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The conventional Ising model is generalised so as to introduce a topological frus­

tration for both ferromagnetic and antiferromagnetic cases ThiS generalisation
 
is extended to a broad claJIl of laHice field models, including the conventional
 TXV model anr! classical Heisenberg model as special cases TWister! external
 
fields are also introduced in a manner symmetrical with rcsl'ect to the intrinsic
 
fields. The partition function and the two-point correlation function are explic­

itly determined for several varieties of twisted I-dimenSional chaIRS with zero
 
external field. Cohomological and fibre bundle interpretations are discussed.
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1. INTRODUCTION 

With a view to certain topological generalisations, we first rl'formulate the convenhonal 
Ising model in the following manner. Consider any lattice formed by the I-dimensional 
skeleton of a polyhedral subdivision (triangular, cubical or otherwise) of any conected 
polytope K, which will generally (but not necessarily) be a closed manifold. Fix an arbitrary 
lattice point xo, and assign a number T(L) = ±I in Z2 to each unoriented I-simplex (link) 
Lin th, I:\ttice In addition, choOlle a number 0' = ± I. Any such choice (q, T(L) I L € 1\1) 
will be referred to as a configuration. To any closed polygonal curve C based at the point 
xo, assign the ordered product T( C) of the numbers T(L;) corresponding to the successive 
links Lj of the curve: 

T(C) = II r(L;) (I) 
j 

We now subject the possible configurations T to the constraint which requires that the 
correspondence 

C - T(C) 

determines som~ fix('d representation R of the fundamental group JrdK) III the group Zl In 
particular, thiS Implies that each configuration satisfies the local commutativity con ..lrtlon 
i. c, the product of the link value r[L) around the boundary of any 2-cell (or "plaquett') 
is equal to I 

f'lIrth"r, I"t T(I\, R) denote th" s"t "f all link funflh,ns r(1,) satlsfrln~ th,' al>",·,' 
condition Tlten we define th~ lIamiltolllan of a configuration r t:: 1"(1'.1\) I>y th., 
formula 

1{(T,q)=-JL T, m 

where J IS a real constant Thus, the HamiltoRlan is mdepenJent of the variablt' IT 

Consider first the case where the representation (hos('n IS the tnvlal representation 

Jr,(K) ­

Then, the model is equivalent to the conventional IslRg 1II0dei With zero exkrnal field 
ThiS IS readily seen from the Identificallon 

dr-'J) = q, ql (3) 

where q, and "1 dcnote the spin variables assignI'd to the endpolRts x, an,1 x, of the link 
L'1 The variable q ID the configuration (1', (1) could be identified with the direction of the 
spin at one arbitrarily fixed lattice poinl. 

As an illustration, considered a subdivision of the circle 51 into N segments 1. 1, L2 , • L" 
The fundamental group Jr.(5') h"-'l two representations in 2 2 , For tlte triVial r"prt'Sl'nla· 
tion, as already observed, the resulting model is equivalent to the I-dimenSIOnal close'l 15111" 
chain In this case, the configurations are sequences of numbers Tlo f), ,TN (f. = ± 1\ 
subject to the constraint 

II T; = (~ ) 

However, for the nontrivial repres"ntation, the resulting model IS not eqUivalent to con, 
ventional closed Ising "ham, the constraint being 

ITT, =-1 ( 5) 

The Hamiltonian assumes the same form in both cases, and involves only IIllfOupled van­
abIes. Thus, in the present formulation, the Hamiltonian is free 01 explicit interadlons, alld 
all the dynamics has been included in the constraints. Moreover, the twofold degeneracy 
associated with the up-down symmetry has been isolated in the variable q In the case 
of zero external field, the effect of this variable is simply to double the partition function, 
and in fact one may disregard 0' in all the ensuing zero field calculations. The result of 
eliminating q from the model will be referred to as the reduced model, and the assOCiated 
partition function will be distinguished by the superscript r. 
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2. SOLUTION OF THE TWISTED ISING CHAIN PROB­
LEM 

The above·mentioned problem corresponding to the nontrivial representation of 11'1 (SI), 
which we shall refer to as the twisted chain problem, may be physically visualized as follows 
Consider a long, narrow Mobius band, divided into a sequence of N small rectangles 
fl, f, •...• fll. In each rectangle, choose an orientation which may also be regarded as a Spin 
vector perpendicularly directed toward one or the other side 01 the band, and to each pair 01 
successive reclangles fi,Ti+I, assign a number Ti equal to ±I according as the orientations 
01 this pair of rectangles are coherent or incoherent. 

The partition function caD be determined by the following recursion proceSlJ, utllizlIIg 
the known solution of the conventional I·dimensional Ising chain. Denote the partition 
functions of the conventional (untwisted) and twisted chains of length N by Z,.(N) and 
Z,(N), respeclively. Then, by summing over the first variable, one obtains the following 
recursion relation for the reduced functions, 

Z;(N) = eIJZ~(N-I) + e-~lZ:(N-l) (6) 

where, as mentioned above, Z~ = Z./2. This relation is readily solved, yielding the result 

Z;(N) = i ((2 c08h(pJ))1I - (2sinh(.oJ»1I I (7) 

One can easily verify that free energy per spin in the thermodynamic limit IS identical 
with that of the conventional untwisted Ising chain (closed or open), as might have been 
expected. 

The following transfer matrix form of the recursion relation is interesting In that one 
can thereby simultaneously calculate the partition function for the tWisted and untwisted 
Ising chains. 

