
---

t,I¢(J'C. 9~-/(, -
\1/ , 11.,llillllll 
o 11~D 00153~a 0 

imsc·92/10

Gauge Invariance in Second Class 

Constrained Systems 

" 

R. Anishettyand A.S. Vytheeswaran 

The In.stitute of Mathematical Scien.ces; Madra... 600119 

·., .' ..... --l~-"-""""'l"-'>i_-! i I I... 

" ,', iii AbstractJ ,;,; j 1 I i 
! !): I : ; ~ i 

I I " r. . • __ c-". ----'".- ".--~.-. ,.~  We show tllat many second class constrained Hamiltonian systems t j I:; I! ) ~:.. ~~. 1 Cl.. ',. c~ • 1 , : j ',' ~ .:'--;{ 
CCUI be reformulated as first class systems within tIle same phase space. 

1~ ,. d: i.;' i : l 1;' ~~ l~ ~~;; , , I~. Z66L L 1\ 'J ~'. 
l c: • . ; ~ -Ii PACS number: 11.]0 E 
;--",~~, ._~~••, ~.k J ~"n :.) I
I, ~ I ) . . ,- I { =, i\\-r'lfllrH~~ r'
i,' ~" J i ~ 1 I. .. • ..:.-!JY·t -'.L<>_ .. _' 

:, I I ! .1 ! ~ 
l' 

:. I' I'-j •I I' , _. {• 1 , (J 
I 1 ._ . 

,-..,. .,<.~.,-",,.. .. -~,..;:;. .... ,.. ~ :< ....., •• ~~ ...... 6t. _~_i....;;;;,;;:..~ 

email: ramesha@imsc.ernet.in 

vythee@imsc.emet.in 

mailto:vythee@imsc.emet.in
mailto:ramesha@imsc.ernet.in


Dirac [lJ classified the constraints of a Hamiltonian system as being first 

and second class, the former having vanishing Poisson brackets (PH) con

straint algebra on the constrained surface, and the latter nonvanishing. Sec

ond class systems naturally define a local projected symplectic manifold while 

the first class constraints imply existence of redundant so called gauge degrees 

of freedom, consequently the Hamiltonian dynamics has gauge invariance. 

Symmetries of a system are useful in understanding the dynamics. If we 

reformulate a second class system as first class we are exhibiting gauge sym

metries, namely the ones associated with the first class constraints, at the 

kinematic level. In recent times gauge invariance and its associated symme· 

tries have become an important feature in establishing the existence of the 

corresponding quantum theory, noted examples being renormalizability of 

QED and QCD. There are other examples [2] such as anomalous gauge the

ories, wherein classical gauge symmetries cease to exist upon quantization. 

The existence of these quantum theories are plagued with problems of renor

malizability. It is believed that these issues can be settled by understanding 

the underlying symmetries in the quantum theory. 

Faddeev and Shatashvili [3] have argued a simple general principle by 

which one enlarges the phase space and introduces a compensatory dynam

ics such that in the total phase space one realizes only first class constraints. 

This has been adopted in the BRST framework by Batalin and Fradkin [4J. 

Mitra and Rajaraman [5J found that in certain dynamical systems the re

formulation of second class constraints as first class perhaps can be done 

without enlarging the phase space. They showed explicitly that in a special 

class of Lagrangian dynamics which yields hierarchical constraint PH algebra 

one can eliminate all second class constraints for first class constraints. In 

this letter we will show that many Hamiltonian systems (irrespective of the 

existence of a Lagrangian) with second class constraints can be reformulated 

as first class constrained systems. There are some which are essentially sec

ond class, namely they do not admit gauge like constraints globally although 

they do admit locally. 

In a first class constrained system with Hamiltonian H and one constr';'int 

X = 0, by making the gauge fixing choice tP = 0 and modifying the Hamil

tonian suitably we can define a second class system with the same physical 

content as the original system [6J. In constrast, here we consider a system 

with two second class constraints and identify one constraint as a gauge fix

ing like constraint tP = 0 and call the other X = 0 as the first class like 

constraint. Although naively true, in general this poses a problem, namely 

the constraint X = 0 will be preserved in time only modulo the constraint 

tP = O. To avoid this technical difficulty we COllstruct a modified Hamiltonian 

Hwhich preserves the constraint X :::: 0 in time evolution, such that if one 

makes the gauge fixing choice tP = 0, we should have H:::: H, thus ensuring 

that the physical content of the new dynamics is equivalent to our original 

dynamics. 

For simplicity we first consider the case where there is only one pair of 

second class constraints. Then we show how we can treat the general case. 

Examples as application of this algorithm will be considered in a separate 

publication. 

Consider a Hamiltonian H(p,q) generating the dynamics over a phase 

space (p, q) with canonical PB algebra. For brevity we shall not explicitly 
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write a distinguishing index for the various p's and q's. Let the system have 

two second class constraint functionals x(p,q) =0 and "'(p,q) =0 with the 

following PB relation 

{x,"'} =E , (1) 

where E # 0 on the surface defined by the two constraints. Without losing 

any generality we can rewrite (1) as 

{x',IP} = 1+ {E-I,IP}EX', (2) 

where X' == E-IX. 

