~ > IMPERIAL/TP/92-93/27

Topological Variants of Lattice Field Models
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The conventional Ising model is generalised 80 as to introduce a topological frus-
tration for both ferromagnetic and antiferromagnetic cases. This generalisation
is extended to a broad class of lattice field models, including the conventional
XY model and classical Heisenberg model as special cases. Twisted external
fields are also introduced in a manner symmetrical with respect to the intrinsic
fields. The partition function and the two-point correlation function are explic-
itly determined for several vareties of twisted 1-dimensional chains with zero
external field. Cohomological and fibre bundle interpretations are discussed.

PACS numbers: 05.50.4p,12.40.Ee, 75.10.Hk,02.40.+m

1. INTRODUCTION

With a view to certain topological generalisations, we first reformulate the conventional
Ising model in the following manner. Consider any lattice formed by the 1-dimensional
skeleton of a polyhedral subdivision (triangular, cubical or otherwise) of any conected
polytope K, which will generally (but not necessarily) be a closed manifold. Fix an arbitrary
lattice point xo, and assign a number 7(L) = %1 in Z; to each unoriented I-simplex (link)
Lin th« lattice. In addition, choose anumbere = % 1. Any such choice (o, 7(L) | L € K"}
will be referred to as a configuration. To any closed polygonal curve C based at the point
Xo, assign the ordered product r(C) of the numbers r(L;) corresponding to the successive
links L; of the curve:

(0) = (L) (1)

;

We now subject the possible configurations 7 to the constraint which requires that the
correspondence

Cc — 1(C)
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determines some fixed representation R of the fundamental group ry(K)in the group Z; In
particular, this implies that each configuration satisfies the local commutativity condition
1. e, the product of the link value 7(L) around the boundary of any 2-cell (or "plaquett”)
1s equal to |

Further, tet T(I,R) denote the set of all hink functions r(L) satisfving the above
condition. Then we define the Hamiltoman of a configuration r € I'(IKK. K) by the
formula

7'((7,0)=—J§:r. (’-’)

where J is 2 real constant Thus, the Hamiltoman is independent of the variable ¢
Consider first the case where the representation chosen 1s the tnivial representation

l’|(K) — 1

Then, the model is equivalent to the conventional Ising model with zero external field
‘This is readily seen from the identification

r(Ly) = o0, | (3)

where ¢, and o, denote the spin variables assigned 10 the endpoints x, and x, of the hnk
L,,. The variable ¢ in the configuration (7, ¢) could be identified with the direction of the
spin at one arbitrarily fixed lattice point.

As anillustration, considered a subdivision of the circle S' into N segments L), L., . Ly
The fundamental group »,(S') has two representations in Zy. For the tnvial reprosenta.
tion, as already observed, the resulting model is equivaleat to the 1-dimensional closed Ising
chain. In this case, the configurations are sequences of numbers 7y, r;, v (n = 1)
subject to the constraint

Hr,-:l . )

However, for the nontrivial representation, the resulting model 13 not equivaleat to con-
ventional closed Ising chain, the cunstraint being

Hr. = -1 . (5)

The Hamiltonian assumes the same form in both cases, and involves only uncoupled van-
ables. T'hus, in the present formulation, the Hamiltonian is free of explicit interactions, and
all the dynamics has been included in the constraints. Moreover, the twofold degeneracy
associated with the up-down symmetry has been isolated in the variable #. In the case
of zero external field, the effect of this variable is simply to double the partition function,
and in fact one may disregard o in all the easuing zero field calculations. The result of
eliminating ¢ from the model will be referred to as the reduced model, and the associated
partition function will be distinguished by the superscript r.



2. SOLUTION OF THE TWISTED ISING CHAIN PROB-
LEM

The above-mentioned problem corresponding to the nontrivial representation of x,($'),
which we shall refer to as the twisted chain problem, may be physically visuahized as follows.
Consider a long, narrow Mobius band, divided into a sequence of N small rectangles
71,73, ....7xn. In each rectangle, choose an orientation which may also be regarded as a spin
vector perpendicularly directed toward one or the other side of the band, and to each pair of
successive rectangles r,, 7,4, assign a number 7, equal to 1 according as the orientations
of this pair of rectangles are coherent or incoherent.

The partition function can be determined by the following recursion process, utilizing
the known solution of the conventional I-dimensional Ising chain. Denote the partition
functions of the conventional (untwisted} and twisted chains of length N by Z,(N) and
Z,(N), tespectively. Then, by summing over the first variable, one obtains the following
recursion refation for the reduced functions,

ZI(N)Y = eMZIIN=-1) + e ZIN-Y) (6)

where, as mentioned above, Z] = Z,/2. This relation is readily solved, yielding the result

ZiN) = 3 [(2eoh(BN)" = (2unb(BIY | (1)

One can easily verify that free energy per spin in the thermodynamic limit is identical
with that of the conventional untwisted lsing chain (closed or open), as might have been
expected.

