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Abstract 

We lise the lint"ar delta expansion with a trial action based on siu/!:le links to 
l'xplore tht" phase structure of the mixl'd 8U(2)-80(3) laUke gauge t.hcory. Tht" 
method can be regarded as a systematic expansion going beyond mean field theory 
or the variational method, to which it is closely related in first order. At 0(62

) the 
IiU(' of firMt.-ord.·r phIL.... trallsitions is shown to terminate, and at O( (t3) the hOlludarics 
lwtwt'Cn the different phRSes are wen reproduced. 

1. Introduction 

The linear delta expansion (LDE) is a promising new analytic approach to field theory 
[lJ which has been successfully applied to a variety of problems of a non-perturbative 
nature. In its basic construction, the LDE includes an arbitrary parameter). in the 
action. Physical quantities are evaluated by optimizing).. The LDE is a systematic 
expansion which enables one to go beyond the conventional variational method. 

The method consists in constructing an action 5. interpolating linearly between 
the action 5 of the theory and the action 50 of a soluble theory chosen to reflect as 
lIluch of the physics of 5 as possible. We have 

5. = 65 + >'(1 - 6)50 

= ).50 +6(5 - ).50 ). 

It is clear that 5.=0 = ).50• while 5.=1 = 5, independent of ). . The vacuum generating 
functional and the appropriate expectation values are then evaluated as truncated 
expansions in 6, which is then set equal to unity in the end. 

While the infinite sum is independent of )., the truncated expansion has a nontriv
ial dependence on ).. We must therefore choose the optimum value of ).. The principle 
of minimal sensitivity (PM8)(2) has been adopted as the optimization criterion which 
minimi7.es the dependence on ). of the result being calculated. If R,,-().) is the result 
truncated at order K, the criterion reads 

aRI< = o. 
7f>: 

Besides generating the non-perturbative character of the LDE, this optimization cri· 

terion produces a convergent sequence of approximants out of what would otherwise 

be an asymptotic or divergent series (see refs. (3) and (4] for a proof of the convergence 
of the LDE in low dimensions). 

With various choices of the trial action 50, the LDE has been applied to the 

calculation of the plaquette energy, Ep, of lattice gauge theories [5-7), with results in 

good agreement with Monte Carlo (MC) measurements both in the strong-coupling 

and weak-coupling regimes. 

Recently 181, we applied the LDE to the calculation of the plaquette energy of the 

SU(2) gauge theory on the lattice with a trial action based on single links, namely 

50 = JLtrUt 
t 

with J == ).. By applying the optimization criterion aEp/aJ = 0 to the plaquette 

('nergy Ep, calculated up to 0(63 
), we obtained results in very good agreement with 
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MC results. This success has encouraged us to apply the method to more complicated 

quantities and features. 

In this paper, we have applied the LDE to the study of the phase structure of the 
mixed SU(2)-SO(3) pure gauge theory on the lattice. Monte Carlo calculations 19-11J 
have revealed a rich phase structure for this system, with a line of first-order phase 
transitions ending at ~ critical point just before reaching the SU(2) axis. 

While the SU(2) system in the fundamental representation does not undergo a 
phase transition, the SO(3) system has a first order phase transition as it pa.')ses from 
the strong-coupling into the weak-coupling region. The non-decollfininl/; fin;t (lnkr 

plU\sf' transition" in the SO(3) and the mixed SU(2)-SO(3) pure gauge systc~1US hnvc 

bet'n ascribed to a condensation of 22 monopoles, as confirmed by MC 11l('asurements 

111-15]. The point ;3 ~ 2.2 where the specific heat of the fundamental SU(2) system 
develops a sharp peak has been interpreted as a remnant of the nearby critical end

point 19J in the SU(2)-SO(3) phase diagram. This conjecture has been confirmed (13J 
by an explicit MC measurement of the specific heat of the mixed system. 

Analytically, the system has been studied by a variety of techni(IUes. Zeroth-order 
mean field 116,17J and first-order variational [18J methods reveal the expected phase 

structure, but fail to produce the critical end-point observed in MC experiments; the 

line of first-order phase transitions crosses the fundamental SU(2) axis. Mean field 

with one-loop Gaussian corrections and gauge fixing (U, = 1 in a particular direction) 
119,20J as well as the mean-plaquette [21] and the strong-coupling expansion methods 

122J produce the desired end-point with varying degrees of accuracy. Rcnonuali:t:atioll

group techniques of the Migdal-Kadanoff type have also been applied 123] to produce 
a phase structure for the mixed SU(2)-SO(3) system in excellent agreement with MC 
measurements. 

In a study devoted to the investigation of the mechanism causing first.-order phase 

transitions in the mixed SU(N) lattice gauge systems, Dachas and Dashen [24] observed 
that in four dimensions, "the existence of non-trivial, non-degenerate minima of the 

one-plaquette action gives rise to a first-order phase transition and the critical end
point of the line of these first-order phase transitions occurs wherc the nOll-trivial local 

minima become unstable". We will return to this point in sectioll 3. 