In general, since the constraints X = 0 and IP =0 are preserved under the 

evolution by H on the surface defined by both tbe constraints, we have 

{X,H} ~ alP, (3) 

where we have omitted the superscript on X and .. ~" implies equality on the 

surface defined by only X =O. Also a(p, q) does not vanish necessarily. 

Our task now is to modify H such that X = 0 becomes time-independent 

modulo only X = O. On the symplectic manifold let us work on a patch near 

a zero of the functional IP(p, q). By local canonical.transformation we can 

indeed take Xand IP itself as one pair of approximate canonical co-ordinates, 

due to (2). If we make a Taylor expansion of H in tIle variable IP, the 

leading term Ho will have vanishing PB with X by definition. Furthermore 

on the constrained surface'" = 0, we get H = Ho• Hence, locally Ho is our 

desired modified Hamiltonian. Implementing this idea analytically we have 

a prescription for constructing a global analogue of Ho from H by the use of 
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the following Lie Projection operator lP. For any arbitrary functional A(p, q) 

on the phase space 

• 00 1 
A == JPA(p,q) == L ,(-"')ft(xtA ==: e-t/Jx: A, (4)" 

ftal n. 

where X is a Lie operator 16] defined by 

xA == {X,A}. (5) 

In (4) the last equation defines our normal ordering of the Lie operator, 

namely all the functionals IP are to be placed on the left in the Taylor expan

sion. Tbe projection operator is defined globally on tbe pbase space, namely 

a power series expansion always exists for any A. 
The projection operator JP acts linearly on any functional defined on the 

phase space and satisfies the following relations on the constrained surface 

x=o 
lP2 e:' lP, (6a) 

xJP 9! 0, (6b) 

lPIP e:' 0 , (6e) 

{A,B} ~ JP({A,B}-N,AHB,x}+{IP,BHA,x}), (7) 

where the right hand side of (7) is the Lie projection on the Dirac bracket 

between A and B. 

The projected functionals also satisfy the Jacobi identity on the con· 

strained surface, namely 

{A, {B, cn + {B, {C,An + {C, {A, Bn ~ o. (8) 
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• Furthermore, 

JP(AB) = (JPA)(JPB) = AS (9a) 

and 

A(p, q) = A(ji, q). (9b) 

Applying the projection operator on H, we obtain Hsuch that II ~ Ho 

i.e., H differs from Ho by terms proportional to X. By construction we 

have {X, H} ~ O. Hence our first class dynamical system is defined by the 

constraint X ~ 0 and the Hamiltonian H. 

A few remarks are in order about our modified Hamiltonian H. Ho is 

defined locally, hence the equality Jj ~ Ho is to be understood locally. How

ever the left hand side li is defined globally by construction; consequently 

we have our desired result globally. It is quite clear that a global Ho may 

be impossible. For example, if .,p = 0 were a polynomial equation of degree 

greater than one in p and q, then by a suitable choice we may solve for some 

phase space variable explicitly. But we cannot eliminate it for we have more 

than one allowed solution. Whenever we have more than one allowed solution 

we have to analyze within the patch of a solution thus restricting ourselves 

to local analysis. But it is interesting that in any patch we can add terms 

proportional to X such that the resultant function His globally defined. In 

other words Ho in one patch can be matched with Ho in another patch upto 

gauge transformations. 

Next we consider the case where there are finitely many constraints 

<Pi(p,q) = 0, i =' 1,2, ... ,2N defining the constraint surface E2N' with 
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the PB algebra 

{<Pi, (Pi} =Eij , (10) 

where E is globally invertible on L2N' Our first task is to classify these 

constraints into gauge generator like constraints X and gauge fixing like con

straints.,p. Locally on the phase space there are indeed many choices available 

since due to Darboux's theorem there are linear combinations of the <Pi which 

have an E matrix in a Jordan canonical form. However for our purpose here 

we need to be able to do this globally. In general we do not have a global 

analogue of Darboux's theorem. Although in many explicit examples in field 

theory this is not a serious problem we shall look into it in detail. We find 

that whenever the E matrix has a submatrix of dimension N which is glob

ally invertible on E2N then there exist gauge generating like and gauge fixing 

like constraints globally. To see this let us assume we can write E as 

EIE= 
E3) , (11 )

( -EJ E2 

where E1, E2 and E3 are matrices of dimension N and for a suitable choice 

of index labelling we can assume that E3 is invertible on E2N' 

Making a transformation on the <Pi to <Pi = Aii<Pi where the 2N-dimensional 

matrix A is given by (12) below we can have our new matrix E' as in (12). 

On the surface E2N' 

(I A3) ( 
o I 

E1 E3 ) (1 0) 
- EJ E2 AI 1 = 

(0 E~) 
- E;T E2 

(12) 

where A3 satisfies the equation 
y..... 