The following transfer matrix form of the recursion relation is interesting in that one
can thereby simultaneously calculate the partition function for the twisted and untwisted

Ising chains.
ZHNYY _ [ e M ZI{N-1) 8
zzNy ) S e o ) Zziv - 8
The two-point correlation function is defined for r < N/2 by
< Toidr >4 = < TiTigl " Tigr >y (9)

which is consistent with the conventional definition for the untwisted case, since

K Oibigr 2u T < O0ig10i410is2 *** Oigr-10igr 24 = < TiTig) ** * Tigr=1 >y (10)

and can be similarly determined by the following recursion,

ZI(N)<n, > (N) = #Z](N-1) <1 >((N~1)
~eMZIN-1) <, > (N=1) (11)
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or by the same transfer matrix procedure as the above equation (8),
ZHN)Y <, >0 Y L Y Z;/(N-r) (12)
ZINY <, >y ]~ |\ —e?) & ZLN - r) -
with the result

[tanh(dJ)]" - {tanh(dJ)¥ "
1 ~ [tanh(dJ)¥
Notice that for odd NV, the twisted ferromagnetic chain with coupling constant J 18 iso-
morphic to the untwisted antiferromagnetic chain with coupling constant —J, in the sense
that the transformation 1; — —r, defines a bijection of configurations which preserves the
Hamiltonian. In particular, these two models have the same partition function However,
the models are not equivalent, since the two-point correlation functions are all positive for
the twisted ferromagnetic chain but alternate in sign for the untwisted antiferromagnetic
chain." Similarly, the twisted antiferromagnetic chain is isomorphic although not equiv-
alent to that of the untwisted ferromagnetic chain. However, this is not true for even N
In both the odd and even cases, the ground state of the ferromagnetic twisted chain 1s
2N-fold degenerate (simply N-fold degenerate in the reduced model}, whereas for even
N the ground state of the antiferromagnetic untwisted chain is degenerate of order 2 (or

nondegenerate in the reduced version).

Although a rigorous proof will not be attempted in the present paper, it is intuitively
clear that the partition function for the 2-dimensional Ising model twisted in, say, one
direction, can be obtained by using antiferromagnetic couphng constants and an odd num-
ber (2M +1) of spins in the twisted direction, then analytically continmng the domam of
definition of the resulting partition function Z3ar4,, to even integers 2M, and sumiarly for
twisting in both directions. The expressions required, may be found, e g, sn the treatise
of McCoy and Wu @

Although the Mibius band has been mentioned above for purposes of graphic illustra-
tion, the case in point was essenbially a circle, and not a Mabius band. The present twisting
construction is applicable to a lattice of completely arbitrary form on any compact poly-
tope, orientable or not. For example, the fundamental group of the 2-dimentional torus 1s
Z x Z, while that of the Klein bottle 18 Z x Z;. In both cases, there are three essentially
different representations of the fundamental group into Zy, t. e, trivial, twisted i one
direction, and twisted in both directions. Thus, considenng both the ferromagnetic and
antiferromagnetic cases, one obtains a total of six essentially different Ising-type models
on each of these two manifolds.

For 1-dimensional models, the only possible finite critical temperature is presumably
zero, and hence consideration of the zero-temperature continuum limits of the above models
could serve to display their topological differences independently of the finite length N
This can be achieved, for example, by applying the following renormalization procedure 1o
the correlation functions.

First, define

(13)

<7, >|(N)=

e, f) = lim [tanh(BN tanh =1 VN )N (1)
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where 0 < @ < 1and 0 < B < oo. This function possesses the following properties.
First, forai N > 1/8,

[tanh(BN tanh~' oM > [tanh(tanh™' a/M)|¥ = @ (15)

Hence, 1 > v(a,8) > a > 0. Moreover, 7(a,f) is clearly monotonic increasing with
respect to both o and 3.

For purposes of comparison, we first indicate the results for the conventional (untwisted)
cases.

1). Closed ferromagnetic chain
Consider a closed ferromagnetic Ising chain with NV spins and coupling constant J. As
is well known, the 2-point correlation is given by

{tanh(B)) + [tanh(BJ)V "
1 + [tanh(BI)V

Now, choose any number a with 0 < a < 1, allow N and r to approach at a fixed ratio,
r= sN, (0 < s <1/2), and let

<004y > =

(16)

J = Jy = Nuanh (V) (17)

Hence, if we define p(a,B,s) as the limiting value of the 2-point correlation function,
then/par

(o, 8)) + [v(a,B8))'*
1+ v(a,8)

vcr(a,f0,8) = (18)

2). Open ferromagnetic chain
For the open ferromagnetic lsing chain, the 2-point correlation function is given by

< 0i0 > = [tanh(BJ)) (19)

and the corresponding limiting process gives

vor(a,f,9) = [v(a,B) (20)
3). Twisted ferromagnetic chain

Applying the same limiting process to the 2-point correlation of the twisted ferromag-
netic chain given by formula (13) above for r < N/2, one obtains

I oy CN)) i 1 CY))
Wr(ar ﬂs”) 1- 1(0,ﬂ) (21)
In the foregoing formulae, the subscripts CF, OF, and TF indicate closed ferromagnet, open
ferromagnet, and twisted ferromagnet respectively. Notice that the twisted ferromagnetic
chain provides a well-defined and finite limit in contrast with the untwisted antiferromag-

netic case, where the limit is undefined.

