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ABSTRACT

A simpler new time contour for path-ordered approaches to real-time thermal field
theories is presented. In doing so the use of a so called ‘asymiptotic’ condition as seen
in existing derivations is seen to be incorrectly applied but luckily unnecessary.

In this talk, I shall be concerned with path ordered approaches to equilibrinm thermal field.
theory. These include both PORTF (path-ordered real-time forialisms) of the various types! >4
and the ITF (imaginary-time formalism or Matsubara method)***. The path-ordered approach
to a real-time formalism is to be distinguished from the Thermo Field Dynamics type approaches
to real-time thermal field theories. The latter includes the approach due to Umezawa and
collaborators*” as well as the axiomatic field theory version involving C"-algebra methods®, since
the two approaches are identical®. Thermo Field Dynamics and PORTF are related but they have
important differences®.

The starting point for path-ordered approaches to thermal field theory is the thermal gener-
ating functional, 2y,

2lj] = Tr{e-‘"exp{Tc/cdr/sz' i(r, B)plr, £} 0)

The sources j are coupled to the fields, here generically denoted Ly ¢. In principle there is
a source for every field but for simplicity this will be represented by a single j$ term. These
sources are unphysical and are set to zero at the end of the calculation. The T¢ indicates that
the fields are path ordered with respect to the relative order of their time arguments along a
directed path, C, in the complex time plane®®. Then, by using one’s favourite method, such as
the path-integral®*® or operator methods?®, one can obtain Feynman rules, the eflective action or
whatever else is required.

In order for path-ordered methods to work, the path C starts at some arbitrary time, say
Tun, and then must end at a time 7, = 7, — §3. It has been suggested on formal grounds that
the path must also always have a decreasing imaginary part but this limitation is not seen in
the Feynman rules.t Here we stay also within this limitation. Any C satisfying these conditions
may be choosen. Physical results are therefore independent of C. One of the great advantages of
the path-ordered approach to thermal field theory is that the different FTFT formalisms simply
correspond to different choices for C.

*Talk given at the *3rd Workshop on Thermal Fi h{ ’lj\pﬁa u\d v.hm applications”, August 15th - 27th, 1993,
Banff, Canada. To appear in the proceedings, t. k; brWorld Scientific
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For instance the general cucve I described elsewhere' can slope vpwards yet the Feynman rules are independent of

this factor. ‘VGG\ d Z HV‘N

The Green functions which are generated from Z{j] are path ordered expectation values
fields where the fields are ordered according to the position of their time arguments on C. Th
the physics is encoded in different ways for different choices of C' and thus for different FTF

formalisms®. All the thermodynamic information can be obtained from calculating the partiti
function Z = Z[; = 0].
The ITF approach uses the curve C = C; of figure 1. ITF is good for static quantities whi
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Figure 1: The curves for imaginary-time and old real-time approaches

include all the bulk macroscopic information contained in the partition function. It is hard
to extract dynamical information from ITF where real-times are required® and thus difficult
extend the formalism to non-equilibrium. For these reasons a different curve C' was sought whi
would lead to a real-time formalism, similar to that obtained in the Thermo Field Dynami
approaches.

For a real-time formalism, one part of C must run along the whole of the real time axis. T
question is then how one completes C which must finish —if below its starting point.

The traditional curve for PORTF is C = Cyy = C; @ C; & C'y & C, shown in figure 1. T
limit 7 — oo is taken and the figure suggests that 0 < o < 1. Again no physical result depen
on « suggesting any value can be taken provided we make use of the periodic or anti-period
boundary conditions when redrawing the curve.

The sections running parallel with the real time axis, C'}, C3, are not too bad to deal with
they can be parameterised by a real time. Thus a formalism close to familiar Minkowskii fie
theory is obtained from these sections. It is the vertical portions that are unfamiliar and whi
cause problems. In Thermo Field Dynamics approaches there are only two real fields in the
formalisms, and so there is nothing which corresponds to the vertical sections Cy, (4 of Cypy. T1
suggests that only the €'} ind C'; sections should be kept in PORTF. This is achieved in t



literature through a process called factorisation, namely

Zlj] < Zualj]. Zu ) (2)
where in Z,; all the fields and sources are limited to lie on Cy,

Co = C,DG (3)

We can follow the usual derivation of this result®® in the path integral approach to PORTF. In
this cage

24l = enli | drV[—i‘%]} Z
erp{i/cn dr V[—i%]}c.rp{ifcu dr V[—i%]} . 2y, (4)

expl=3 [drdr’ {7 = i(") (5

0}

Zo4j

Here the interaction terms in the Lagrangian are represented by the functional V and it is easy
to see that the interaction part factorises in Eq. (4).