Z~(N) ) _ ( t~J e-~l) ( Z~(N - 1) ) (8)( Z;(N) - e-~l ell Z;(N - I) 

The two-point correlation function is defined for r $ N/2 by 

< T,.i+. >1 < TiTi+1 .. 'T.+r >, (9) 

which is consistent with the conventional definition for the untwisted case, since 

< l1il1i+r >.. = < IIi l1i+ I l1i+l l1iH ., 'l1i+._ll1i+r >. = < TiT;+! " 'Ti+r-I >,. (10) 

and can be similarly determined by the following recursion, 

Z;(N) < Tl,r >, (N) = e~lZ~(N -1) < T"r >. (N - I) 

- e-IlZ:(N - 1) < T3, >. (N - I) (11) 

or by the same transfer matrix procedure as the above equation (8), 

Z:(N) < T., >') _( ,,~l _,,_~l)r (Z:(N - r») (P)
( Z~(N) < Tl,r >.. - _I!-~l I!~l Z~(N - r) • 

with the result 

N) _ [tanh(iJJJI' - (tanh(lJJ)III-r 13)
(< TI, >, - 1 _ (tanh(iJJ»)N I 

Notice that for odd N, the twisted ferromagnetic ch8.ln with couplJng constant J IS ISO­

morphic to the untwisted antilerromagnetlc chain with coupling constant -J, In the sense 
that the transformation Ti ..... - r, defines a bijection 01 configurations whl.:h preserves the 
Hamiltonian. In particular, these two models have the same partition lundlon lIowever, 
the models are not equivalent, since the two-point correlation functions are all pOSItive lur 
the twisted ferromagnetic chain but alternate in sign for the untwisted anlif..rromagn..tl( 
chain.11l Similarly, the twisted antilerromagnetlc chain is isomorphi.: although not equlv· 
alent to that of the untwisted ferromagnetic chin However, thiS is not true for even N 
In both the odd and even cues, the ground state 01 the lerromagneu.: tWisted chiIJlI IS 

2N·fold degenerate (simply N·fold degenerate in the reduced model), whereas lor even 
N the ground state of the antiferromagnetic untwisted chain 18 degenerate 01 order 2 (or 
!Iondegenerate in the reduced version). 

Although a rigorous proof will not be attempted in the present paper, It IS mtultively 
clear that the partition function for the 2·dimensional Ising model twisted 1ft, say, one 
direction, can be obtained by using antiferromagnetic coupling constants and an odd num­
ber (2M+I) of spins in the twisted direction, then analytically continUing the domalll of 
definition of the resulting partitIon function Z'U+I, to even integers 2M, and sl/R1larly lur 
twisting in both dire.:llons. The expressIOns reqIIIred, may be found, e g, In th.. trt'atls.. 
of McCoy and WU(3) 

Although the Mobius band has been mentioned above for purposes of graphIC Illustra­
tion, the case in point was essentially a circle, and not a Mobius band. The present tWlslllIg 
construction is applicable to a lattice of completely arbitrary form on any compact poly­
tope, orientable or not. For example, the fundamental group of the 2.dimentional torus IS 

Z x Z, while that of the Klein bottle is Z x Z, In both cases, there are three essentially 
different representations of the fundamental group into Z" i. e., trivial, tWisted III ou" 
direction, and twisted in both directions. Thus, consldenng both the ferromagnetic and 
antiferromagnetic cases, one obtains a total of six essentially different Ising-type models 
on each of these two manifolds. 

For I-dimensional models, the only possible finite critical temperature is \lresumaLly 
zero, and hence consideration of the zero-temperature continuum limits of the above models 
could serve to display their topological differences independently of the finite length N 
This can be achieved, for example, by applying the following renormalization pro.:edure to 
the correlation functions. 

First, define 
"Y(a,p) = lim [tanh(pN tanh -I ai/II )1 11 (14 ) 

N-ao 
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where 0 < a < I and 0 < P < 00. This function possesses the following properties 
First, for all N > I/P, 

(tanh(pN tanh-I al/NIN ~ [tanh(tanh- I al/N))N = a (15 ) 

Hence, I ~ ..,(a,p) ~ a > O. Moreover, ..,(a,p) is clearly monotonic Increasing With 
respect to both a and p. 

For purposes of comparison, we first indicate the results for the conventional (untwisted) 
cases. 

I). Closed ferromagnetic chain 
Consider a closed ferromagnetic Ising chain with N spins and couphng constant J As 

is well known,l3' the 2·point correlation is given by 

< (1;(1;+, > = (tanh(pJ))' + (tanh(pJ))N-, 
( 16)

I + (tanh(pJ))N 

Now, choose any number a with 0 < a < I, allow Nand r to approach at a fixed ratio, 
r = .N, (0 < • :S 1/2), and let 

J	 :: I N :: Ntanh-I(a l / 
N) ( 17) 

Hence, if we define tp(a,p,.) as the limiting value of the 2-point correlation function, 
then/par 

_ h(a, P»)' + h(a, P)P-' 
'Per(a,p, I)	 ( 18) 

- 1+ ..,(a,p) 

2)	 Open ferromagnetic chain 
For the open ferromagnetic Ising chain, the 2-point correlation function is given by 

< (1;(1;+. > = (tanhIPJ»)'	 (19) 

and the corresponding limiting process gives 

'Por(a,IJ,.) = (-y(a,P))'	 (20) 

3). Twisted ferromagnetic chain 
Applying the same limiting process to the 2·point correlation of the twisted ferromag­

netic chain given by formula (13) above for r:S N/2, one obtains 

'P'rr(a,p,I) = (-y(a,p»)' - (-y(a,pW-' (21 )
1 -1(a,p) 

In the foregoing formulae, the subscripts CF, OF, and TF indicate closed ferromagnet, open 
ferromagnet, and twi,ted ferromagnet respectively. Notice that the twisted ferromagnetic 
chin provides a well.defined and finite limit in contrast with the untwisted antiferroma.g­
netic case, where the limit is undefined. 