3. GENERALIZATIONS

The preceding construction can be generalised to an arbitrary matnx group G, and
matrix representation p of G, subject only to the restriction that R (Tr p(g)) = R (Tr
p(g™")) for any g € G. The assignment of an element g; in G to each oriented link L in the
1-skeleton K' of the polytope K under consideration, in such a manner that the inverse
element (g,)" is assigned to the reversed link L~!, is required to define a representation

R:x(K) — G

in precisely the same manner as described above for the special case G = Z;
Similarly, the Hamiltonian of a configuration is defined by

~Jx ¥ R(Tralge)) (22)
ol hnks LeK!

where the orientations of the links in the sum are arbitrary chosen. For example, choosing
G = U(1), and R as the trivial representation, one obtains the reduced XY model
Again, by reduced, we mean that the global symmetry (or degeneracy) has been factored
out. This degeneracy could be restored by simply adjoining one varible ¢ € S' (analogous
to the above-mentioned o6 € Z;), which does not enter into the Hanultonian, thereby
recovering the conventional (unreduced) XY model. Thus, if the polytope K is defined by
a subdivision of the circle S!, one obtains, corresponding to the totality of representations
of the cyclic group :

R . m(K) =2 2 — U1) (23)

a continuum of twisted XY models labelled by the angular parameter 8,0 < 6 < 2r
Letting Zr(#,J) denote the partition function associated with the representation R of
#1(K) in G, one can also define a holocyclic partition function Z(8, J,G) by summing (or
integrating) the twisted partition function corresponding to all possible representations R,
i e, .
284G = ¥ ZzZe(B.J) (24)
Rir, (K)—0
Thus, the holocyclic partition function embraces all possible link configurations satisfy-
ing the local commutativity condition, i. e., such that the ordered product of the hink
vanables around the boundary of any 2-cell is equal to the identity element of G. If K
is 1-dimensional, this merely amounts to eliminating all couplings, resulting in a trivial
product of sums over individual link variables. In the case of the aforementioned Ising

models,
2(N) =27 + 27 = [2cosh(8J)" (25)

i. e, the effect of the summation is to eliminate all but the maximum eigenvalue of the
transfer operator. Moreover, this is also true for the XY model on s', as follows immediately
by integration of formula (39) below with respect to A. That s, in these cases, the maximum
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value of the transfer operator is associated with the trivial character of the group G. At
present, the author does not know whether this is merely a curious coincidence or is true
in some more general context.

4. CIRCULAR MODELS

In this section, the model defined in the preceding section will be specialized to the
case where the polytope K is a circle and the twisted partition function will be explicitly
evaluated for G = U(1) and p(g) = g as well as G = SU(2) and p the spin 1 representation.

First, consider a circle divided into n segments, and assign link variables ¢y, g3, * -, ga
(9; € G) to the succcessive segments. These link variables g, are subject to the constraint

]
Mo = ovonreo = 1 (26)
=N

for some fixed h € G, which uniquely determines the representation R, of 7, (S') = 2
defined by Ru(a) = A, where a is a generator of x)(S'). Now, define 2 Hamiltonian by

N
H(N,p) = =JY Rx,(9.) (27)
ix}

where x,(g) = Trpo(g) is the trace of the representation pof the group G. Letting v = gJ,
the partition function is then

Zn(k) = /(ﬂ:_,, il dgn -+ -dgye* E.”_, Ry, lg.) (28)

and by integrating over the Nth vanable, one obtains the following recursion formula,

Zu(h) = [ dgnerZy_\(g5'h). (29)

The expression on the right-hand side is a convolution. Moreover, siiice Zn(h) obviously
depends only upon the conjugacy class of h, the Peter-Weyl theorem as applied to the
present case provides a generalized Fourier expansion in terms of the irreducible characters
x;{g), and one obtains

GN) = | [ x3(@)exeDdglle;(N - 15" (30)

where ¢; is the jth Fourier component of the partition function Zy, and d, is the dimension
of p. Hence, by induction,

GN) = ([ xjloer gl ;™. 31

7

In the spetial case where the trace of every imeducible character \,{g) 15 real {e g, G =
SU(2)), this Fourier component ¢; can be expressed as follows

¢, = d,"/\';(g)e“"'"’dg = 2%/\:(9)\:(9)49 {32)
Therefore, -
GIN) = MY Snn @@ @ )" (33)
a=0

where n copies of p appear in the tensor product in the nth term, and n,(p, ® @ -- - ® »)
denotes the number of times the singlet representation occurs in the Clebsch-Gordan de-
composition of p; @ p @ -+ @ p . Hence, we obtain the partition function for the circular
model with respect to an arbitrary compact Lie group in the form

Z4(h) = ToMxh) = Tl xjla)e el e;", (34)
j J
and, in particular, if all the irreducible characters are real, then
Zhh) = Y e(Nxyh) = Yl E%n.(w@p@m@p)}”\,(h) (35)
7 5 e ™

However, the above formulae are not necessarily the most convenient ones for specific
calculations.

As an example, consider first G = U(1). In this case, the partition function currespond-
ing to the above equation (28) is,

Zn(h) = / . don 4 LT conn (36)

S e=h) 27 x
where ¢, = 8,4y — 0, may be regarded as the angular difference between two successive
spins in the X-Y plain. Clearly, for the trivial representation A = 0, one obtamns the

partition function for the conventional XY model in reduced form, i e, divided by a
factor of 2x. The recursion formula is

4
zu(h) = [ e Zualh - on) (a7)
Hence, the j-th Fourier coefficient is
¢(N) = (W)Y (38)

where I; is the Bessel function of imaginary argument. Writing the Fourier expansion, one
obtains the partition function for the twisted XY model as follows

Zn(h) = 3 (W)Neon, (39)

j=—~00
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Thus, the twisted partition function is essentially the generating function for the Nth
powers of the Bessel function. In the thermodynamic limit, the effect of the non-trivial
representation (i. e, k # 0) will clearly disappear since Iy > [, forallk # 0.

