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Th~ on~dim~naiona1 aphnical mod~l ia I~n~,alisod 10 illclud. 10ng-f1.ng. inl.,action.. It. 
ph_ I,anailion ia ahowa 10 occur ror a c.rlain Iyp. or inl.raclion Th. part ilion runclion 
ia esplicitly calculaltd, and Ih. crilical behaw;or or th. model i. osamin.d. 

1. Introduction 

In order to obtain a phase transition in one dimension, we shall generalize the con

ventional spherical model which ,"volves only neareat neighbor interactions, to include 

lon~-ran~e interactions. First, following Baxter l , let us briefly review the spherical model 

solvl'd by Berlin and "ac' in 1952. In this model, one assigns a real spin variable 11, to 

each lattice site, subject to the constraint Ef:1 11: = N. Thus, the partition function for 

the spherical model can be written as 

Z" = F" ··1:'" dl1l···dl1"exp{K}:>,I1/+IlLI1,}6\N-LI1J] (1) 
-"" -OQ W) j , 

where K = J/leT, H = h/leT, and the summation (j,/) rangl'S over nearest neighbors 

only However, in our modification, the interaction term is replaced by K Ej,I l1iJi/I1, where 

J" is the generic matrix element of J in equation (3) below, and depends only upon the 

distance between spins 11, and 11,. Thus, the partition function of our model becomes 

L()j 1d"rI 

J/ft /1E ;t)J~ A L _ T/ ~ .:/J:.7._ ~;:;.- ,,~<----_1 _ 
11111111U811.1 
o 1160 0025522 a 

ZN = f"" ·.. f"" dl1 l··· dI1 Nexp{KLI1,J,/I1/+HLI1,}6IN - ~>]J 
-"" -"" ~~ , 

With a sUItable choice of the matrix J, thIs formula can express the partitIOn funo:tion 

a spherical model on an arbitrary lattice in any dimension. However, since we are n, 

considering the one-dimensional case With peflodic boundary conditions, and, as mention 

above, J" depends on the distance between l1i and 11/, the matrix J is cyclic, as follows 

J(O) J(I) J(N-I)) 
= J(N - I) J(O) J(N - 2) 

J : ". :
( 

J( I) J(2)'" J(O) 

To ensure translational inVilriance, i. e, for a finite circular model, rotationa.l invariance, , 

assume J(N - n) = J(n). Hence, the above matrix is also symmetric. We shall evalua 

the thermodynamic functions of systems defined by choosing certain specific eJlpr<:ssiol 

for Jil 

2. Evaluation of the Partition Function 

We will first follow the derivation by Berlin and Kac2 as presented by Ba.xter l , and thl 

modify this procedure as appropriate for our examples. The partition (uncllon of equatl! 

(2) can be rewritten as 

ZN =(211"t l F" dl1t '. ·dl1N F" d8 exp{K L: l1iJ"I1/+ II L l1i +(a+i8)N -(a+i8) L 11 
-"" -00 (i,/)' , 

( 

where we have used the Fourier transform of the delta function and also added an ext 

term 0 = aN - a Ei 11: in the exponenl, where a is an arbitrary real constant Now,' 

define the matrix V by 

V = (a+i8)I-KJ 
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where I is the N )( N unit matrix. Moreover, defining it to be an N-dimensional vector 

with all components equal to H, and u as an N-dimensional vector with elements UJ , one 

can wnte the partition function as 

(6)00 /00 /00 .ZN = (2lf)-1 -00"· -ou dil -00 dsexp{-uTVu + HTa + (a + i,IN}
/ 

After dlagonalizing the matrix V and integrating over i1, ZN becomes 

(7)ZN = ~lfN/H 100 d,\det vrl/2exp{(a + i,)N + ~jjTV-IH} 
2 -00 4 

From the definition o( the matrix V in equation (5), since J is a symmetnc real cyclic 

matrix, the eigenvalues o( V arel 

N	 
(8)At = a +i" - K(LJ(t)cos(2dt/N))

1=1 

Thus, 
N N N	 

(9)E In{(a + i,,) - K(E J(t) cos(2dt/N)J},In det V = L In ~t = 
4=J ,:1t=1
 

and defiRing Wt = 2d/N, this becomes
 

Lln((a + i,) - K(J(ilc08W1 + J(2)C082w1 1-'" + J(N)cus N .....tl\ 
t 

The above summation over Wt can replaced by integration when N is large, and we shall 

wnte 
(10)

In det V = Npn K + g(z)\ 

where 

g(z) = (27rtI Jor" dwln(z+(-(J(I)COsw+J(2)cos2W+''')}, (II) 

(12)z = (a+i,-KO/K, 

and ( = Ef:1 J(/). 