3.	 GENERALIZATIONS 

The preceding construction can be genera.lised to an arbItrary matnx group G, and 
matrix representation p of G, subject only to the restriction that R (Tr Peg)) =R (Tr 
p(g-I» lor any g E G The assignment of an element 9L In G to each oriented hnk L In the 
I-skeleton 1\1 of the polytope J( under consideratIOn, IR such a manner that the IRver~e 

element (9L )-1 is assigned to the reversed hnk L-I, IS required to define a representatIOn 

'R: lI"l(K) - G 

in precisely the same manner as described above for the special case G = Z2 
Similarly, the Hamillonian of a configuration is defined by 

- J x L: Jl(Trp(9L))	 (22) 
.11 II"'. LEKI 

where the orientations of the links in the sum are arbitrary chosen. For example, chooslllg 
G = U(I), and "R as the trivial representation, one obtains the reduced XY model 
Again, by reduced, we mean that the global symmetry (or degeneracy) has been factored 
out. This degeneracy could be restored by simply adjoining one varible ." E 51 (analogous 
to the above-mentioned (1 E Z2), which does not enter mto the HalluIlQnlr.n, thert·l.y 
recovering the conventional (unreduced) XY model Thus, if the polytope K is defined by 
a subdivision of the circle S·, one obtains, corresponding to the totality of representr.tlon~ 

of the cyclic group 

'R: lI"l(K) ~ Z - U(I)	 (23) 

a continuum of twisted XY models labelled by the angular parameter 9, 0 :S 9 < 2. 
Letting ZR(P, J) denote the partition function associated with the representation 'R of 

lI"l(K) in G, one can also define a holocyclic partition function i(P. J, G) by summing (or 
integrating) the twisted partition function corresponding to all possible representations .,~, 

i. e., 

i(p,J,G) = L ZR(P,J)·	 (24) 
R",.Kj-O 

Thus, the holocyclic partition function embraces all possible link configurations satisfy­
ing the local commutativity condition, i. e., such that the ordered product of the hnk 
variables around the boundary of any 2-cell is equal to the identity element of G. If K 
is I-dimensional, this merely amounts to eliminating all couplings, resulting in a trivial 
product of sums over individual link variables. In the case of the aforementioned Ising 
models, 

teN) =z~ + Z: = (2 cosh(IJJ)JN	 (25) 

i. e, the effect of the summation is to eliminate all but the maximum eigenvalue of the 
tra.nsfer operator. Moreover, this is also true for the XY model on Sl, as follows immediately 
by integration oHormula (39) below with respeclto h. That is, in these cases, the maximum 
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value of the transfer operator is associated with the trivi&l character of the group G. At 
present, the author does not know whether this is merely a curious cOincidence or is true 
in some more gener&l context. 

4. CmCULAR MODELS 

In this section, the model defined in the preceding section Will be specialized to the 
cue where the polytope K is a circle and the twisted partition function will be explicitly 
eviLIuated for G = V( 1) and p (g) = g .. well .. G = SV(2) and I' the Spin 1 representation. 

Fint, consider a circle divided into n segments, and assign link vanables 91, 92, "', 9" 
(9j E G) to the succceuive segments. These link variables g. are subject to the constraint 

IT• 9; == 9N9N-I" '91 = h (26) 
iaN 

for some fixed h E G, which uniquely determinea the representation 'R~ of 11'1 (51) S!! Z 
defined by 1l~(1I) = h, where /I is a generator of 11'1(51). Now, define a Hamiltonian by 

N 

'H(N,p) = -JERx,(9.) (27) 
ia) 

where x,(g) =Trp(g) is the trace of the representation p of the group G. Letting" = I1J, 
the putition function is then 

ZN(h) = I 1 d9N· .. d9Ie~E~, ...(,.1 (28)
11ll,.,."dj 

and by integrating over the Nth variable, one obtains the follOWing recursion formula, 

ZN(h) = / d9Ne~··(''') ZN-.(9;1 h) (29) 

The expreuion on the right-hand side is a convolution. Moreover. sillce ZN(h) obviously 
depends only upon the conjugacy class of h, the Peter-Weyl theorem u applied to the 
present case provides a gener&lized Fourier expansion in terms of the irreducible characters 
Xj(9), and one obtains 

c;(N) = !/ X;(9)e~x'(')d911c;(N - 1»)d;1 (30) 

where c; is the jth Fourier component of the partition function ZN, and d, IS the dimension 
of p. Hence, by induction, 

c;(N) = 1/ X;(9)e~x'(')d9IN d;N (31) 

7 

In the speti&l cue where the trace of every irreducible chuacter \/(9) III reiLI (e g, G = 
SV(2)), this Fourier component Cj can be expressed as follows 

00 ,," / 
C1 = d- I \·(g)e~·,I')d9 = E - \ (9h"(g)dg (32) 

, / 1 ",,0 f1' 1 , 

Therefore, 
00 lIn 

cj(N) = djNIE ,n,(pjQ9pQ9" 'Q9I')}N (33) 
n:O n. 

where n copies of P appear in the tensor product in the nth term, and 11,(1',01' 0" .01') 
denotes the number of times the singlet representation occurs in the CIe!bsch·Gurdan de!' 
composition of Pj 0 P0···0 P (t, Hence, we obtain the partition funchon for the Circular 
model with respect to an arbitrary compact Lie group in the form 

Z;'(h) = };: c/(N)x/(h) = 'LJ/ X;(9)e~"("d9)N d;N, (34) 
1 , 

and, in particular, if &II the irreducible characten are reiLI, then 

00 ,," 

Z;'(h) = LCj(N)x/(h) -<Ddt L-n.(PjQ9pQ9·"Q9pl\N\,(h) (35) 
j j ""0 n' 

However, the above formulae are not necessarily the moat convenrent oneil for speCific 

c&lculations. 
As all example, conSider firat G = V( 1) In this cue, the parllllon fundlVll curreapolll)' 

ing to the above equation (28) is, 

_ £ d~N d~1 ~~,. c.....ZN (h) - -- "'-e .L.r._1 (36) 
IE::, ...dl 211' 211' 

where~. = 9.+1 - 9, may be regarded as the angular difference between two successive 
spins in the X·Y plain. Clearly, for the trivial representation h = 0, one obtams the 
partition function for the conventional XY model in reduced form,' e, diVided by a 
factor of 211'. The recursion formula is 

ZH(h) = 12'd~Ne~c"""ZN_I(h_~N) (37)
10 211' 

Hence, the j-th Fourier coefficient is 

c;(N) = II;(,,»)N (38) 

where I j is the Bessel function of imaginary argument. Writing the Fourier expansion, one 
obtains the partition function for the twisted XY model u follows 

ZH(h) = L
00 

11;(,,))Ne·(j~I. (39) 
j=-oo 
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Thus. the twisted partition function is essentially the generating function for the Nth 
powers of the Bessel function. In the thermodynamic limit. the e/fect of the non· trivial 
representation (i. e .• h i 0) will clearly disappear since 10 > I. for all k i O. 