The two-point correlation function®® for this model can also be calculated in exactly
the same manner, with the result

Culrh) = 55 (LM (40)

j=~o0

where Cy is defined by
Cnfr, K) = Zy(h) < T A LY 2, (41)

and r € N/2is the distance between the two spins.
Next, consider G = SU(2). The character of the spin 1 representation is

X(8) = 1+ 2cos(r) (42)

where 7 is the angle of rotation, and in general the spin j character x;(9) is given by®

J inl(s + 1
o = 3 e = e )
mu~y 3

where j = 0, %, 1, *}, -+-. Substituting these results into the above equation (34), one
obtains

_ e LA N sin{(j + 4)r]
Zn(h,) = ,'.o,nzlz,n,-u“—”"’lm:-,‘""(zu)l (—;'Jg‘)z—")} (44)

where I,(z) is defined by

Pn(z) = 21_1 /:' ercottimt g (45)

and coincides with the Bessel function [,,(z) for integral m.

5. ALTERNATIVE HAMILTONIANS

The preceding constractions include the conventional Ising and XY models as special
cases, but not include the claasical Heisenberg model. To obtain a generalization of ihe
latter, the definition of the Hamiltonian must be modified as follows.

Let K be a connected polytope, fix a vertex x, as base point, choose a maximal tree™)
T in the L-skeleton K' of K, and regard T as a set of links L, oriented from the root xg

toward the tips of 7. S C 7, let | S| denote the cardinahty (number of Links) of S
For L € T, define
8Ly = Ly---La, Ln = L

as the unique minimal path from xo which includes L, and
T(L) =Ly Lany

(or the trivial path at x5 ifn =1),i e, §(L) = (L)L
Next, let G be a Lie group, let G7 denote totality of mappings from 7 to G, e, the
set of all configulations g = {g, /L€ T)andforg € G7 L € T, define

98y = JLa 9L

Iy = Jr. 9L
where the L; are related to La as indicated above, and gy(1) is the identity element of G if
n=1
Let H be a Lie subgroup of G, let G/H denote the left coset space, and let (G /H)** be
the set of all configulations {(x) € G/H | x € K}, where K® denotes the O-skeleton (1 ¢,
vertex set) of K. Fix an element vy € G/H (e. g, ug = H) and define

® = {p€(G/H¥ |olx) = w) (46)

Proposition. G7 is a prircipal fiber bundle over &g, with a Lie group H7 as fiber I{ G is
compact, then HT is compact, moreover, the Haar measure on G7, considered as a direct
product of groups G, = G, L € 7T, is locally a product of the usual measure on &,,
considered as a cartesian product of coset spaces, and the Haar measure on the fiber H”

This proposition is proved in Appendix A 1.

Now, consider any link L which is not contained in the maximal tree, arbitranly choose
an orientation (x,x') of L, and extend the foregoing definition of ¥(L) and 6(L) in the
obvious manner by defining (L) = &(L), where §(L) is the minimal path in 7 from the
base point xo to the initial point x of L, and §(L) = +(L)L.

Next, given a representation R : 7o(K) — G, let G&' denote the totality of link
configuarations {9, | L € K'} defined on the entire 1-skeleton K' and associated with
the representation R as indicated in §3 above. Observe that any g € G X' is uniquely
determined by the restriction gj7, and conversely that any g € G7 uniquely determines an
element g € GY¥'. Hence, GY' can be identified with G7, and accordingly G¥' may be
regarded as a principal fiber bundle over ®, with a compact fiber if G is compact.

Next, given a representation R : m(K) —G, and assuming that G/H is equipped with
a G-invariant inner product, define a Hamiltonian on G’ by

Halg,us) = —J Y (9s0yto, xitrtio). (47
LeK!

In general, this model will depend upon the choice of the maximal tree 7 and the initial
spin up as well as the orientations of the links L € K'\7, although this dependence
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could be removed by averaging the partition function over all possible choice. However,
in the case where R is the tnivial representation R, one can readily verily that the above
Hamiltonian is already independent of the orientations of the links L € K'\7, and that

H’L(K:“o) = HHli(Pg)i (48)

where pg is the image of g under the bundle projection p : G7 — @, of the above
proposition, and Ny, is the Hamiltonian of the conventional classical Heisenberg type
model. Also, in this case, the partition function is clearly independent of the choice of
up. Since the measure on G¥, is locally a product of the conventional measure on $¢ and
the fibre measure induced by the Haar measure on G7, the partition function defined by
Mz, (g, o) will coincide with that of the conventional Heisenberg type model, except for an
immaterial constant factor corresponding to the global symmetry involved in the choice of
the initial spin up. In particular, for the trivial representation Ry, the partition function
will also be independent of the choice of the maximal tree 7.

