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ABSTRACT: In this paper we show that some elements of de Broglie's double solu­
tion theory seem to arise rather naturally from the equivalence between the free Maxwell 
equations and a non-linear Heisenberg-like spinor equation (NLSE). Such an equivalence 
is proved below, in the Clifford bundle formalism, by making recourse to the Rainich­
Misner-Wheeler theorem. Our NLSE admits various types of interesting solutions. First, 
it admits for instance plane-wave solutions which solve also the free Dirac-Hestenes equa­
tion (representing the ordinary Dirac equation in the Clifford bundle). Second, our NLSE 
admits other solutions which are as well solutions of the (linear) spinor equation for mag­
netic monopoles by Lochak. Finally, it admits a third kind of solutions (non-dispersive 
de Broglie spinor wave-packets), such that each one of their spinor components satisfies 
also the equation by Gueret and Vigier, containing a non-linear term of the quantum 
potential type. A possible conclusion is that the reality of the de Broglie waves ought to 
be taken more seriously. 

0(*) Work partially supported by CNR, MURST, INFN, and by CNPq, CAPES and Funrei. 
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1. INTRODUCTION
 

Louis de Broglie made several important contributions to modern physics. His legacy 
is a vast set of original ideas which are presently being revisited, as, for example, in the 
works by Barut[l], Gueret and Vigier[2], and Mackinnon[3]. It is the purpose of this paper 
to present some of our results in connection with de Broglie's theory of double solution. 

As extensively discussed by Hestenes,[4] any interpretation of non-relativistic quantum 
mechanics must be consistent in particular with the interpretation of Dirac's equation, the 
relativistic quantum-mechanical equation for the electron. To this aim, we wish to have 
recourse to the natural, suitable, powerful language of Clifford algebras. Thus we shall 
adopt throughout this paper the Clifford bundle of the differential forms over Minkowski 
space-time. 

In what follows, the starting point is the equivalence between the free Maxwell equa­
tions, for a non-null field, and a non-linear Heisenberg-like spinor equation (NLSE); such 
an equivalence is proved below, in the Clifford bundle formalism, by the Rainich-Misner­
Wheeler theorem. Afterwards, we show that our NLSE admits various types of interest­
ing solutions. First, it admits (plane-wave) solutions, which solve also the free Dirac­
Hestenes equation, representing the ordinary Dirac equation in the Clifford bundle; and 
is expected to possess (more complicated) solutions satisfying also the Dirac-Hestenes 
equation with an external electromagnetic field. Second, we shall show that our NLSE 
has other solutions that solve as well the (linear) spinor equation for magnetic monopoles 
by Lochak. Finally, our NLSE will be shown to admit a third kind of solutions (non­
dispersive de Broglie spinor wave-packets), such that each one of their spinor components 
satisfies also the equation by Gueret and Vigier, containing a non-linear term of the quan­
tum potential type. 

Let us summarize the content of this article. In Sect.2 we briefly review the Clifford 
bundle approach to Maxwell and Dirac equations. Then, in Sects.3 and 4 we prove the 
equivalence of Maxwell equations and the NLSE, and later on discuss the plane-wave 
solutions of the latter, as well as its solutions solving also Lochak's equation. In Sect.5 
we construct -which is our main ~im- the NLSE solutions which are non-dispersive de 
Broglie wave-packets. Some conclusions are finally drawn in Sect.6. 