The two-point correlation function(S) for this model can also be calculated in exactly 
the same manner. with the result 

00 
CN(r, h) = E Ilj_J(v)I'llj(v)IN-,-le,(jA) (40) 

i=-oa 

where CN is defined by 

CIV(r, h) == ZN(h) < e-;(,..·+· ..+,..··,) >. (41 ) 

and r ~ N/2 is the distance between the two spins. 
Next, consider G = SU(2). The character of the spin 1 representation IS 

X,(9) = 1 + 2cos(1') (42) 

where T is the angle of rotation, and in general the spin j character Xj(') is given byte) 

Xj(') = t e;...• = sinl(j ~ !)1'1 (43) 
...._j Sln( i) 

where j = 0, !, 1, l, .. '. Substitllting these results into the above equation (34). one 
obtains 

ZN(h,) = I: ([-.i:- t im(2vllN(sinl(j ~ !)T!)} 
j ..O,I",I.... 2) + I ...=_; SIR( i) 

(44) 

where im(z) is defined by 

-Im(z) == I fa'·- e"ool+;m'd8 
27 ° (45) 

and coincides with the Bessel function Im(z) for integral m. 

5. ALTERNATIVE HAMILTONIANS 

The preceding constructions include the conventional laing and XY models as special 
cases, but not include the clusical Heisenberg model. To obtain a generalization of ll1e 
la.-tter, the definition of the Hamiltonian must be modified as follows. 

Let K be a connected polytope, fix a vertex Xo aa bue point, choose a maximal tree(·) 
T in the I-skeleton KI of K, and regard T aa a set of links L, oriented from the root xo 

toward the tips of T If SeT. let I S I denote the cardinalIty (number of links) of S 
For LET. define 

6( L) = LJ ••• Lft , Ln = L 

as the unique minimal path from Xo which includes L, a.nd 

..,(L) ::: L.·· .Lft - , 

(or the trivial path at Xo if n =1), i. e.• 6(L) = -r(L)L 
Next, let G be a LIe group. let GT denote totality of mappmgs from T to G, Ie. the 

set of all configulations g = {9L ILET} and for g E G T, L € T. define 

91(LI :::;; 9L.··· 9L, 

9.,(£) = 9L•• , ··· 9L, 

where the L j are related to Ln as indicated above. and 9~(L) IS the identity element of G .f 

n = I. 
Let H be a Lie subgroup of G, let G/H denote the left coset space. and let (G/H)l(o be 

the set of all configulations {<p(x) E GIH I x E K°}, where KO denotes the O·skeleton (Ie, 
vertex set) of K. Fix an element "0 E G/H (e. g.• lie = H) and define 

<to = {Ip E (G/H)K· 1.,,(Xo) = "o} (46) 

Proposition. G T is a principal fiber bundle over to, with a Lie group H'T as fiber If G \I 

compact, then HT is compact, moreover, the Haar measure on G T• consldel'f'd u a dll'f'ft 
product of groups G £ ::: G, LET, is locally a product of the usual measure on <to, 
considered as a cartesian product of coset spaces, and the Haar measure on the fiber H'T 

This proposition is proved in Appendix A.I. 
Now. consider any link L which is not contained in the maximal tree, arbltranly choose 

an orientation (x,x') of L, ~nd extend ~he foregoin~ definition of -r(L) and 6(L) In the 
obvious manner by defining -r(L) = 6(L), where 6(L) is the mlRlmal path in T from the 
base point Xo to the initial point x of L, and 6(L) = -r(L)L. 

Next, given a representation 'R : 1I'00(K) - G, let G~' denote the totality of link 
configuarations {,£ I L E K'} defined on the entire I·skeleton K' and assoCiated with 
the representation 'R as indicated in §3 above. Observe that any g E G ~I is uniquely 
determined by the restriction glT, and conversely that any g E GT uniquely determines an 
element g E G~\. Hence, G~\ can be identified with GT, and accordingly G~\ may be 
regarded as a. principal fiber bundle over <to, with a compact fiber if G is compact. 

Next, given a representation 'R: 71(K) -G, and assuming that G/H is equipped with 
a G·invariant inner product, define a Hamiltonian on G~\ by 

'HR(g,lIe) = -J E (91(£)IIe,g~(L)UO) (47) 
LEK' 

In general. this model will depend upon the choice of the maximal tree T and the initial 
spin Uo aa well as the orientations of the links L E K'\T, although this dependence 
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could be removed by iLveraging the partition function over all possible choice. However, 
in the cue where 'R is the trivial representation 'Ro, one can reiLdily verify that the above 
Hamiltonian is already independent of the orientiLtions of the links L E K J \ T, iLnd that 

'H1l.(g,uo) = 1tH'i(pg), (48) 

where pg is the image of g under the bundle projection p GT .... 4'0 of the above 
proposition, and 'ilH.; is the Hamiltonian of the conventional classical Heisenberg type 
model. Also, in this cue, the partition function is clearly independent of the choice of 
Uo· 5ince the meaaure on G~: is locally a product of the conventional measure on 4'0 iLnd 
the fibre measure induced by the Hur meaaure on aT, the partition function defined by 
'HR,(g, uo) will coincide with that of the conventional Heisenberg type model, except for an 
immaterial constant factor corresponding to the global symmetry involved in the choice of 
the initial spin Uo. In particular, for the trivial representation 'Ro, the partition function 
will also be independent of the choice of the muimal tree T. 

Note that the rather tedious construction given above is necessary only If G IS non­
abelian. For abelian G, the procedure employed in §I and §2 is sufficient to construct 
modele which include, e. g., the conventional Ising and X-Y models aa special cases. 