Note that the rather tedious construction given above is necessary only if G is non-
abelian. For abelian G, the procedure employed in §1 and §2 is sufficient to construct
models which include, €. g., the conventional Ising and X-Y models as special cases.

As a specific example, consider the twisted Heisenberg model on a circle S!, with
G = SO(J3) and G/H = S?, and a representation R, defined by an arbitrary element
h € S0(3), i e, Ra(a) = h, where o is a generator of 7,(S*) 2= Z. Subdivid S*
into N consecutive segments L;,---,Ly; in the present case, there exists essentially only
one maximal tree T, say, T = (L), --,Ln_;}, and the indeterminacy in the choice
of the orientation of Ly corresponds to replacement of the element h by A~', which in
the case of SO(3) is conjugate to A. Hence, if the partition [unction is averaged over the
conjugacy class of h, then the ambiguity corresponding to the orientation of Ly will also
be eliminated.

Applying the above construction, one obtains the partition function

N
Zn(h,u) = /dylv"‘dgnexp(" Y (gi-1 - g1%0, 90 - - o)} (49)
=]

where ug is the initial unit spin vector. Using the G-invaniance of the Haar measure and
the inner product, this can be rewnitten as

N
l¢§~d§~-| <+ dgyexp(v 3 (jiuo, uo)} (50)

Znlh,w) = /l“l e

where the new link vanable §;, is defined by

6 = 97 ggio 9 (s1)

Hence, one cbtains the recursion relation

Znlh,uo) = [ djyetthnvom) 2, (5-1p) (52)

1l

Mu = £ = (0,0,1) in cartesian coordinates, then (Jug,us) = (gz.2) = vcosd,
the cosine of the second Euler angle of § in the usual parametnzation of SO(3) Hence,
omitting the circumflex over g,

. N=1 Mot
Zuths) = fdgerote [ IT dg.eZimi oo (53)

:-N—l"’-'.l =1

Here again, the partition function Zx can be calculated by using the FPW (Founer-Peter-
Weyl) expansion, with the resuit

Inh) = TEO DA (54)
i
where
.o (=20 a0 200 = 28)!
PI(U) = ';0{(—]) m‘(—l) —Um—smhu

1-24-1 - ]
+%(e-_(_l)l—'he—-) Z (_l)( ( 2’)

A (R TR

) (55)

@ = (2 +1)?Picos 9), (56)
and & is the second Euler angle of A.

However, Zx is not invariant under conjugation of A, hence, in order to obtamn an
invariant partition function Zy, the above Zy must be integrated over the entire conjugacy
class of h,1. e,

Znlh) = / Znlkhk™, £)dk (57)
r¢G
Performing this integration, one obtains the partition function for the twisted }-dimentional

classical Heisenberg model as follows.

Zu(h,) = 20 ) {21+ 1)‘/’|%(21 + 1)) / Py(cos 8)(1 — cos 7y )sin adadr) (58)
]

where
cos® = 1 —sin a(l ~ cos 1y }(2 — sin®a)(} — cos Ta){) — cos7a) (59)

The explicit calculation of the foregoing results is given in Appendix 2.

Other Hamiltonians may naturally arise if noncompact groups G are considered. For
example, let G = R", considered as an ablian group with respect to vector addition. For
a link configuration {V | L € K'}, where ¥ € R", define a Hamiltonian by

H=JY IV (60)
L
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Again, consider a circle K = S', subdivided into N links, and the representation R
determined by a fixed ¥ € R®,i. e, R(a) = ¥, where a is a generator of n(S') = Z.
In this case, the recursion relation assumes the form

InT) = [ a2, (7 - ), (61)

hence, a straightforward application of the conventional Fourier transform in R" and an
induction yields the result

Zu(@) = (¥ GApe I, (62

already familiar from the theory of Brownian motion, ™ and (with a proper normalization)
representing the probability density, after N steps, of particles departing from the onigin

and exltlz:uting an unbiased random walk on a hypercubical lattice with spacing d =
(1/40)'12.

6. EXTERNAL MAGNETIC FIELDS

A twisted external magnetic field can be introduced by means of another configuration
h(L) € G, defined on the same polytope K and determining the same representation R of
71(K) as the foregoing set of configurations g;. Let x be any vertex in K, and let T denote
an arbitrary polygonal path from a fixed base point xo to x. Define

g(r) =9L.9L.., 9L, (63)
A(C) = Ae ke, - -hy, (64)

where Ly, Ly, ..., L, denote the successive links in the path . ‘Then, X;, the portion of the
Hamiltonian describing the interaction between the external field h and the spins g, can
be defined as

Mi(g,h,H) = —H 3 R(Tr[h(T,)g(T\))) (65)

E
where H represents the strength of the applied field, the sum extends over all vertices
{lattice points) x of K, and [, denotes any polygonal path from xy to x. By virtue of the

constraints imposed upon g and &, this definition is independent of the particular selection
of these paths. Thus, the partition function is given by

2’8, J K H) = Eexpﬁ[JER(Trg;) +K Y R(Trhy) + Hi(g,k, H)) (66)
’ L L

where the sum (or more precisely, in the case of a continuous group G, the integral) is
performed over all configurations g associated with the given representation R, with h

13

remaining fixed. The energy term corresponding to A alone has been introduced merely
to emphasize the complete symmetry between the roles of the spins and external fields
in the Hamiltonian. Thus, one could equally fix well g and sum over all configurations
k. The magnetization and susceplibility with respect to any external field configuration h
can then be defined in the conventional manner by differentiation with respect to the field
strength H.