2. MAXWELL AND DIRAC EQUATIONS IN THE CLIFFORD BUNDLE 

Let Cl(M, g) denote the Clifford bundle of the differential forms over Minkowski space­
time. The space-time algebra 1R1,3 is the typical fiber of this bundle[5,6,7]. Cross-sections 
e E sec T M [1 E sec T*M] of the tang~t, T M [cotangent T*M] bundle are called i-vector 
(i-form) fields. Let be {e#} E secTM a basis of TM and {1#} E secT*M = secAlM C 
secCl(M,g) the dual basis, satisfying 1#1" + ,",# = 27]#11; with 7]#v = diag(i,-i,-i,-i). 
The Dirac operator 8, acting on sections of Cl(M, g), is: 8 = d - 8, where d is the 
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differential and 8 the Hodge codifferential operator, so that: 0 = ,"'VJS' where V is the 
Levi-Civita connection of 9 = TJ",",'" ® ," (g = TJ"'" eJS ® ell). We can choose for simplicity 
{,"'} such that V '" = 0",; thus 0 = ,"'ow 

The representative of the Maxwell equations in Cl(M, g) is then: 

of= J, (1) 

where the electromagnetic field is F E sec A2 M C secCl(M,g), while the electric current 
J E sec Al M c secCl(M,g). This form of Maxwell equations is probably due to Riesz(8). 
When J = 0, the free Maxwell equations aSsume of course the simple form of = o. 

The representative in Cl(M,g) of the Dirac equation, in the presence of electromagnetic 
field, is: 

me e
Ot/J,I,2 + Tt/J,o + lie At/J = 0, (2) 

which is due to Hestenes[9,10). The object t/J E sec(AOM +A2M +A4M) C secCl(M,g) is an 
"operator spinor" in the terminology of ref.lll); and quantity A E sec Al Me secCl(M,g) 
is the electromagnetic potential. 

We call the spinor t/J a Dirac-Hestenes (DH) spinor field. Let us mention, however, that 
due to its basic role we could call it the "fundamental spinor field". In fact, the ordinary 
(covariant) Dirac spinor field in Cl(M,g) is nothing but the algebraic spinor field \]i = t/Je, 
quantity e being an idempotent, of the form e = ~(1 + ,0), as shown in[ll]. And any 
other spinors, used by physicists, have in Cl(M, g) an analogous representation. 

In ref.l12] it can be found the proof that eq.(1) and eq.(2) are indeed the representatives 
of the usual Maxwell and Dirac equations in Cl(M, g). The DH spinor field can be written 
in the canonical form 

t/J = pl/2e-rf3/2 R, (3) 

where p,{3 E secAoM C secCl(M,g); and R E Spin+(1,3) ~ 8L(2,(&), which implies 
RR* = R*R = 1, where * (called reversion) is the principal anti-automorphism in Dl1,3: 
so that a Lorentz transformation of an arbitrary element a E secCl(M,g) is given by 
a ~ RaR*. Finally, ,5 = ,0,1,2,3 is the volume element. 

3. ABOUT THE (FUNDAMENTAL) DIRAC-HESTENES SPINORS 

In order to prove the equivalence of the free Maxwell equations (without sources) with 
a Heisenberg-like spinor equation, we need first the following result:[13t I4) 

THE RAINICH-MISNER-WHEELER THEOREM: Let us define as "extremal field" any 
electromagnetic field for which the magnetic [electric] field is zero and the electric [mag­
netic] field is parallel to one coordinate axis. Then, at any point of Minkowski space-time 
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any non-null electromagnetic field can be reduced to an extremal field by a Lorentz trans­
formation and a duality rotation. 

An easy, new proof of this theorem, using Clifford algebras, can be found in refJ15]. 
Now, let us observe that under a Lorentz transformation the electromagnetic field F 
transforms into F' = LFL· and that under a duality rotation by an angle a the field 
F ' transforms into F" = ea..,~ F'. Therefore F" = ea"'(~ LFL· is an extremal field. Since 
a duality rotation by 1r/2 transforms electric into magnetic field, and vice-versa, we can 
choose the extremal field to be a magnetic field with the spatial direction iP; that is to 
say: F" = -iHiP, where i = iJliJ2iJ3 and iJi =,i,O; (i = 1,2,3). But -iHiJ3 = H,1,2, 
so that 

earLFL· = H,1,2. (4) 

If we take (3 = -a and R = L· it follows from eq.(4) that 

F = H e13"'s R,1,2R· (5) 

and, by taking H = bp with p 2: 0, we have 

(6)
 

where .,p'has the form given in eq.(3). Eq.(6) is a rather important result: it permits us 
to interpret the DH spinor field on the basis of the above discussion, where we identified 
H = bp, a = -{3, L = R· (we wrote, a priori,H = bp for a matter of convenience). 