As a specific example, consider the twisted Heisenberg model on a circle 51, with 
a =50(3) and GfH =5', and a repreaentation 1l, defined by an arbitrary element 
h E 50(3), i. e .• 'R.(a) = h, where a is a generator of lr,(5 1) ~ Z. 5ubdivid 51 
into N consecutive segments L.. ···, LN ; in the preaent case, the~e exists essentially only 
one maximal tree 'T, say. 'T = {LI,· ... LN_I}. and the indeterminacy in the chOice 
of the orientation of LN correaponds to replacement of the element h by h- I , which in 
the cue of 50(3) is conjugate to h. Hence. if the partition function is averaged over the 
conjugacy class of h, then the ambiguity corresponding to the orientation of L N will also 
be eliminated. 

Applying the above construction, one obtains the partition function 

N 

iN(h,Uo) = / d9N···d9Iexp{\I~)g;_I·"911lo,9. '''911lo)} (49) 
i=1 

where Uo is the initial unit spin vector. Using the G-invariance of the Hur measure and 
the inner product, this can be rewritten aa 

iN(h,Uo) = 
Nt . dY NdgN _ I • .. dYlexp{II:E(g;uO,uo)}In.•,,, ....·1 i=1 

(50) 

where the new link variable Yi. is defined by 

9i:: 91
1 

"'9;:19;'''91' (51) 

Hence, one obtains the recursion relation 

ZN(h, uo) = f dYNe"(·",o.,ItO)iN_I (9N1h) (52) 

II 

If Uo = i = (0,0, I) in cartesian coordmates, then (guo, uo) = (9:.:) = (US tI. 
the cosine of the second Euler angle of 9 In the usual parametrization uf SOP) Helh·e. 

omilling the circumflex over g, 

N-I 

iN(h, i) = / dg",e" ,.. I", 1. ndg,eL ::';' ,•• 1, l~J)

In.•",_. ,.=.1.=1 

Here again, the piLrlJtlon function iN can be calculated by uSlllg the FPW (FoUrler-Pel.,r· 
Weyl) expansion, with the result 

ZN(h,i) :E1~(21 + 1)1/11>,(11 )I N
.,:>, (54) , 

where 

(InJ
~ :E{(-I)' (21-2.)' '_2,2(1-2.)!1>,(11) 

.sO 2"!(I-.)I(I-2.),I(-I) . - .. smhll 

I 1-,.-1
+;(e" -(-I)'-"e-') :E (_.!..). (1-2.)1 (55) 

.=0 II (I - 2. - t),n. 

'P, = (21 + 1)112 P,( cos 9), (56) 

and 9 is the second Euler angle of h. 
However, iN is not invariant under conjugation of h, hence, In order to obtam all 

invariant partition function ZN. the above iN must be mtegrated over the entIre conjugacy 
class of h, i e., 

ZN(h) = ( iN(khk- I , i)dk (57)
l'Eo 

Performing this integriLtion, one obtains the partition function for the twisted l-dmu:ntlonal 
clasSIcal Heisenberg model as foUows. 

Z",(h, ) = 211':E{(21 + I)1/21~(21 + 1)1 /21>,(11 )I N f P,( cos 1/)( I - cos Tt) SIR ododTt} (58) 
, 2 

where 
cos 9 = I - sin' a(1 - cos T.)(2 - sin' a)(1 - cos T.)(l - COST,) (59) 

The explicit calculation of the foregoing results is given in Appendix 2. 
Other Hamiltonians may naturally arise if noncompact groups a are consIdered. For 

example, let G = Rn. considered aa an ablian group with respect to vector addition For 
a link configuration {v I L E KI}. where vERn, define a Hamiltonian by 

1i = J:E I V I' . (60) 
L 
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Again, consider a circle K = SI, subdivided into N links, and the representation 'R 
determined by a fixed v E R8, i. e., 'R(o) = v, where 0 is a generator of lI"l(SI) ~ z. 
In this case, the recursion relation assumes the form 

ZN(V) = ( dVNe--1fr<I'ZN_I(V- VN),	 (61 )
JR-

hence, a straightforward application of the conventional Fourier transform in Rn and an 
induction yields the result 

ZN(V) = 1(~)'f(2")\Jne-.lfI2	 (62)
"N ' 

already familiar from the theory of Brownian motion, (T) and (with a proper normalization) 
representing the probability density, after N steps, of particles departing from the origin 
and executing an unbiased random walk on a hypercubical lattice with spacmg d = 
(1/4,,)1/' 

6. EXTERNAL MAGNETIC FIELDS 

A twisted external magnetic field can be introduced by means of another configuration 
heLl E G, defined on the l&IIle polytope K and determining the same representation 'R of 
IrI(K) as the foregoing eet of configurations gL. Let x be any vertex in K, and let r denote 
an arbitrary polygonal path from a fixed bue point Xo to x. Define 

g(r) = gL.gL._ 1 " , 'gL,	 (63) 

her) = hL.h L._, .,. ·h L,	 (64) 

where LI , L" ... , L. denote the successive links in the path r. Then, 1l" the porlion of the 
Hamiltonian describing the interaction between the external field h ud the spins g, can 
be defined as 

'H/(g,h,H) = -HL!i(Tr!h(r.)g-l(r.))) (65)
• 

where H represents the strength of the applied field, the sum extends over all verlices 
(lattice points) x of K, and r. denotes any polygonal path from Xo to x. By virtue of the 
constraints imposed upon I and h, this definition is independent of the particular selection 
of these paths. Thus, the partition function is given by 

Z'(fJ,J, K, H) = L expfJ[J L!i(TrgLl + K L !i(TrhLl + 1ll(g.h, H») (66) 
, L L 

where the llum (or more precillely, in the case of a continuous group G, the integral) is 
performed over all configurations g associated with the given representation 'R, with h 

remaining fixed. The energy term corresponding to h alone has been mtroJu,'ed merd~' 

to emphasize the complete symmetry between the roles of the spms and external fiel,ls 
in the Hamiltonian Thus, one could equally fix well 9 and sum over all configuratIOns 
h. The magnetlution and susceptibility with respect to any external field configuration h 
can then be defined in the conventional mannE'r by differentiation wIth resped to thE' fid,1 
strength II. 