The above model, although interesting per se, 1s reduced in the sense that the Zeeman
splitting effect on the global degeneracy is absent (hence the use of the superscnpt rin (65)
and (66)). This splitting may be recovered by the following modification Assume that
the group G acts upon the coset space X = G/H with a real G-invanant inner product
Introduce the auxiliary variables u , v € X, replace the interaction Hamiltoman (65) by

MHi(g,u;h,v; H) = ~H Y (9(Tx)u, h(T,)v) (67)

and extend the summation in the partition function (66) over both g and u, keeping both
hand v fixed, i e,

Z(8,J K. Hhv)=Y expBlJ Y R(TroL)+ K Y R(Trhy)+ Hy(g,u;h,v,H)| (68)
o L L

As a special case, if one chooses the trivial representation of x;(K), the tnvial external
field configuration A, = 1 (i. e, the identity of G), and v an arbitrary fixed element of
X, then one recovers the conventional XY model for G = U(1)and X = S’ and, the
conventional Ising model for G = Z;and X = §° =Z; If in addition, the first two
terms of the Hamiltonian in the above equation {68) are modified as indicated 1n §5, then
one recovers the conventional classical Heisenberg model for G = SO(3)and X = §?

As a specific example, consider again the twisted lsing model on K = §!, subdivided into
N links Ly,..., Ly, and let (H,h%#(N)) denote the external fields defined by the intensity
H and the link configurations A%(V) such that

hE(N) = %1, hE, = =hE(N) = L

The partition function in the general formula (68) is clearly independent of the choice of
v, which can be arbitrary fixed at v = 1, say. The summation vanable u in (68) will be
denoted by ¢ in the following calculation (¢ = x1). Letting B = AH, define

Z: = Z Q'Er-\ rto8 E:v-l reeh ) (69)

neern=+1

referring to the reduced untwisted model, and similarly,

720 = Y eTmteALiinen (70)

nery=-~l
referring to the reduced twisted model. These expressions correspond to the sums over
the link vanables g, prior to summation over u (denoted here by ¢) in formula (68),
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for the untwisted and twisted models, respectively, with the external fields (H,A*(N))
and (H,h~(N)), respectively (also, the constant term with coefficient K in (68) has been
omitted). Then, the following recursion relations, written in matrix form, are readily

verified.
z:(N) _ erteB  ,-vieB Z:(N - l) @ )
ZI(N) = ev*B gv-eb Z7(N -1
Moreover, a direct calculation for N = 2 yields
z:(?) B e?wnaﬁ + e-—?v ]
( z7°(2) ) = ( P (72)

The eigenvalues A; and Az of the matrix in (71) are identical with those occurring in the
evaluation of the partition function for the conventional (untwisted) closed Ising chain with
an external field.(*) Hence, one can evaluate Z!(N) by a straight forward diagonalization
procedure, and the final result follows, i. e,

Z(N) = ZMN) + Z0(N). (73)

However, the explicit expression 30 obtained is rather complicated, and will be omitted.

7. COHOMOLOGICAL INTERPRETATION

In the case where the space underlying the polytope K is a group manifold, or the group
G 18 abelian, one may restrict the treatment to representations of the Ist homology group
H;(K). Each representation R thus defines a cohomology class R € H'(K; G). For the
trivial representation, the above-mentioned link configurations {r} are exact 1-cocycles,
defining the trivial cohomology class, while a nontrivial representation corresponds 1o the
link configurations defining a specified nontnvial cohomology class This is analogous to
abelian gauge theory, where the fields arising from globally defined gauge potentials are
exact 2-cocycles over the (abelian) Lie algebra of G, while the closed inexact 2-cocycles are
known as monopoles. Thus, the above construction may be regarded as an extension of
the conventional spin configurations to those in cohomologically nontrivial soliton sectors.

If the underlying space polytope |K| is a manifold M, then, in the continuum limit, the
configurations defined in §3 may be identified with smooth I-forms w on M with values in
the Lie algebra ¢ of G, poesibly nonabelian, and the path-ordered exponentials™® of w
computed around smooth loops with a fixed basepoint x, are required to define a given
representation R: n;(M) — G, i. e,

Pexp( )( W) = RCH, (12)

where [C) denotes the element of x;(M) represented by C. In particular, every such form
w is closed in the sense that the path-ordered exponential of w around any sufficiently
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small loops is equal to the identity element of G. Note that these forms w are essentially
different from the local connexion forms of gauge fietds, which are not closed except for flat
connexions, and need not be globally defined. However, if R 1s the tnvial representation,
then the correspondence

x — g(x) = Pexp(/c ) (79)

where C, denotes an arbitrary path from xo 1o x, uniquely defines a mapping from M tu
G, and then w is merely the pullback with respect to this mapping of the Maurer-Cartan
form on G (i. e, a globally defined pure gauge potential).

Assuming that M is equipped with a pseudonemanman metne¢, the most plausible
candidate for the Hamiltonian in this case appears to be the usual

Mw) = J/MTr(u,Anw,) (76)

where w, is the image of w under the Lie algebra homomorphism induced by the rep-
resentation p of G, and sw denotes the Hodge dual,® although aumerous vanants are
conceivable.