Since J i8 cyclic, i = (1, .. ,1) is an eigenvector corresponding to the eigenvalue K z. 

Hence, iI is the eigenvector of V corresponding to the eigenvalue a + i, - 1\( = K z and 
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the second term in the exponent of equation (7) becomes NH2 /4K z. Substituting this 

and the above equations (11) and (12) into (7), we can now write the partition function as 

'+'00 N ( 13) 
ZN = (K/27ri)(7r/K)N/2 '-'00 dze /('),/. 

where 
1 lP (14) 

J(z) = l\z + K( - "2 9 (z) + 4Kz' 

and c =(a _ Kf,)/K. Evaluating the above mtegral by the method of steepest ,Iescent, 

the partition (unction (or sufficiently large N becomes 

( 15)K	 ~)'ieN/('<l) 
ZN	 = ~(l\ 

where Zo is the value of z at which I'(z) = 0, and the arbitrary constant a has been
 

chosen to be K(zo + ~) (i. e. c = zo) From the above equation (14), the condition
 

J'(ZO) = 0 is equivalent to
 
H2	 (16)2I g'( zo)K - 4KzJ 

3.	 Evaluation of Thermodynamic Functions 
From the expression (Hi) (or the partition function, the (ree energy per spm '" In the 

thermodynamic limit becomes 

~ I 7r ( 17) __ = lim N-1InZN = -In( ... )+J(zo). 
kT N-oo 2 n 

Hence, the magnetization, magnetic sU8ceptibility, internal energy, and specific heat per 

Spill are 
(18)d	 '" H h 

M = - dH(kT) = 2Kzo = 2Jzo' 

aM 1 h azo (19) 
x = fiji = 2Jzo - 2JZ~( ah)' 

u 2 a '" I h
2 

(20)
-T -(-I = -kT- J(zo +0 --,

aT	 T 2 4Jzo 
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and 

8U I azo h' ozo 
C = 8T = "2 k - J (aT)+ 4JzlaT) (21) 

Zo is a function of K and H (in particular, a function of T), and is determined from 

equations (II) and (16). We shall examine a special case and evaluate Zo as a function of 

K and /I In the following section. 

4. A Special Choice of J 

In the previous sections we have described the derivation of the partition function 

and some thermodynamic functions for an arbitrary translation-invariant one-dimensional 

spherical model. However, we have not specified the generic matrix element J(/) of J, i. 

e., the interaction of spins 17j and 17j+'. Thus, we have as many one-dimensional spherical 

mod!'ls with dish.nce-dependent couplings as choices of J. If we choose J(/) = exp( _/2 /4), 

the interaction becomes Gaussian, and if we choose J(I) = I and J(l) = 0 (I > I), we 

recover the nearest neighbor interaction model, and 80 on 

However, we must suitably restrict our choice of J in order to obtain a phase transition. 

From equation (II), the right hand side of equation (16) hecolllrs 

I 1 8g( z) 10" '" -g'(zo) = -(-a-).... = (hr' dw[zo + { - :E J(/) cos(lw)]-I. (22) 
2 2 z 0 '=1 

Following Buterl , there exists a critical point K e = ~g'(O) only if this integral converges. 

Thus, if we define j(w), for large N, to be 

N 

j(w) = :EJ(l)cos(lw), (23) 

'=1 
thrn. In ,'rdtr to ob\;un lL finite non-zero critical temperature, J(w) IllUst be of the form wR 

as w ! 0, where 0 < 0 < I. Although the above integral also converges for 0 ~ 0, the 

value of 0 must be positive since negative values of 0 correspond to negative temperatures. 

Hence. for the simplest choice, each element of the generic matrix J(l) becomes a Fourier 

coeffiCient of w", that is 
I (2.

