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ABSTRACT 

A .impler new time contour for pllth.ordered approaches to teal·lime thermal field 
theories i. prelltnteG. In doing so the use of a SO called 'asymptotic' condition as seen 
in exi.ting derivation. i••een to be incorrectly applied but luckily unnece....ry. 

In this talk, I shall be concerned with path ordered approa"hes to equilihrium thermal field. 
theory. These include both PORTF (path-ordered real-time formalisms) oCthe various typesl",3,.,~ 

and the ITF (imaginary-time formalism or Matsubara method)··~'·. The path-ordered approach 
to a real· time formalism is to be distinguished from the Thermo Field Dynamics type approaches 
to real-time thermal field theories. The latter includes the approach due to Umezawa all,l 
collaborators··7 as well as the axiomatic field theory version involving C·-algebra methods~, since 
the two approaches are identical'. Thermo Field Dynamics and PORTF are related but they have 
important differences~. 

The starting point for path-ordered approaches to thermal field theory is the thermal "en<-r­
ating functional, Z[jJ, 

Z[j]= TrV~H exp{Te LdT Jd31 j(T,i)~(T,ll) ( I ) 

The sources j are coupled to the fields, here generically denoter! 1>y t{I. In principle there is 
a source for every field but for simplicity this will be represented J,y a single j.jJ term. These 
sources are unphysical and are set to zero at the end of the calculation. The T< indicates that 
the fields are path ordered with respect to the relative order of their time arguments along a 
directed path, C, in the complex time plane"~. Then, by using one's favourite method, such as 
the path-integral"··~ or operator methods3, one can obtain Feynman rules, the effective action or 
whatever else is required. 

In order for path.ordered methods to work, the path C starts at some arbitrary time, say 
Ton, and then must end at a time Tov• = T'n - i{1. It has been suggested on formal grounds that 
the path must also always have a decreasing imaginary piLrt but this limitation is not seen in 
the Feynman rules.! Here we stay also within this limitation. Any C satisfying these conditions 
may be choosen. Physical results are therefore independent of C. One of the great advantages of 
the path-ordered approach to thermal field theory is that the different FTFT formalisms simply 
correspond to different choices for C. 

·Talk given at the "3rd Work.hop on Thermal Fit.'I~ :r~j"aIId;th~ir applicalion.", Augu.t l[,th • 271h, 1993, 
BMfI', Canada. To appear in the proceeding., th/!::I!'~'1ie.i b»"Worid Scientiftc 
.E-mail;T.Evan.OIC.AC.UK 
IFor in.lance the g.neral cUrYe I described el.ewh.r.' can ,loJ>e upward. yet lhe F.yn,"an rules are independent of 
this factor. ._ 7 \J~I/'\

\/66\ Z V a 

J "/ 'u:nd~-:L~ 

The Green functions which are generated from Z[jl are path ordered expectation values 
fields where the fields are ordered according to the p08ition of their time arguments on C. Thl 
the physics is encoded in different ways for different choices of C and thus for different FTF 
formalisms'. All the thermodynamic information can be obtained from calculating the partiti< 
function Z =Z[j =OJ. 

The ITF a.pproach uses the curve C = C/ of figure 1. ITF is good for static quantities whi, 
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Figure l: The curves for imaginary.time and ol<i real·tln1f' approaches 

include all the bulk macroscol'ic information contained in the "artition function. It is h.. r,1 
to extract dynamical information from ITF where real-times are required' and '.hus ditlio:ult 
extend the formalism to non-equilibrium. For these reasons a different curve C was soubht whi. 
would lead to a real-time formalism, similar to that obtained in the Thermo Fiel<i Dynami 
approaches. 

For a real-time formalism, one part of C must run along the whole of the realtime axis. T 
question is then how one completes C which must finish -ifJ below its starting point. 

The traditional curve for PORTF is C =Cold =C1 ED C, ED C] $ C. shown in figure 1. l' 
limit T - 00 is taken and the figure suggests that 0 ~ 0 ~ 1. Again no physical result depen 
on 0 suggesting any value can be taken provided we make use of the periodic or anti-period 
boundary conditions when redrawing the curve. 

The sections running piLrallel with the real time a.xis, C., C" are not too bad to deal with 
they can be parameterised by a real time. Thus a formalism close to familiar Minkowskii fie 
theory is obtained from these sections. It is the vertical portions thiLt are unfamiliar and whi 
cause problems. In Thermo Field Dynamics approaches there are only two real fields in tho 
formalisms, alld 80 then' is nothilljo'; which corresponds to the verlit-;.I se... tions C.l , C. of C••d • 1'1 
suggests that only the (.'. ;\lld C, secT.ions should be kept ill PORTF. This is adlieved in t 



literature through a process called factorisation, namely 

Z[jl ..!. Zl,li]·Z34 lil (2) 

where in Z.. all the fields and sources are limited to lie on C••• 

C•• = C. til C•. (3) 

We can follow the usual derivation of this resultM in the path integral approach to PORTF. In 
Ihis (Me 

Zli] = exp{i LdT V[-i ~]) Zo 

::: exp{i f dT V[-i~]}exp{i f dT V[-i :Il Zo, (4)
lcu 0) lc" V) 

Zoli! ::: erp{-~ jdTdT' j(T)ti«(T - T')j(T') (5)
2 ( 

"prj> t.hE' intE'raction tf'rm8 in thE' Lagrangia.n a.re represented by the fundionll.l V and it is easy 
to SE'E' lhat the interaction part factorises in Eq. (4). 