When G = U(1),s0 that ¢ = (R, the lorms w may be identified with real-valued
forms (w/i), and if p is the identity representation G — G, then a vanation of the above
Hamiltonian (i e., action) within a fixed cohomology class €2, that is

w = wtbw = wtidf n
where fis an arbitrary locally defined real function, conbined with an application of Stokes'
theorem, immediately yields_z the equation

dew = Aw = 0. {78)

Hence, the minimal energy configuration in each soliton sector (i e, cohomology class)
€2 is just the unique harmonic 1-form in €. In the discrete torodal lattice version, the
corresponding conclusion is obvious from symmetry considerations.

In analogy with the proof of the Proposition in §5, for each w € {lo, the space of ¢-
valued 1-forms w associated with the trivial representation Rg of ;(M) in G, one obtains
a continuous spin field on M by the assignment

x - @Jx) = Pexp(/c w)ug, (79)

where ug is a fixed spin in G/H and C, denotes an arbitrary path from xy to x. Ths
presumably exhibits {lg as a principal fibre bundle, now infinite-dimensional, over the
space

& = {p€(G/HM]p(x) = w}, (80)
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where as usual (G/H)M denotes the totality of smooth spin fields {p(x) € G/H|x €
M} . However, a rigorous proof of this assertion, generalising the proof of the aforesaid
proposition, would appear to present some nontrivial technical difficulties.

I the representation R is nontrivial, then let {2z denote the space of smooth ¢- valued
I-forms on M associated with R, and let Mg denote the regular covering space'® of M
corresponding to the kernel # of R. Then, any w € flg lifts under the pullback of the
covering map to a 1-form & associated with the trivial representation of #,(Mp) = #, and
w in turn defines a spin configuration on Mz as described above. In this manner, 1z can

be described as a principal fibre bundle over a certain subspace of the spin configuration
space

b = {4 € (G | g(3) = u), (81)

where Xp i8 an arbitrary base point in Mg. Since the covering map is a local homeo
morphism, locally defined Hamiltonians for the spin configurations on M can be lifted to
Mz and then from &g to Qg; however, the calculation of partition functions using such
Hamiltonians may involve technical complications if Mg is noncompact.

In the 1-dimensional case, i.e., M = §!, a probability measure, the continuum analogue
of a Haar product measure, can be rigorously constructed on the space 2. of continuous
forms w of the above mentioned type. Details will be deferred to a subsequent paper.

8. OPEN PROBLEMS

Problems ansing in connection with extensions of conventional lattice model theory in
the foregoing context include the following.

1. Explicit calculations of magnetization and susceptibility
2. Establishment of correlation inequalities

3. Derivation of low- and high-temperature expansions

4. Formulation of duality in two dimensions

5. Application of the conventional concepts of mean field approximation and renormal-
isation group (i. e., Kadanoff transformations, etc.) to twisted models

6. Rigorous construction of continuum limits

7. Adaptation of the above constructions to quantum models, e. g., the quantum Heisen-
berg model

8. Definition of interactions with gauge fields
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9. Creation of efficient algorithma for Monte Carlo computation

9. CONCLUSION

) a few quasiphilosophical comments may be in order

fl:n!?\llyineralml conpcerning conventional Ising and related lattice field vmodels, one se«lzs
frequent references to lattices "wrapped on 2 torus”, etc However, this phrasekn;erey
indicates periodic boundary conditions, which only involve the topology of the l-s. e“emn.
and the presence of the 2-cells of the torus is irrelevant. any or all of the 2;0: (c;r
"plaquettes”) could be removed without any effect upon the model. On the;n er Tahn s,
such topological changes would radically affect the twisted modelg defined above ‘ ‘uh,
the present formulation, unlike the conventional one, relates the spin configurations to the
-di } logy of the ambient space.
: dl'll'n:: :::ifl::;i’stug;d above have been introduced in the spirit expoum?led bx Baxter!'?,
i e, that any solvable or potentially solvable lattice quodels are wprlh mveuugadtmg A:
pointed out in §6, the present constructions are aagnua.lly of a sphlon type, and as s}nc
their introduction requires no more or less justification than the mtrod.uctlon of Dllta.(. of
nonabelian monopoles, etc., the physical existence or importance of which still remains to
N Tl: “‘::;h2‘1(~ the fact that, for nonabelian groups, the configurations intrqduced »above
constitute fibre bundles over the conventional configuration spaces, as indicated in the
Proposition of §5, they could be regarded as more fundamental entities than tohfe fatter
just as spinor bundles are of a more basic character than lensor bundles. c;)utrse‘
the ultimate justification for this view in the present case could only come from futur

i vidence.

exp;:'::;t:]v:n:, the matenal discussed in the prgsem paper merely sets the staﬁe }:0
detailed numerical computations as well as more interesting examples in two or highe
dimensions. These will be pursued in subsequent papers.
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Appendix 1.
The proposition in §5 is proved as follows.
Using the notation introduced in §5, define a product gog’ in G7 by the rule

8°8)k = gLoLIgLIsy .

where the product on the right-hand side is calculated in G. Note the identities

(Bog)sy = 9snrdsy

and

Iv LI L)

il

(898" )yt

where again, in each case, the product on the right-hand side is calculated in G. One
can readily verify that G7 becomes a Lie group with respect to the product gog' and the
cartesian product topology, and that H7 form a Lie subgroup of G7. Note that, in the
case where T consists of just 1wo links, this group is merely the usual semi-direct product
of two copies of H with respect to inner automorphisms.