The above model, although mterestmg ptr It, IS reduced 1/1 the sense that the Zeeman 
splitting effect 0\1 the global degeneracy is absenl (hence the use of the superscnpt r 1/1 (ti~) 

and (66)). This splitting may be recovered by the following modification Assume Ih..t 
the group G acts upon the coset space X = G/H with a real G·invanant inner product 
Introduce the auxiliary variables u , II E X, replace the interaction HamiltOnian (liS) by 

1l,(g, u; h,lI; H) =-H ~)g(r. )u, h( r.)II) (li7) 

and extend the summation in Ihe partilion funclion (66) over both 9 and v, keepl/lg both 
h and II fixed, i. e, 

Z(fJ,J, K, H,h, II) = L expfJlJ L ~(TrgLl + K L !i(TrhLl + 1l,(g, u; h,lI, H)] (68) 
,~ L L 

As a special case, if one chooses the trivial representation of lI".(I\), the tnvlal external 
field configuration hL = I (i. e, the identity of G), and II an arbitrary fixed element of 
X, then one recovers the conventional XV model for G = V( I) and X = S', and, the 
conventional Ising model for G = Z, and X = SO = Z,. If ,in addition, Ihe firsl Iwo 
terms of the Hamiltonian in the above equation (68) are modified as indicated 1/1 §5, then 
one recovers the conventional classical Heisenberg model for G = SO(3) and X = S2 

As a specific example, consider again the twisted Ising model 0\1 1\ = 51, sul.dlvlde,i Into 
N links LI , . .. ,LN, and let (H, h*(N» denote the external fields defined by the intenSity 
H and the link configurations h*(N) such that 

ht,(N) = ±I, ht, = ... = htN(N) = 1 

The partition function in the general formula (68) is clearly independent of the chOice of 
II, which can be arbilrary fixed at II = 1, say. The summation variable u in (68) will be 
denoted by (1 in the following calculation «(1 = ±1). Letting B = fJH, define 

Z:	 = L ell r:::.. r.+",8 1::':1 ". or, (69) 
F\·.. ·N=+I 

referring to the reduced untwisted model. and similarly, 

Z' L e" I:~I rlffB E::', " .", I	 ( 70) 
I ­­

,,···r,y=-I 

referring 10 the reduced twisled model. These expressions correspond to the sums over 
the link variables g, prior to summation over u (denoted here by (1) in formula (68), 
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for the untwisted and twisted models, respectively, with the external fields (H, h+(N)) 
and (H,h-(N», respectively (aJso, the constant term with coefficient K In (68) has been 
omitted). Then, the following recursion relations, written in matrix form, are readily 
verified. 

Z:(N») = (e"+.B e-"+.B) ( Z:(N - I) ) (71 )( Z:(N) e---·B e--·B Z.-·(N - I) 

Moreover, a direct calculation for N = 2 yields 

7Z:(2») _ (e7
_+ • 

B +e-7
- ) • 

( ZI-'(2) - 1+ e-7.B (72) 

The eigenvalues ~I and ~J of the matrix in (71) are identical with those occurnng In the 
evaluation of the partition function for the conventional (untwisted) closed Ising chain with 
an external field U ) Hence, one can evaluate Z~(N) by a straight forward diagonalization 
procedure, and the final result follows, i. e, 

Z.(N) = Z,+(N) + Z.-(N). (13) 

However, the explicit expression 80 obtained is rather complicated, and will be omitted 

1. COHOMOLOGICAL INTERPRETATION 

In the case where the space underlying the polytope « is a group manifold, or the group 
G is abelian, one may restrict the treatment to representations of the 1st homology group 
HI(K). Each representation 'R thus defines a cohomology class 'k E JlI(K; G). For the 
trivial representation, the above-mentioned link configurations {T} are exact I-cocycles, 
defining the trivial cohomology ChWl, while a nontrivial representation corresponds to the 
link configurations defining a specified nontrivial cohomology class. This IS analogous to 
abelian gauge theory, where the fields arising from globally defi ned gauge potentials are 
exael 2-cocycles over the (abelian) Lie algebra of G, while the closed inexact 2-cocycles are 
known as monopoles. Thus, the above construction may be regarded as an extension of 
the conventional spin configurations to those in cohomologically nontrivial soliton sectors. 

/( the underlying space polytope IKI is a manifold M, then, in the continuum limit, the 
configurations defined in §3 may be identified with smooth I-forms won M With values in 
the Lie algebra ~ of G, poaaibly nonabelian, and the path·ordered exponentials(f),(" of w 
computed around smooth loops with a fixed basepoint Xo are required to define a given 
representation R: 1I',(M) - G, i. e., 

.,.
 

small loops is equal to the identity element of G Note that these forms ware essentially 
different from the local connexion forms of gauge fields, which are not dOlied except fur Rat 
connexions, and need not be globally defined. However, If R IS the tnvlal representatlun, 
then the correspondence 

x - g(x) = Pexp( f w}, l ifl)
le. 

where C. denotes an arbitrary path from Xo to x, uniquely defines a mapping frum M tu 
G, and then W IS merely the pullback with respect to this mapping of the Maurer-Cartall 
form on G (i. e., a globally defined pure gauge potential) 

Assuming that M is equipped with a pseudorlemanman metrl", the mvst plausllol.. 
candidate for the Hamiltonian in this case appears to be the usual 

1f(W) = J 1Tr(w, " ow,) (16)
M 

where w, is the image of w under the Lie algebra homomorphism Induced by the reI" 
resentation p of G, and Ow denotes the Hodge dual,I'1 although numerous variants ,m' 

conceivable. 
When G = U(l), so that Y = iR, the forms w may be identified with real-valued 

forms (wli). and if p is the identity representation G - G, then a variation of the above 
Hamiltonian (i. e, action) within a fixed cohomology class n, that is 

w - w + 6w = w + idf (77) 

where f is an arbitrary locally defined real function, conblned with an application of Stokes' 
theorem, immediately yields the equation 

dow = ~W = o. (Ill) 

Hence, the minimal energy configuration in each sohton sector (i e, cohumology class) 
n is just the unique harmonic l.form in {l In the dIscrete toroidal lattice version, the 
corresponding conclusion is obvious from symmetry considerations. 