Namely, the DH field .,p is the (spinorial)"operator that transforms an extremal field 
into a non-null electromagnetic field. And in fact eq.(3) reveals that .,p is just, and nothing 
but, the product of an operation R, a duality transformation e"'s /3/2 and a dilation pl/2. 
Conversey, eq.(6) shows the strict relation existing between a non-null electromagnetic 
field F and a DR spinor .,p. 

For future convenience, let us observe that the definition H = bp implies b to be a 
scalar function (since H is the magnetic field magnitude). 

4. THE EQUIVALENCE OF MAXWELL AND DIRAC EQUATIONS 
....-.-.,--..... 

Let us examine the free Maxwell equations: 

8F=0. (7) 

We want to look for solutions of eq.(7) of the form (6); since eq.(6) is valid when F 
is non-null (F2 =f 0) then plane-wave solutions of eq.(7) are excluded (since in this case 
F2 = 0). But one trivial non-null solution of eq.(7) is F = constant. This will be certainly 
the case when band p in eq.(6) are constants (even if this is not a necessary assumption, 
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as we shall see in the next Section). Let us suppose as a first instance that b, p and (3 be 
constants. Hwe use eq.(6) in eq.(7),. we immediately obtain the non-linear Heisenberg-like 

spinor equation: 
(8) 

with 
F(t/J) = ,~t/J,l,2(a~t/J-)t/J(t/Jt/J-)-1. (9) 

From RR- = 1 it follows that 
(10) 

where 
n~ = 2(a~R)R- . (II) 

Since we have supposed p and (3 constant, eq.(10) can be written as 

1 
a~t/J = 2n~t/J . (12) 

If we introduce eq.(12) into eq.(9) and define the 2-form S as 

1i
S ="2R,l,2R*, (13) 

where the constant 1i will be identified with the (reduced) Planck constant, then eq.(8) 
adquires the relevant (non-linear) form: 

1
at/J,l,2 -1t'~ sn~t/J = O. (14) 

'\ 

Eq.(14) is an interesting result: it is equivalent to the free Maxwell equations (7), under 
the above assumptions. The 2-form S will be called a spin 2-form. 

Now, both S and n~ are 2-forms. Thus, the product sn~ in eq.(14) results in the sum 
of a scalar, a 2-form and a pseudo-scalar; that is: 

(15) 

Let us first suppose that sn~ possesses only a scalar part; then 

(16) 

Now, given the velocitY'field v, defined as 

v =R,oR- (17) 
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so that pv = "'ry°?/;*, let us define the mass m in such a way that 

p'l/J =e{3-y5 mev'l/J , (18) 

wherefrom it follows: 
p'l/J = mC1/r/ . (19) 

When we insert eq.(16) into eq.(14) and then use eq.(19), we eventually end up with a 
linear equation: 

2 me8'l/JAl"'l + -'l/J"'I0 =0 (20)
11. 

which is just the Dirac-Hestenes equation for a free particle (electron). It is trivial to verify 
that for the plane-wave solutions of equation (20) our assumption that SOJ.l possesses 
only a scalar part is indeed satisfied. In other words, all the plane-wave solutions of the 
fundamental equation (14) correspond to a scalar ·S0J.l' i.e., they obey also eq.(20). 

Let us recall at this point that in refJl8] we showed such plane-wave solutions to 
be associated with rotations in the "'11"'12 plane; and that mass itself -according to our 
definition of it- coincides in the present approach with the kinetic energy of that rotation: 
a result already met by Hestenes[16], starting from a different point of view. We shall 
discuss elsewhere[20] about the origin of the electron spin. 