The frE'e part is expressed in terms of the free propagator Cl.c( T - T'). For many systems of 
interest the propagator, tic, tends to zero as the real part of the time difference tends to infinity 

lim ti«(T - T') ::: 0 (6) 
&('-")-00 

This is essential in the usual derivations of PORTF as the G) <~nd C4 sect.iuns are at infinity 
whereas l1Iost of the C. and C, are not. For that per('nnial (,xample, t.he relativistic Iwalar 
field, this ,xIIldition is sat.i~rled IJrovided the solution of til" Klein-Gordon ':<illation is suit"I,ly 
n·gularised,·~,lo.lI. The f'eynman ( regularisation achieves this. Strictly, ( must be left finite till 
t.he end of the calculation. 

However, Zo in Eq. (!;) includes non-zero contributions from regions where one integral is near 
an end of (:, or C, and the other integral is running along (:3 or C4 • In these situations E'l' (6) 
can not be used but such contributions to Zo must be zero if fll.ctori8.~tion is to be true. The usual 
solution, termed an "lLSymptotic condition", is to say that the sources tend to zero for times lying 
at the ends of C1 and C,"~' Unfortunately this turns out to be unacceptable. The whole point of 
a generating function and of the separation in Eq. (4) is that the sources j must not be fixed. In 
particular infinitesimal variations are needed for the derivatives in the interaction terms in Eq. 
(4). It makes the expres8ion Eq. (4) meaningless if j is set to zero in Eq. (.S) in some regions. 

One might try to get round this by switching off all interactions at the ends of C, and C" a 
proper asymptotic condition c.f. I1 • However this means we have a. time dependent Hamiltonian 
which invalidates the fundamental &8Sumption of an equilibrium situation. It also means that 
the partition function, which is also a normalisation factor for the connected Green functions, is 
being disturbed. Finally, since the asymptotic condition is not used in ITF, it seems strange tha.t 
PORTF would need this extra boundary condition. 

In fact, however factorisation of Eq. (2) is enforced, it leads to a series of inconsistenciesll . 
The inescapable conclusion is that the generating function of PORTF does not factorise. However 
this does not alter the fact that if we do drop the C3 and C4 parts of the old PORTF curve, one 
obtains the same Feynman rules as one finds in the Thermo Field Dynamics approaches are 
obtainedl.~. 

There are two ways out of this dilemma. One is to keep working with the whole of the old 
PORTF curve of figurf' 1 and to just use Eq. (6) to get the usua.l answers. For instance if this 

is done problems encountered with the normalisation of Green functions and with the partition 
function ll are avoided. However it is a bit cumbersome. 

The alternative way out is to use a different curve for the POIn'F. Such a curve must run 
along the whole real axis to get all real times accessible within the formalism. There must be only 
two sections, each parameterised by a real time parameter that runs between ±oo, by analogy 
with Thermo Field Dynamics methods and the existing successful Feynman rules for real-time 
formalisms. Likewise there should be no dropping of any sections. One curve, Cn... =C. til Cn' 
which satisfies these criteria is where the curve is run straight back to t.he E'nd point as shown 
in figure 2. .This is a special case of the curves presented elsewhere'. While we could of course 
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Figure 2: A new curve for real-time formalisms. 

parameterise Cnl in terms of a rE'al parameter, the gradient would surely hit you somewhere. 
In this case one must remember that the ends of the curve are going to be taken to infinity, 
7 --. 00, so that the gradient is going to become zero. The Feynman rules can be derived in time 
coordinates, with 7 kept finite if required. The usual real-time Feynman rules in four-momentum 
space are obtained on taking 7 --. 00 and then doing the Fourier transform l . 

It has been suggested that the vertical sections C3 , C4 of the traditional PORTF curve are 
essential to ensure the correct energy-momentum Feynman rules13 • That is they are supposed to 
ensure that n(w)5(.l:~ -w') terms in propagators (n is the equilibrium number density) are replaced 
by the correct n(l.l:oD5(k~ - w') terms. However the n(w) form is simply incorrect because then 
the propagator does not satisfy the boundary conditions of equilibriu m Green functions~. It is 
therefore not a problem tht the new curve does not have t.hese vertical pieces present in the old 
curve, the problem is one of how to correctly take the Fourier transform of a free propagator. 

The gradient of C", of the new curve can be ignored in calculating thermal Green functions 
provided Eq. (6) holds ll 

. It can not, however, be ignored when calculating vacuum diagrams e.g. 
in a diagrammatic expansion of the partition function or Free energyll. In this case one can usc 
the trick 14 in which a vacuum dia.gra.m is treated as a time integral multiplied by a tadpole type 
Green function diagram. 



It turns out that the C., Cc vertical sections of the old PORTF curve can be ignored in 
exactly the same circumstances that tbe gradient of the new curve can be neglected. Likewise 
when the gradient must be included, the effect of the vertical pieces is important. Thus the same 
problems are hiding in both methods. The new curve does however allow a much simpler and 
deaner derivation of the Feynman rules. It also emphasises that there is no need for any sort 
of "asymptotic condition". This is true whatever sort of curve is used in path-ordered methods 
despite WhiLt is found in the literature on POflTF usilll: the old cllrve. In lJarticul;.r parts of I.bl> 
standa.rd POHTF derivations are clearly wrong yet the answers the resulting fortllalislll gives is 
correct. 

Finally when the vertical sections are needed, it. not easy to see how to indude tbeir elTects 
in t.h'· 01,1 POnTF where:.,; it is straight.forwMd to keel' the gmdi('nt terms ill the lWW "pl>l'o....h 
when they are needed. This is most important when long time correlations are not zero, i.e. Eq. 
(I» no longer holds for some of the fields in the problem. This occurs in certain models such as the 
Anderson model,,, and in certain physical situations e.g. Ileal' criti.:al points. The new approach 
to PORTF using the curve of figure 2 is therefore likely to be of practical benefit. 
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