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The one-dimensional spherical model is generalized 1o include long-range interactions. A

phase transition is shown to occur for a certain type of interaction. The partition function
is explicitly calculated, and the critical behavior of the model is examined.

1. Introduction

In order to obtain a phase transition in one dimension, we shall generalize the con-
ventional spherical model which involves only nearest neighbor interactions, to include
long-range interactions. First, following Baxter’, let ua‘bn'eﬂy review the spherical model
solved by Berlin and Kac? in 1952. In this model, one assigns a real spin variable o, to

each lattice site, subject to the constraint Z ,a’ = N. Thus, the partition function for

the spherical model can be written as

Iy = / / doy-- da;vexp{l\zd,w+”20;}5|~ Z ail (1)

un
where K = J/kT, H = h/kT, and the summation (j,1) ranges over nearest neighbors

only. However, in our modification, the interaction term is replaced by K Tis a;J10; where
Jyi is the generic matrix element of J in equation (3) below, and depends only upon the

distance between spins ¢; and o;. Thus, the partition function of our model becomes
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Zn = /w / do, - daNexp{kZa, ,a,+HZa,}6[N Z 2]

[S2)]
With a suitable choice of the matnx J, this formula can express the partition function
a spherical model on an arbitrary lattice in any dimension. However, since we are n
considering the one-dimensional case with periodic boundary conditions, and, as mention
above, J;; depends on the distance between ¢; and gy, the matrix J is cyclic, as follows

Joy Jay --- JN-1)
JIN-1) JO} - JIN=-2)

i
—_—

J(1) J(2) --- J(0)
To ensure translational invariance, i. e, for a finite circular model, rotational invanance, s
assume J(N ~n)} = J(n). Hence, the above matrix is also symmetric. We shall evalua

the thermodynamic functions of systems defined by choosing certain specific expressio
for J;.

2. Evaluation of the Partition Function
We will first follow the derivation by Berlin and Kac?® as presented by Baxter', and the

modify this procedure as appropriate for our examples. The partition function of equatic

(2) can be rewritten as

Zn = (27)" / doy - daN/ daexp{kZa,.l,;a,HlZa, +(a+is)N- (a+ta)}:a
[$1]
(

where we have used the Fourier transform of the delta function and also added an ext

term 0 = aN-a}; aJ’» in the exponent, where a is an arbitrary real constant. Now,

define the matrix V by

V = (a+is)l-KJ (
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where I is the N x N unit matrix. Moreover, defining f to be an N-dimensional vector
with all components equal to H, and & as an N-dimensional vector with elements g,, one

can write the partition function as

o0 o0 o0 -
Zy = (20 / / da/ dsexp(—TVI + HTé +(a+iN}.  (6)
After diagonalizing the matnx V and integrating over &, Zy becomes

Iy = %x"”" /w dsjdet V|~ exp{(a + is)N + lXI'T’\/"H} (7)

From the definition of the matnx V in equation (5), since J is a symmetnc real cyche

matnx, the eigenvalues of V are’

N
Ay = a+ia—l\'[ZJ(t)cos(?tkt/N)]. (8)
=1
Thus,
N N N
IndetV = zlnz\, = ZIn{(a+i3)-K[ZJ(t)cos(Zxkt/N)]), 9)
k=1 k=] =]

and defining wy = 2xk[N, this becomes
ZInl(a +19) = K(J(1)cosuwn + J(2) cos 2w + oo J(N)cos Ny )}
N

The above summation over w; can replaced by integration when N is large, and we shall

wnte
IndetV = Nfn K + g(2)] (10)
where
g(z) = (2x)! /:. dwinfz + € — (J(1) cosw + J(2)cos 2w+ -+ ), (1)
: = (a+is—- KOJK, (12)
and § = T, J().
Since J is cyclic, T = (1,...,1) 1s an eigenvector corresponding to the eigenvalue Kz

Hence, H is the eigenvector of V corresponding to the eigenvalue a + is— K¢ = Kz and
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the second term in the exponent of equation (7) becomes NH?f4Kz. Substituting this
and the above equations (11] and {12) into (7), we can now write the partition [nnction as

+100

2y = (K[2xi)x/K) / dzeM, (13)
where
. . 1 ?
f(z) = I\z+l\£*’§g(2)+m. {14}

and ¢ = (@ — K§)/K . Evaluating the above integral by the method of steepest descent,

the partition function for sufficiently large N becomes

K x.» N/(w0)

- 15
In = 2[(’,)38 {(15)
where 2z 18 the value of z at which f'(z) = 0, and the arbitrary constant a has been

chosen to be K{zo+ &} (1. e ¢ = 20). From the above equation (14), the condition
f(z0) = 015 equivalent to
H?

1
e = =¢' ) 16
K 4K 23 2g () (18)

3. Evaluation of Thermodynamic Functions
From the expression (15) for the partition function, the free energy per spin ¥ in the

thermod ynamic limit becomes

A i
—7:1—;-, = lim N'InZny = -ln(%)+/(20)- (17)

N—oo 2

Hence, the magnetization, magnetic susceptibility, internal energy, and specific heat per

spin are
U= -T’%(%) = -lékT—.l(z.,+£)—~4—’jZ’. (20)



'y

and
U | Bz 8zp

C=35r =351 2(aT

2o is a function of K and H (in particular, a function of T), and is determined from

). (21)

equations (11) and (16). We shall examine a special case and evaluate zq as a function of

K and H in the following section.