For each g € G7, define an element s € &0 by the rule gg(x) = gsyuo, where §(L)
18 a minimal path in 7 {rom xo to xif x # xq, and @y(xe) = up. Clearly, the mapping p:
G7 — &, defined by pg = ¢, is surjective. Moreover, for any point x € K®and h € HT,

(w|0h)(1) = (so h)J(L)uo = ISB(L)hJ(L)]'lo = gul)te = ‘P|(I)

Hence, the projection p is constant on the left cosets of H” in G7. Furthermore, if pg = pg',
ie, @y = g, then, foralllinks L €T, gyryuo = gj;) %, hence ggry = g5(g)he for some
element hy € H. Define A’ inductively by by = hgfor[ (L) |=1,and k) = he(hi )"
for | (L) | > 1. Then,

hiwy = hikyey = he(hyy) 'Ry = A,

hence,

s = Gk = (8 oh ey

for all L, therefore, g = (g'oh’)y for all L, and g = g'el’. Since h € HT, we can
conclude that each fibre p~!¢ constitutes exactly one left coset in G7 fHT. Therefore, ®o
can be identified with the left coset space G7/H7, in particular, G7 is a principal fibre
bundle over &, with the Lie group H7 as fibre.('? Clearly, if G is locally compact, then
the Haar measure z on G7, considered as a direct product of groups G, = G (L € T),
is also invariant under the multiplication (g,g') — gog’, and therefore g also constitutes
the unique Haar measure on the group G7 with respect to the product gog'. Furthermore,
the left coset corresponding to the element {gs)po | L € T} in o is mapped under
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left multiplication by h' € GT into the element {gj 950190 | L € T} an: the ¥uﬂ
measure on ®p, considered as a cartesian product of coset spaces (G/H)r, . € .hls
obviously invariant under this mapping. This demonstrates the assertion concermng the

local product measure in the proposition.

Appendix 2. W cosfirent
i L 1 € LAG), and let /c¥! denote the FPW coefficien
Let G be a compact Lie group, let f (G) e e reduaitle 1ep-

1 | i3) x element ¢
of f corresponding to the normalized (iJ)-th matnx e % .
resentation D™ of G. If f,g € L*G), then the FPW coefficients of the convolution f ey

can be calculated as follows.

1

I-gc:‘)

JEAU [ 4s1(9ths™)
[ dssto) [ arey ) T relleialhs™)

b

[dss(o) [ dboy k) T bimhls™)
, v klm

T 1 [ dgs()eiia) [ ke (ML)

v kim

)
M SN SR
i

1]

vwim

Now if G = SO(3), parametrized by the Euler angles (¢, 8, y) (frequently referrf:d to
as (a [3'1)) then, in the special case where /(8) is a function of 0(:lone, the coefficients
1¢9 are zero unless i = j = 0, and the expansion of f(é) becomes

J6) = 3 aPicosd).

=0

where

6= & = %(2l+l)/o'j(ﬂ)l’,(cosﬂ)sinﬂda

Applying the above result to the convolution on the RHS of (53), we observevthat t.hef
indicated recursion is equivalent to successive multiplication §y the FPW coerﬁcxgnl ¢ o
the function f(8) = e*<**’. The Haar measure dg; of equation (53), expressed in terms

of the Euler angles is
/dya = /:'dvr.f'dv.- [:dﬂ.sinﬂ

Substituting this and f(§) = <’ into the above equation, one obtains

r . 1 VD
a = %('H-&-l)mﬁ e’ P(cos§)sin§d0 = -2-(2l+l)/ Pv),
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where Py(v) is given by equation (55). Thus, one dbtains equation (54).
Substituting Zn of equation (53) into equation (57), and using the G-invariance of the
Haar measure and the inner product, one obtains

1
3 V}::_,(’."o."o)
) = | o /m‘ 1 di.e

S i P

! N
k do’ vz:l= (#;kvo,kuo)
/keo d /m‘ I dole 1

i =M oy

1
1y DN (glkkD)
j“o dk/l S igdg,c ’

+

/lea dk /m'

'
2

1
S l‘E:."-l cosl,
/‘ o ]( o R dje

where, since the k integration ranges over all G, the initial vector up has for convenience
been set equal to Z, and again, 6, denotes the second Euler angle in the customary
parametrization of SO(3). Having evaluated Zy, we must next evaluate the integral in
equation (57). Expressing the Haar measure dk in terms of the angle r and the axis € of
the rotation, " the partition function can be expressed as foliows.

i

\
11 do.e” PDipIT YR

=b-1h) oy

1]

/.Z-(k'lk-l) = 2/kZ‘(C0!0u|-l)(l — cos 1 )dry d(2y

where df}, = sinadodf, and a,§ are the polar coordinate angles. Expressing cos 8 in
terms of 7 and Q, (i. e., in terms of o, @, and 1), one obtains equation (59). Substituting
equations (54) and (59) into the above equation, we finally obtain equation (58) for the
partition function.
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