A3E2AI + E3 AI  A3 EI + E1 = O. (13) 
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The N dimensional matrix A3 can be solved as a series in E}, since E3 is 

invertible. This solution is global. Then our gauge generators are x.. == 4J~ for 

a = 1,2, ... , Nand !/J. =4JN+. such that {x., !/J6} = (ED.6 and {X.,X6} = 0 

on L2N' 
From our construction, E~ is also invertible since detE ::f. O. Therefore by 

redefining X (X' = E;I X) we have on the surface L2N, 

{X., !/J6} = S.b I (14a) 

and 

{X.,Xb} = 0, (14b) 

for a = 1, 2, ... , N. 

Now we have to describe a consistent dynamics on the surface defined by 

X. = 0 alone. We follow a hierarchical scheme. By suitable rescaling of XI 

we have 

{X" !/Jl} ~I 1 , 

where "~I" implies equality on the surface XI =0 alone. We construct the 

projection operator 

/PI =: e-!/J1X, : . 

The PB of XI with the projected functionals if' and x.',;{.l vanishes 

on the X, = 0 surface. Furthermore on the surface defined by XI = 0 and 

x.;I =0 =!/J.
-I 

for a = 2,3, ... ,N, we have 

{x.;',;F"I} = S.6 , (15a) 

{x.;l ,xj;l} = 0 . (l5b) 
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Consequently, X, is a proper first class constraint of our dynamical sys

tem with the other constraints forming a second class algebra. By suitably 

rescaling X";' we can arrange that {X";1, ~1} e!2 1. We then define 

-1::::>1 
!P2 =: e-!/J, X, :!PI, (16) 

and get ""2 functionals which are consistent with X;1 = 0 and XI = 0 as 

being first class constraints. Iterating this procedure, we define 

- A-I:::::::: a-I 
JP. -' e-!/J. X. . JP.

G -. • a-I-

The projection operator JPN makes lr as the globally defined Hamiltonian 

equivalent to our original dynamical system and X:.-I = 0 as our first class 

constraints. In general these generators obey the following PB algebra; for 

b<a 

{X-·-1 X-·- I } = 9 X-~I (17). '. ....
 
A few remarks are in order. It is evident that there can be second class 

systems, whose E matrix (10) has a globally invertible submatrix E3 of di

mension n < N. In this case from our constructive proof given above we 

will have only n gauge globally definable generatprs. Having additional first 

class constraints along with second class ones to begin with does not hinder 

our construction of this projection operator. We find that in general, any 

constrained system with maximal number of constraints, say n, whose PB 

algebra vanishes globally, admits n gauge generators like constraints. To re

iterate there are certain dynamical systems which are essentially second class 
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in the sense they do not admit gauge like constraints globally. These need 

to be handled by the Dirac bracket formalism. 

The first class constraints Xi define the gauge generators. In our algo

rithm we find that Xi are not uniquely defined i.e., the gauge generators are 

ambiguous. The ambiguity is lifted if we pay more attention to our projection 

operator. Although JP is formally well defined on any functional A(p, q) as a 

power series, the series mayor may not converge. More specifically if A(p, q) 

needs to be a physical variable the convergence of this series is necessary. 

We find in explicit examples that one choice of X yields in fact a finite series 

while an alternate choice yields an infinite series. Consequently, we believe 

that in general there are other considerations wllich make the choice of X 

unique, hence the gauge group. This shall be discussed in detail in a later 

publication [7J. We have applied our method to various cases; in particular 

those considered in [5J are also examples of our method. 

We make a comment about a second class constrained system which has 

a subset of constraints XA which form a first class PB algebra within them

selves, namely {xA' Xb} = fAbc'X.' In these cases we need not go through the 

hierarchical process explained above. Here we only have the problem of get

ting the modified Hamiltonian which ensures the time-independence of the 

first class subset of constraints. The alternate algorithm stated in [7J yields 

a modified Hamiltonian which is again a series in .,pi, the set of gauge fixing 

constraints corresponding to the first class constraints. It is interesting that 

in this case the structure functions of the constraint P.B. algebra i.e., the 

analogues of 9Ab. vanish on the first class constrained surface. 

All our discussion has been classical. The canonical quantization program 
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can be envisaged quite naturally with the projected variables. An important 

requirement being the Jacobi identity (9) is satisfied on the constraint sur

face. The standard operator ordering problems which occur when we go from 

classical to quantum variables have to be reconsidered. Alternatively we may 

think of defining the projection operator on the Hilbert space directly i.e., 

define the operator Xon the Hilbert space as a commutator XA = [X,AJ. In 

general this may not yield a projection operator due to ordering problems 

in the series in (4). In either case on a finite dimensional phase space, we 

can always find an operator ordering satisfying the desired property of the 

projection operator [8]. 

Our method is applicable to classical field theories with second class con

straints. Upon quantization of these field theories we cannot guarantee that 

there will not be any anomalies. This is a subject matter of great interest 

which is being looked into. In the literature [9] there has been an interesting 

application of removing quantum anomalies in a semiclassical sense using 

this type of construction. 

Formally speaking our construction of the projection operator is also 

amenable to fermionic constraints, such as the ones in BRST quantization. 

All Poisson Brackets [4J have to be interpreted as anticommutators a.nd some 

attention should be given to the orderings of the Grassmann variables. 
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