4. A Special Choice of J

In the previous sections we have described the denvation of the partition function
and some thermodynamic functions for an arbitrary translation-invariant one-dimensional
spherical model. However, we have not specified the genenc matnx element J(I) of J, i.
e., the interaction of spins o; and 0,41. Thus, we have as many one-dimensional spherical
models with distance-dependent couplings as choices of J. If we choose J(I) = exp(—i/4),
the interaction becomes Gaussian, and if we choose J(1) = land J(I) = 0 (I > 1), we
recover the nearest neighbor interaction model, and so0 on.

However, we must suitably restrict our choice of J in order to obtain a phase transition.
From equation (11), the right hand side of equation (16) becomes

Lt = 2D et [+ - I eostta) . (22)
t=1
Following Baxter', there exists a critical point K, = %g'(O) only if this integral converges.

Thus, if we define j(w), for large N, to be

Hw) = Z J(1) cos(lw), (23)

then, in order to obtain a finite non-zero critical temperature, j(w) must be of the form w”
asw | 0, where0 < a < 1. Although the above integral also converges for a < 0, the
value of @ must be positive since negative values of a correspond to negative temperatures.
Hence, for the simplest choice, each element of the generic matrix J(I) becomes a Fourier
coefficient of w?, that is

1

JO) = - :' w® cos(lw)dw, (24)

or, by a known formula‘,

J) =

"lH_o {0 P (1 a, ~2Uni)+e~ D (1 g, 2xi)=2 cos[(1 +a)x /2T (1 +a)

(25
where I'(z, y) denotes the incomplete gamma function. From the above equation (24), J(!
18 a positive, monotonic decreasing function of the lattice distance I The behavior of J(!)
i. e, the strength of the coupling, for various values of a (@ = §, 1, 1), is shown in Fig
1. The a dependence of the cntical point K, = %g'(O) can be obtained by substituting
J(w) = w” into equation (22) above, which yields

(27)°

21 -a) (26

¢ =

Hence, the maximum cnitical temperature T; p4x 18 obtained for a 2 0.46, and the valu

of Tc max 18

J2n)'?
T max = (k) - (27

T. — 0 for both limiting cases, « — Oanda — 1,since J(I) = Oin thelimita — 0
The behavior of K, as a function of a is shown in Fig. 2
The explicit expression for the partition function can be obtained by evaluating th

integral in equation (11), and substituting the result into equation (15), which yields

Zn = —(—) (zo+(21)°)'7exp{N[l\(zo+(2’)

)

+-§(a - Rl a1 407 =25 (2m)° (28

where ;F\(a,b;¢; z) denotes the hypergeometric function.

5. Behavior of Thermodynamic Functions

Now, we shall examine the behavior of the thermodynamic functions in the limit A — (
First, consider the temperaturerange T > T. (K < K.). Then, it follows from equation
(16) and (22) that zo approaches a non-zero value w in the limit A — 0 (H — 0). Alsc

as in Baxter' (p. 67), w is a monotonic function of T for T > T, and approaches zero a
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T — T.. Thus, the thermodynamic functions in the limit A — 0 become

M =0, (29)
= L (30)
X = 0w
U= %kT—J(w+(), @31)
and
1 dw
C = -ik—.l(ﬁ) (32)
where § = (2x)*/(1 + a). No spontaneous magnetization occurs above the critical

temperature, and since w — 0 as T — T, the magnetic susceptibility diverges at the
critical point.

ForT < T, 2 — Oas A — 0. Hence, from equation (16),

H T
im = - = Ly
Jm - = [K(K KoY = 2K01 AR (33)
Hence, ]
T
= (1~=)}
M=-70 (34)
X — 00, (35)
U= %kT—-J{, (36)
and
1
C =3k (37

The behavior of the magnetization and magnetic susceptibility are shown in Fig. 3.

6. Conclusion

The critical behavior of this model is similar to that of the conventional spherical model
in dimensions greater than two. This follows from the fact that the integral in equation (22)
converges for dimensions greater than two in the conventional spherical model. However,
in the present model, the introduction of long-range interactions eliminates the need to

consider higher dimensions in order to exhibit critical behavior.

7

Dyson's hierarchical model® is a well known one-dimensional spin model with a phase
transition, but is rather artificial in lacking translational invariance. By contrast, the
interaction in the present model is translation invariant, and decreases monotonically with
increasing distance between spins. Application of general theorems on Fourier series® shows
that the series ;2 J(1) is absolutely convergent, in particular, J(I) = o(i"")as | — oo.
Thus, the coupling introduced in the present case appears quite natural and physically
plausible.

Needleas to say, one may expect that the introduction of suitable long range interactions
in a two-dimensional spherical model would also yield a phase transition, and moreover,
that the required coupling strength would decrease even more rapidly than in the preceding

one-dimensional case. The two-dimensional case will be discussed in a subsequent paper.
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