J(l) :: - 2l1' 10 w" cos(lw)dw, (24) 
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or, by a known formula·, 

J(/) =_1_ {e,(I+o)./2r(l +0 -211ri)+e-ill +")'/2f(l +a, 2/l1'i)-2 cosl(l +0 )lI'/2]r(l +0)
4l1'/l+o ' 

(25 

where fIx, y) denotes the incomplete gamma function From the above equation (24), J(I 

is a positive, monotonic decreasing function of the lattice <listanef> I The behavior of J(/) 

I e., the strength of the coupling, for various values of 0 (0 = k, ~, ~), is shown in Fig 

I. The 0 dependence of the aitical POint Kc = ~9'(O) can bf' obtainerl by substitutinl 

j(w) = w" into equation (22) above, which yields 

" (2l1'r"l1. e =-2(1 _ 0) (26 

Ilence, the maximum critical temperature Tc MAX is obtained for Il ~ 0.4f), and the valu, 

of Tc MAX is 
J(2r)I/'

Tc MAX:: --k--. (27 

Te - 0 for both limiting cases, 0 - 0 and a-I, since J(/) = 0 in the limit () 

The behavior of Ke as a func:tion of () is shown in Fig. 2 

The explicit expression for the partition function can be obtained by evaluating tho 

integral in equation (II), and substituting the result into equation (15), which yields 

K lI' 11. 1 • (2l1')0 
= -( .."), (zo + (2l1')"r' exp{N[R(zo + --)z'" 2l1' n 1+0 

+~(0-2FI(I,0-1;I+a-I,-zol(2l1')")+~2 )]} (28
2 2n~ 

where 2F.(a, b; c; z) denotes the hypergeometric function. 

5. Behavior of Thermodynamic Functions 

Now, we shall examine the behavior of the thermodynamIC functions in the limit h - ( 

First, consider the temperature range T > Te (K < Ke ). Then, it follows from equation 

(16) and (22) that Zo approaches a non-zero value w in the limit h - 0 (/I - 0). Alse 

as in Buter· (p. 67), w is a monotonic function of T for T ~ Te , and approaches zero a 
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T ..... 7::. Thus, the thermodynamic functions in the limit h ..... 0 become 

M =0, (29) 

1 
(30)X = 2Jw' 

1
U = -kT-J(w+{), (31)

2 

and 
1 8w 

C = -k - J(-) (32)
2 aT 

where { = (2w)"/(1 + a). No spontaneous magnetization occurs above the critical 

temperature, and since w ..... 0 u T ..... 7::, the magnetic susceptibility diverges at the 

critical point. 

For T < T., %0 ..... 0 u Ia ..... O. Hence, from equation (16), 

lim!!. 
H .... %0 

= (4K(K  K.)!\ = 2K( 1  .!.)\.
T. 

(33) 

Hence, 

M = (1- T)~
7::' 

(34) 

x ..... 00, (35) 

U = 1
-kT- J&2 '", (36) 

and 

C = 
1 
ik. (37) 

The behavior of the magnetization and magnetic susceptibility are shown in Fig. 3. 

6. Conclusion 

The critical behavior of this model is similar to that of the conventional spherical model 

in dimensions greater than two. This follows from the fact that the integral in equation (22) 

converges for dimensions greater than two in the conventional spherical model. However, 

in the present model, the introduction of long-range interactions eliminates the need to 

consider higher dimensions in order to exhibit critical behavior. 

7 

Dyson's hierarchical model~ is a well known one-dimensional spin model with a phue 

transition, but is rather artificial in lacking translational jnvariance. By contrut, the 

interaction in the present model is translation invariant, and decreases monotonically with 

increuing distance between spins. Application of general theorems on Fourier series' shows 

that the series E:':o J(I) is absolutely convergent, in particular, J(/) = 0(,-1) U I ..... 00. 

Thus, the coupling introduced in the present cue appears quite natural and physically 

plausible. 

Needless to say, one may expect that the introduction of suitable long range interactions 

in a two-dimensional spherical model would also yield a phase transition, and moreover, 

that the required coupling strength would decrease even more rapidly than in the preceding 

one-dimensional cue. The two-dimensional case will be discussed in a subsequent paper. 
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