
vy —v_ = c/4do.

Fig.6 - Curves of function S(v,)/vo versus the GW frequency of the inter-
ferometric antenna in the narrow band case. The function S(v,)/v, is peaked
to v9 frequency and exhibits a z/g /ng width. The figure shows the tuning of
four frequencies of antenna corresponding to the coupling phases ¢ = r, /3,
7/6 and 7 /9 respectively.

Fig. 7 - Transmitted and reflected intensities of the interferometric an-
tenna optical system versus the parameter z = \/2ng2Av /vpp in the case of
GW perturbation.

Fig. 8 - Phase behaviour of symmetric and antisymmetric resonant modes
of the optical system in the narrow band version of the interferometric an-
tenna. Phases are plotted versus the phase ¢ = 2ka changing the coupling
between the two long FP cavities of antenna.

Fig. 9 - Behaviour of parameter ¢ giving the goodness of the approxima-
tion |F|* ~ (1 — 2t)? ~ 1 relatively to the conditions r? < r2 ~ ¢ ~ 1. The
t plot is given versus the cutoff frequency v and two more horizontal scales
are added showing the corresponding values of the front mirror reflectivity
r? and the FP finesse F*.
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