One further remark, this time concerning the definition of p given by eq.(18), has to be 
put forth. Equation (18) may suggest to introduce a new mass, M, such that p?/; = Mev?/;. 
Such a mass M can be introduced as M =efh5 rri = m cos {3 + "'15m sin {3. H we want 
M to be real, we must have sin{3 = 0, that .is: {3 = 0 or {3 = 1r', which just distinguish 
electrons from positons in Dirac theory (cf. ref. [16]). This leads us to define M in the 
following way: 

M = (e{3-y5 m)o = m cos {3, (21) 

where the angle brackets mean the scalar part. Moreover, we may evaluate that 'l/J'l/J* = 
pe{3-y5 =0 1+"'1502, where 0 1 and O2 (scalar functions of xJ.l) are the Lorentz invariants of 

Dirac theory (so that 0 1 = pcos{3, O2 = psin{3 and p = JO~ + O~). As a consequence, 
equation (21) gets the form 

M=. m (22) 

Jl+~ ..,.,-- _I" 

Notice that, when {3 -contrarily to our previous assumptions- is variable, then M be­
comes a variable mass. Quantity (3 appears to be variable whenever the DH field interacts 
with an external electromagnetic field. (**) In such a case, it is interesting that eq.(22) 
coincides with a well-known formula[17] by de Broglie (even if in de Broglie's work it is m 

0(..) Let us mention, however, that in the Hydrogen atom case -besides the known solutions with 
variable 13- new solutions with 13 = 0 have been recently fO\Jnd. The interpretation of 13 seems still to 
deserve further attention. 
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and not M the variable mass). 

Let us go on assuming, for the moment, b, p and f3 to be still constant [cf. eq.(8)]. 
However, instead of supposing that SOli possesses only a scalar part, let us use its general 
expression, eq.(15). One can write: 

A {J e· 5g e 5gBE (J"'V"'("'V A"'V ) = --A I'" -I -B I'" = --A-I - , (23)""Q I I I C '" C '" C C 

(24) 

(25) 

with T/",II =diag(+1, -1, -1, -1), and Cllqp-r = +1 (-1) for even (odd) permutations of 
[0,1,2,3] while Cllqp-r = 0 when two indexes are equal. Notice that"A and 15B appear to 
play the same role played by the two electromagnetic potentials when external (electro­
magnetic) fields are present: i.e., played by the potentials associated to an electric charge 
e and a magnetic monopole 1 5g, respectivelyJ19l However, our quantities A and 15B, given 
by eqs.(24)-(25), seem to refer to an "internal" field (cf. also refsJ20l ). If we now define, 
in analogy with eq.(18), 

rt/J =e{J,.,5 p,cvt/J = P,ctPlo (26) 

where r = r"'I'" [d. eq.(15)], ~ then eq.(14) assumes the noticeable ("complete") form: 

(27) 

We derived eq.(27) under some assumptions: in particular, that p and f3 were constants; 
however, we shall see in the next section that it is possible to eliminate those restrictions. 
So we can discuss, and interpret, eq.(27) without worrying about them. 

Let us first notice that, when p, = 0 and g = 0 or B = 0, equation (27) reduces to 

(28) 

which is formally identical to the Dirac-Hestenes equation (2). We might therefore claim 
that the presence of a minimal coupling to some "internal" electromagnetic field can be 
regarded as associated with the existence of the 2-form term in the product of S and OJ.' 
[eq.(15)]. 

Second, if m = 0 and e = 0 or A = 0, eq.(27) reduces to 

(29) 
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which is an equation of the type studied by Lochak[21] as a wave equation for a mag­
netic monopole: this can easily be seen by writing J.1,(::l/r1° = ! eM (111 - -y5112)tP-y° , with 

M =2p.efh5 
/ p. Here we can note again that the (minimal) coupling with the pseudo­

potential -y5 B comes from the 2-form part of S11~, while the magnetic monopole mass 
term comes from its pseudo-scalar part. 