The free part is expressed in terms of the free propagator Ac(7 — 7'). For many systems of
interest the propagator, Ac, tends to zero as the real part of the time difference tends to infinity

qul.i{p)-.mA‘(T -r)=0 (8)

This is essential in the usual derivations of PORTF as the 'y and C, sections are at infinity
whereas most of the Cy and C; are not. For that perennial example, the relativistic scalar
field, this condition is satisfied provided the solution of the Klein-Gordon equation is suitably
regularised®®1%! . The Feynman ¢ regularisation achieves this. Strictly, ¢ must be left finite till
the end of the calculation.

However, Z, in Eq. (5) includes non-zero contributions from regions where one integral is near
an end of () or Cy and the other integral is running along Cy or Cy. In these situations Eq. (6)
can not be used but such contributions to Z, must be zero if factorisation is to be true. The usual
solution, termed an “asymptotic condition”, is to say that the sources tend to zero for times lying
at the ends of C; and C3*®. Unfortunately this turns out to be unacceptable. The whole point of
a generating function and of the separation in Eq. (4) is that the sources ; must not be fixed. In
particular infinitesimal variations are needed for the derivatives in the interaction terms in Eq.
(4). 1t makes the expression Eq. (4) meaningless if j is set to zero in Eq. (5) in some regions.

One might try to get round this by switching off all interactions al the ends of €y and C;, a
proper asymptotic condition c.f.”?. However this means we have a time dependent Hamiltonian
which invalidates the fundamental assumption of an equilibrium situation. It also means that
the partition function, which is also a normalisation factor for the connected Green functions, is
being disturbed. Finally, since the asymptotic condition is not used in ITF, it seems strange that
PORTF would need this extra boundary condition.

In fact, however factorisation of Eq. (2) is enforced, it leads to a series of inconsistencies'’.
The inescapable conclusion is that the generating function of PORTF does not factorise. However
this does not alter the fact that if we do drop the Cy and C; parts of the old PORTF curve, one
obtains the same Feynman rules as one finds in the Thermo Field Dynamics approaches are
obtained™®.

There are two ways out of this dilemma. One is to keep working with the whole of the old
PORTF curve of figure 1 and to just use Eq. (6) to get the usual answers. For instance if this

is done problems encountered with the normalisation of Green functions and with the partition
function’ are avoided. However it is a bit cumbersome.

The alternative way out is to use a different curve for the PORTF. Such a curve must run
along the whole real axis to get all real times accessible within the formalism. There must be only
two sections, each parameterised by a real time parameter that runs between too, by analogy
with Thermo Field Dynamics methods and the existing successful Feynman rules for real-time
formalisms. Likewise there should be no dropping of any sections. One curve, C,,, = Cy & Chay
which salisfies these criteria is where the curve is run straight back to the end point as shown
in figure 2. . This is a special case of the curves presented elsewhere'. While we could of course
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Figure 2: A new curve for real-time formalisms.

parameterise C,; in terms of a real parameter, the gradient would surely hit you somewhere.
In this case one must remember that the ends of the curve are going to be taken to infinity,
7T — o0, s0 that the gradient is going to become zero. The Feynman rules can be derived in time
coordinates, with 7 kept finite if required. The usual real-time Feynman rules in four-momentum
space are obtained on taking 7 — 0o and then doing the Fourier transform!.

It has been suggested that the vertical sections Cj,C, of the traditional PORTF curve are
essential to ensure the correct energy-momentum Feynman rules'>. That is they are supposed to
ensure that n(w)(k3 —w?) termsin propagators (n is the equilibrium number density) are replaced
by the correct n(lko|)é(k3 ~ w?) terms. However the n(w) form is simply incorrect because then
the propagator does not satisfy the boundary conditions of equilibrium Green functions®. It is
therefore not a problem that the new curve does not have these vertical pieces present in the old
curve, the problem is one of how to correctly take the Fourier transform of a free propagator.