In analogy with the proof of the Proposition in §5, for each w E 00, the space of \/­
valued I-forms w associated with the trivial representation 'R o of IfI(M) In G, one olotallls 
a continuous Spill field on M by the assignment 

x - ",.. (x) == Pexp( I w)Ug, (7~)le. 
where Uo is a fixed spin In G/H and C. denotes an arbitrary path from Xg to x. ThiS 
presumably exhibits 0 0 as a principal fibre bundle, now infinite-dimensional, over the 
space 

Pexp(t w) = R(IC)) , (74) 

where IC) denotes the element of 1l'1(M) represented by C. In particular, every such form 
0)0 = {Io? E (G/H)M I <p(Xo) = uo}, (80) 

WI is closed in the sense that the path-ordered exponential of w around any sufficiently 
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where all usual (G/H)M denotes the totality of smooth spin fields {.p(x) E G/H I x E 
M) . However, a rigorous proof of this assertion, general iSing the proof of Ihe aforesaid 
proposition, would appear to present some nontrivial technical dIfficulties. 

If the representation 1l is nontrivial, then let OR denote the space of smooth i/- valued 
I·forms on M associated with 1l, and let Mil denote the regular covering space'O) of M 
corresponding to the kernel i of 1l. Then, any IN E OR IIfla under the pullback of the 
covering map to a I-form';' associated with the trivial representation of 1I'1(M R ) ~ W, and 
win turn defines a spin configuration on Mil all described above. In Ihis manner, OR can 
be described all a principal fibre bundle over a certain subspace of the spin configuration 
space 

+0 = {~E (G/H)NlI l.p(xo) =uo},	 (81) 

where Xu is an arbitrary bue point in MR. Since the covering map is a local homeo­
morphism, locally defined Hamiltonians for the spin configurations on M can be lifted to 
MRand then from +0 to Oil; however, the calculation of partition functions using such 
Hamiltonians may involve technical complications if MR is noncom pact. 

In the I-dimensional case, i.e., M =5', a probability measure, the continuum analogue 
of a Haar product measure, caft be rigorously constructed on the space fie of continuous 
forms IN of the above mentioned type. Details will be deferred to a subsequent paper 

8. OPEN PROBLEMS 

Problems arising in connection with extensions of conventional lattice model theory in 
the foregoing context include the folloWing. 

I. Explicit calculations of magnetization and susceptibility 

2.	 Establishment of correlation inequalities 

3.	 Derivation of low- and high-temperature expansions 

4.	 Formulation of duality in two dimensions 

5.	 Application of the conventional concepts of mean field approximation and renorma.l· 
isation group (i. e., Kadanoft' transformations, etc.) to twisted models 

6.	 Rigorous construction of continuum limits 

7.	 Adaptation of the above constructions to quantum models, e. g., the quantum Heisen­
berg model 

8.	 Definition of interactions with gauge fields 
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9. Creation of efficient algorithms for Monte Carlo computation 

9. CONCLUSION 

Finally, a few quasiphilosophical comments may be in order 
In the IIlerature concerning conventional Ising and related lattice field models, one sees 

frequent references 10 lallices "wrapped on a torus", etc However, thiS phrase merel~ 
indicates periodic boundary conditions, which only mvolvt> Ihe topol<lgy of the I-skelelon. 
and the presence of the 2.cells of the lorus IS Irrelevanl. any or all of the 2-cells 101 

"plaqueUes") could be removed without any effect upon the model On the other hand, 
such topological changes would radically atrect the twisted models defined above Thus, 
the present formulation, unlike the conventional one, relates the spin configuratlol\s to tht> 

2-dimensional topology of the ambient space. llll 
The models discussed above have b~n introduced in the spirit expounded by Baxter , 

i e., that any solvable or potentially solvable lattice models are worth inveshgatmg As 
pointed out in §6, the present constructions are essentially 01 a soli Ion type, and as such 
their introduction requires no more or less justification than the Introduction of Dirac or 
non abelian monopoles, etc., the physical existence or Importance of which stIll remains to 

be established. 
In view of the fad that, for nonabelian groups, the configurations introduced above 

constitute fibre bundles over the conventional configuration spaces, as tndicated In the 
Proposition 01 §5, they could be regarded as more lundamental entities than the latter 
just as spinor bundles are of a more basic character than tensor bundles. Of course 
the ultimate justification for this view in the present cue could only come from futurj 

experimental evidence.
In any event, the material discullSed in the present papt>r merely sets the stage fo 

detailed numerical computations as well as more interesting examples tn two or high" 

dimensions. These will be pursued in subsequent papers. 
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Appendix L
 

The proposition in §5 is proved as foUows,
 
Using the notiltion introduced in §5, define a product gog' in GT by the rule
 

(g 0 g')L ;: 9L91(LI9£9;.\) , 

where the product on the right-hilnd side is calculilted in G, Note the identities 

(g 0 g'),(Ll ;: 9~(L)9~(L) 

ilnd 

(g 0 g')l<Ll ;: 91(L)9;(L) 

where ilgain, III eilch case, the product on the right-hand side is calculated in G, One 
Ciln readily verify that GT becomes a Lie group with respect to the product gog' and the 
cilrtesiiln product topology, and tht H7 form il Lie subgroup of GT Note thilt, in the 

case where T consists of just two links, this group is merely the usul semi-direct product 
of two copies of H with respect to inner automorphisms, 

For each g e G7, define iln element "'. E <to by the rule .".(x);: 91(L)Uo, where 6(L) 
is il minimal path in T from Xo to x if x ~ Xo, and ",.(xo) = Uo, Cleilrly, the milpping P' 
G7 -+ ~o defined by I'g = "'. i••urjective, Moreover, for ilny point x E KOilnd h e HT

• 

("'.oh)(Z) = (goh)~(LluO = Igl(L1h,(L))uo ;: g'IL)UO ;: .".(z) 