A similar analysis was performed by Daviau[22,23]; however, in writing down F = 
tP-y1-y2 tP*, that author attempted at associating an electromagnetic field with Dirac's 
waves[22], which certainly is not the case in our approach (which, on the contrary, made 
recourse to the Rainich-Misner-Wheeler theorem and its consequences). Very interest­
ing and pioneering work in the same direction has been done by Campolattaro,[24] even 
if by means of the traditional tensor and spinor calculus (which is often intricated, and 
sometimes does not help the physical interpretation). Let us mention that in refJ15] we 
did prove the equivalence of our eq.(8) with the non-linear spinor equation forwarded by 
Campolattaro[24] as equivalent to the Maxwell equations. 

5. NON-DISPERSIVE DE BROGLIE WAVE-PACKETS FROM THE 
MAXWELL EQUATIONS 

In this Section let us pass finally to the most general case, by eliminating the restriction 
that b, p and 13 be constants. In this (third) case, instead of eq.(8), we obtain: 

(30) 

which generalizes the non-linear Heisenberg-like equation (8). Now, by using eq.(10), 

one gets 
1

8j.£tP = [8j.£ log(pe.8-rl/2]tP + -11j.£tP (31)
2 

which, when introduced in eq.(3) and after using eq.(13), results in: 

We can re~rite the l.h.s. of eq.(32) in order to have 

The l.h.s. of eq.(33) vanishes, once R is required to satisfy eq.(14) (which was written 
in terms of tP because p, 13 were there supposed to be constants); then we must have [K 
being a constant]: 

/{
8 log b = -281og(peP-r)1/2 ~ b = ----;:w­ (34) 

pelJT 



- 9 ­

which implies in eqs.(5),(6) that F is proportional to R,1,2R*, just as in the case dis­
cussed in Sect.3. Equation (34), therefore, implies a (non-null) constant field F. Notice, 
incidentally, that in eq.(34) it must be either f3 = 0 or f3 = 7r, since b is a scalar; and this 
is a consequence of supposing R to obey the Dirac-Hestenes equation (14). 

Putting eq.(34) into eq.(32), we get finally the generalized Heisenberg-like spinor equa­
tion: 

1 
fJ,p,1,2 -1,,'~ sn~t/J = (8 log t/Jo)t/J,1,2 (35) 

where we set t/Jo =(pefj.··l')1/2. And again, if sn~ has only a scalar part, eq.(35) can be 
written -according to our previous discussion- as: 

(36) 

which is a (non-linear) generalized Dirac-Hestenes equation. We have shown elsewhere[25] 
that, if one applies the Dirac operator 8 to the above equation, one obtains [0 =82]: 

(mc)2 0t/Jo
0?p + T ?P = ?Po ?P + W?p (37) 

where 
wt/J = TJ~V(811Iogt/Jo)n~t/J. (38) 

The term W t/J can be easily[25] calculated in the rest frame; the result is that it vanishes, 
z.e.: 

wt/J=O. (39) 

Then eq.(37) assumes the interesting, simple form: 

o,p + (~Cr,p = ~o,p. (40) 

Finally, if we multiply eq.(40) by the global idempotent e = l(1 + ,),0) E secC£(M,g), 
then \If = t/Je is the representation in C£(M, g) of the standard Dirac covariant spinor 
field [12] and eq.(40) splits into various equations for its components; namely, for each one 
of the components <P of \If one has: 

(41) 

where <P = <Po e- iX and <Po =?Po. This is a non-linear Klein-Gordon equation, which ex­
actly coincides with the equation proposed by Gueret and Vigier[2] , and possesses localized, 
non-dispersive solutions. The term o<Po/ <Po is usually called the "quantum potential" . 
Let us stress that Gueret and Vigier considered only one eq.(41), for a scalar (complex) 
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4>; whilst we met a different eq.(41) for each component cP of '11. In order to look for 
possible solutions of eq.(41), let us observe for-example that, if 

(mc)2
OcP~ = T cPo, (42) 

then: 
0cP = 0 (43) 

which is just the case discussed by Mackinnon[26]. In refJl], Barut did already show 
how to construct general, localized, non-dispersive solutions of the equation 0cP = O. 
In particular, eq.(43) admits a non-trivial solution, representing a non-dispersive soliton 
(localized wave-packet) wich moves undeformed with subluminal speed. 