The gradient of C,y of the new curve can be ignored in calculating thermal Green functions
provided Eq. (6) holds''. It can not, however, be ignored when calculating vacuum diagrams e.g.
in a diagrammatic expansion of the partition function or Free energy’!. In this case one can usc
the trick' in which a vacuum diagram is treated as a time integral multiplied by a tadpole type
Green function diagram.



It turns out that the Cy,Cy vertical sections of the old PORTF curve can be ignored in
exactly the same circumstances that the gradient of the new curve can be neglected. Likewise
when the gradient must be included, the effect of the vertical pieces is important. Thus the same
problems are hiding in both methods. The new curve does however allow a much simpler and
cleaner derivation of the Feynman rules. It also emphasises that there is no need for any sort
of “asymptotic condition”. This is true whatever sort of curve is used in path-ordered mnethods
despite what is found in the literature on PORTF using the old curve. In particular parts of the
standard PORTF derivations are clearly wrong yet the answers the resulting formalism gives is
correct.

Finally when the vertical sections are needed, it not easy to see how to inciude their effects
in the old PORTF whereas it is straightforward to keep the gradient terms in the new approach
when they are needed. This is most important when long time correlations are not zero, i.e. Eq.
(6) no lunger holds for some of the fields in the problem. This occurs in certain models such as the
Anderson model,®, and in certain physical situations e.g. near critical points. The new approach
to PORTF using the curve of figure 2 is therefore likely to be of practical benefit.

I would like to thank the Royal Society for their support through a University Research
Fellowship. I am happy to acknowledge useful conversations with many of those attending the
conference, especially in this context, A. Pearson and C. van Weert. I would finally like to thank
the organisers for putting together such a useful and enjoyable meeting.

1. T.S. Evans, Phys. Rev. D. 47 (1993) R4196.

2. AJ. Niemi and G.W. Semenoff, Ann. Phys. 152 (1984) 305, A.J. Niemni and G.W.
Semenoff, Nucl. Phys. B220 (1984) 181,

3. J. Schwinger, J. Matzh. Phys. 2 (1961) 407; L.V. Keldysh, Sov. Phys. JETP 20 (1964)
1018; K-C. Chou, Z-B. Su, B-L. Hao and L. Yu, Phys. Rep. 118 (1985) 1.

4. R.J. Rivers, “Path Integral Methods in Quantum Field Theory” (Cambridge University
Press, Cambridge, 1987)

5. N.P. Landsman and Ch.G. van Weert, Phys. Rep. 145 (1987) 141

6. J.I. Kapusta, Finite Temperature Field Theory (Cambridge University Press, Cambridge,
1089).

7. Y.Takahashi and H.Umezawa, Collective Phenomena 2 (1975) 55; H.Umezawa,
H.Matsumoto and M.Tachiki, Thermo Field Dynamics and (‘ondensed Stutes (North Hol-
land, Amsterdam, 1982)

& 1. Qjima, Ann. Phys. 137 (1981) 1.

9. T.S. Evans, Phys. Lett. B249 (1990) 286; tbid B252 (1990} 108; Nucl Plys. 3374 (1992)
340; in Thermal Field Theories, ed. H. Ezawa, T. Arimitsu and Y. Hashimoto (North
Holland, Amsterdam, 1991), p.441 .

16. R.J. Furnstah] and B.D. Serot, Phys. Hev. C44 (1991) 2141.

11. A. Pearson, Why the real-time formalism doesn’t factorise (Imperial College preprint
Imperial/ TP /93-94/7, hep-ph/9311224, to appear in these proceedings); T.S. Evans and
A. Pearson, in preparation.

12. A.A. Abrikosov, Ground stete problem in TFD (talk given at this workshop).

13. A. Niégawa, Phys. Rev. D40 (1989) 1199.

14. T.S. Evans, Z.Phys.C 36 (1987) 153; ibid 41 (1988) 333.