Hence, the projection I' is conltllJlt on the left cosets of HT in GT. Furthermore. if pg = pg', 

i.e., "'. ="'t, then, for all links LET, g'(LlUo = g~(L)Uo, hence gilL) = 9~(L)hL for some 
element hL E H. Define hi inductively by hi =hL for I '}(L) I;: 1, ilnd hi ;: hLlh~(L)-' 
for I '}(L) I> I. Then, 

h~(L) = h£h~L) = hLlh~IL)rlh~(L) = hL, 

hence, 

91(L) = g~(Llh~(L) = (g' 0 h'),IL I 

for all L, therefore, gL = (g'oh')L for all L, and g =g'oh'. Since h E H 7 , we can 
conclude that each fibre p-1", conatitutes exactly one left coset in G7 IHT. Therefore, <to 
can be identified with the left coaet space GTIHT, in pilrticular, GT is a principal fibre 
bundle over ~o, with the Lie group HT as fibre.(I1) Clearly, if G ia locally compact, then 
the Haar meuure J1 on GT, considered as a direct product of groups GL =G (L E T), 
is aIao invariant under the multiplica.tion (g,t) ..... gog', llJld therefore J1 also constitutes 
the unique Hur meuure on the group GT with respect to the product gog'. Furthermore, 
the left coset corresponding to the element {g~(L).pg I LET} in cto is mapped under 

left multiplication by h' e GT into the element {9~IL)91(L)¢O I LET}, ilnd the usual 
measure on ct , considered as a cartesiiln product of coset spaces lG/H)L, LET, IS o
obviously invilnant under this mapping, This demonstrates the assertion concernlllg the 

local product measure in the proposition 

Appendix 2 
Let G be il compilct Lie group, let I E L1(G), and let le~ denote the fPW coeffiCient 

of I corresponding to the normalized (ij)-th miltnx element ~~(9) of the irreducible rep­

resentiltion D(» of G If 1,9 e L1(G), then the FP\V coefficients of the wnvl>\util>n IO!J 

can be calculilted as follows, 

I·'c~ ;: / dh~:j O(h) / dg/(9)9(hg-
l 

) 

l= / d91(9) / dh~ij O(h) L 'c:'4>i.(hg- )..') 

= / dgl(g) / dM:j O(h) E 'e~'~~ ..(h)~::',(g-I) 
, '.')." 

L 'e:'/ d91(9)~rlft°(9) / dh~:j O(h)~.Ift(h)= .,../ .... 
~ 'e"" le'•

Ift 6 ,,,, 6· = ~ £..,,,'e" Ie"II= L- IJ,'''' 

".I,m I 

Now, if G = 50(3), pilrilmetrized by the Euler angles l~, 8,1/') (frequently referred tl> 
as (a,p,'}», then, in the special case where 1(8) is a function of 8 alone, the coefficients 

le~ are zero unless i = j = 0, and the expilnsion of 1(8) becomes II. 

00 

I( 8) = E e,1>,(cos 8) , 
'=0 

where 
e, == era = I-(21 + I) I.' I( 8)P,( cos 8) sin 8d8 

2 0 

Applying the above result to the convolution on the RHS of (53), we observe tha.t the 
indicated recursion is equivalent to successive multiplication by the FPW coeffiCient (I of 
the function 1(8) = e"'·o'. The H&iLr measure dg. of equiltion (53), expressed III terms 

of the Euler angles is 

/.1. /.1. /.'
dg,;: 0 dt/l. 0 d.". 0 d8, sin 8,. / 
Substituting this and 1(8) = e"c." into the above equation, one obtains 

1/1I I'cr = -(21+1)1 /1 I.' e"c··'P,(cos8)sin8d8 = _(21+1) l'l(1o'),
2 0 2 
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where A(II) is given by equation (55). Thus, one dbtains equation (54).	 5 JB Kogut Rev Mod Phys. 51(1979). 

6.	 W. Miller Symmetry Groups and Their Apphcatlons (AcademIc, 1971) 
Substituting Z", of equation (53) into equation (57), and using the G·invariance of the 

Haar measure and the inner product, one obtains 

7.	 LS Schulman Techniques and Applications of Path 1"legratlo" (WIley, \981) 

8	 J. D Dollard and C N Friedman: Product Intt'gratlllll (Addlsllll.\\'t'sley, 1979) Z",(h) = fa d41 iI dg,e" r:~..(•.•o••ol 

'EO m:-N 1.='-'"'' i=", 
9.	 D. Bleecker Gauge Theory and Variational Pnciples (AddIson-Wesley, 1981) 

= fa dk £. , iI dg:e" r:::, (,:tuo,tuo) 
'EO ,n.•,. ,,="1 ;=",	 10. Seifert-Threlfall Lehrbuch der Topologie (Teubner, 1934) 

11. RJ. Baxter Exactly Solved Models in Statistical Mechanics (Academic. 1982) = fa d4 £. , iI dg:e" r:::, (.:u,U) 
tEO ,n.•,. •.="1 ;=", 

12 N. Steenrod The Topology of Fiber Bundles (Princeton, 1951) 
= ( die 1 iI dg.e" r:~.,(I,I,H 

I'EO Ill:.",:"'-''''I;:", 13 M. Hamermesh Group Theory (Addison- Wesley. 1979) 

= ( die 1 iI dg,e" r:~., '00', 
ItEO Ill:.,.':.'-''''I;:", 

where, since the k integration ranges over all Go the initial vector Uo has for convenience 
been set equal to i. and again, 'i denotes the second Euler angle in the customary 
parametrization of 50(3). Having evaluated t"" we must next evaluate the integral in 
equation (57). Expressing the Haar measure dk in terms of the a.ngle r and the axis 0 of 
the rotation,IUI the partition function can be expressed as follows. 

fa i(UA:- 1
) = 2fa i(cOl'..... .)(1 - cosr.)dr.dO. 

where dO. = sin ododl1, and 0,11 are the polar coordlRate angles. Expressing cos (J in 
terms of rand 0, (i. e., in terms of 0, 11, and r), one obtains equation (59). Substituting 
equations (54) and (59) into the above equation, we finally obtain equation (58) for the 
partition function. 
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