Indeed, it is a remarkable fact that such non-dispersive, localized solutions exist, and 
that ultimately they satisfy an equation --eq.(41)- which derives from the free Maxwell 
equations. Let us recall, here, that already in 1915 Bateman[27] had looked for "solitonic" 
solutions of Maxwell equations. 

At last, we want to notice that -when we replace SOlS in eq.(35) by its full expression, 
eq.(15), containing a scalar, a 2-form and a pseudo-scalar part- then eq.(35) gets its 
most general form: 

c 1 
OtP'Y1"t

2 + (m + 'Y5p.)-.,;,tP'Y° + (eA + "'15gB )lie tP = (0 log tPo)tP'Y1'Y2 . (44) 

Actually, eq.(27) is a particular case of eq.(44), valid when the non-linear term 
(0 log tPo)tP'Yl "'12 can be neglected. 

6. CONCLUSIONS 

Given a non-null electromagnetic field F, from the Rainich-Misner-Wheeler theorem 
we deduced eq.(6): 

F = lnP'Y1'Y2tP* (45) 

where tP is a DH spinor field (whose canonical form, eq.(3), is tP = pl/2e'Y~{3/2 R). More­
over we saw that, even supposing b, p and {3 to be not constant, the field F that solves 
the free Maxwell equations (without sources) of = 0 is constant throughout space-time. 
Consequently, the equations of = 0 require that tP obeys the (generalized) non-linear 
Heisenberg-like spinor equation (35) or -in the most generalcase- the analogous equa­
tion (44), under the condition F = constant. 

On the other side, a (constant) F can be written: 

F = K¢,'Yl'Y2~* (46) 
5

where b=K / pe{3'Y ; and where ~ =R [cf. eq.(34)] is another DR spinor field which satis­
fies a (linear) Dirac-Restenes equation like eq.(20) [as it is possible to verify, recalling[15] 
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that any R E Spin+(1, 3) can be written as the exponential of a bivector]. 
Those spinor fields are then related by: 

tP. pl/2e'Y'!J{J/2~ (47) 

and in particular, for the "electron solutions" (i.e., for (3 = 0), by: 

(48)
 

which coincides with a well-known expression in de Broglie's theory of double solution. 
[For the positon, one would get tP = _,5pl/2~]. Let us recall that in such de Broglie's 
theory tP was the electron (total) quantum-probabilistic wave function, but ~ (which 
obeys the Dirac-Hestenes equation) was a physical wave! 

In our present approach, the DH spinor field ~ is just the rotor part of tP and has 
therefore only 6 degrees of freedom, so as the electromagnetic field F (while tP possesses 
8 degrees of freedom: cf. eq.(6)). Actually, in the case here examined, the spinor field ~ 

could be ultimately of electromagnetic nature, as suggested by equations (45) and (48). 
For instance, the basic equation (6), or (45), shows the strict relation existing between 
the non-null electromagnetic field F (present in the absence of sources!) and the electron 
wave-function tP. 

Thus the reality of the de Broglie waves seems supported by our analysis. 
We may conclude that many of de. Broglie's ideas concerning the interpretation of 

quantum mechanics should be seriously revisited, while the language of Clifford algebras 
appears to be particularly convenient for that purpose. Our results, which have taken 
the free Maxwell equations 8F = 0 as a starting-point, remind us of a conjecture made 
by Mackinnon[261, i.e., that "equation o~ = 0 may prove to be of more importance to 
quantum mechanics than has hitherto been supposed". 
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