The details of the model and the calculational framework arc expla.ined in section 

2. Section 3 contains the results of our calculations, which are displayed graphically in 

Figs. 1 -3. Our conclusions follow in section 4. In the course of this investigation we 

developed a new method of calculating the required expectation values with respect 

to the single-link trial action 50. This method, which makes the evaluation of highcr

order correlations much simpler, is prcsented in an appendix. 

2. The Model 

We consider a mixed fundamental-adjoint SU(2), i.e., SU(2)-SO(3) pure gauge theory 

on a four-dimensional hypercubic lattice with action 

1 
5 = fJ L:>r Up + 3.8AL trA Up (1) 

P P 

where tr (trA) denotes the trace in the fundamental (adjoint) representations of the 

SU(2) gauge group. fJ WA) is the coupling constant for the SU(2) (SO(3) system and 
UJ' is the usual product of group link elements around elementary pla(luettes of the 

lattice. 

This mixed system has three limits: 

(i) fJA = 0 - the usual Wilson SU(2) theory 

(ii) fJ = 0 - the action only depends on the adjoint representation corresponding to 

the standard Wilson SO(3) gauge theory 

(iii) fJA = 00 - all plaquette variables in the SO(3) gauge group are driven to the 

identity. Each plaquette variable in the SU(2) system must then lie in the centre 

of the gauge group, i.e. Up E ±1. Hence, up to a gauge transformation, all link 

variables belong to the centr(~ of the groupl9]. In this limit we thus ohtain a 2'l lattice 

gauge theory. Both SO(3) and 22 lattice gauge systems uudergo first-order phase 

transitions, and therefore we expect lines of first-order phase transitions to enter the 

mixed SU(2)-SO(3) system from the fJ = 0 and the.8A =00 axes. 

We use the following identity between the adjoint and fundamental representa
tions: 

trAU =(tr U)2 - 1 (2) 

All our calculations are then in terms of traces in the fundamental representation. 

In the continuum limit the SU(2) and SO(3) lattice actions are the same. The 
main difference between the two systems is t.hat SU(2) distinguishes between +U, - U, 
while 50(3) does not. To take account of this fact we introduce the Z2 (centre) degrees 
of freedom explicitly on each link f of the lattice and write 

U,-+UtOt, Up-+Upop. (3) 

where at = ±1 E 22 , ap = OtEP at. Therefore the model we adopt to study the 
phase structure of the mixed fundamental-adjoint SU(2) action is 

S = jj L tr (Upop) + ~fJA LI(tr upf - 1]. (4) 
p 3 p 

2 3 



For our trial action we choose a mixed single-link SU(2) and Z2 action given by 

(5)So = JLtr Ut +m L<1t. 
t t 

where J and m are arbitrary parameters, taken to be the same on all the links of 

the lattice. As illustrated in the appendix, we treat the SU(2) and the Z2 elements 
separately in evaluating the appropriate expectation values with respect to t.he trial 

action So. 

The linear interpolating action is then given by 

SII = So +0(5 - So). (6) 

The trial partition function is given by 

SO
Zo = f IIdUt II(~ L )e

t t lJf=:f:1 

= lj(J)INI[g(m)]Nf (7)• 

when> j(J) = Id2J)/J and g(m) = cosh m. Nt is the total number of links and 

I,.(r) is the modified Bf'Sst'l function of order r. The connected vacuum gpnerating 

functional is then evaluat,ed as an expansion in the parameter 6, i.e., 

Z = e- w = f II dUt II(~ L ) eSoeli(S-Sol 

t t lJf=:f:l 

=Zo < ell(S-So) >0 . (8) 

lV is the frf"f' energy of the system, and the expectation value of a variable X 

w.r.t. So is defined as 

< X >0= LfIT dUt II(~ L (9))eSOX. 

t t D'f=±1 

Expanding the exponential in eq. (8) gives the free energy 

00 6" 
tV = Wo - L,. < (5 - So)" >c· (to) 

n. 
n=1 

whf're the subscript C rlenott'5 the connected expectation value. This expansion will 

be truncated at some finite order I{, and {, then set equal to 1. 

To monitor the behaviour of the system, we have calculated the free energy per 

link, F, and the order parameters EF and E A defined by 

ClO 0" 
F = 2-w = 2-Wo - L .. < (S - So)" >c, (11)

Nt N, "=1 n. 

1 1 of 
(12)EF =< 2 tr (UP<1 p ) >= N,(d-l) ap' 

1 2 of 
EA =< 3trAUp >= N,(d - 1) aPA' 

We note that Wo = -lnZo and d is the number of space-time dimensions, equal to 

four in our calculations. We have worked in the temporal gauge. 

In the LDE, the free energy and the order parameters of a lattice gauge system 

always have a local minimum (maximum) around J = 0 (m = 0) associated with 

the strong-coupling limit of the theory. This trivial minimum remains the only local 

minimum within the strong-coupling region. But as soon as we cross from the strong

coupling into the weak-coupling region a nontrivial local minimum of the free energy 

(order parameter) suddenly appears at J :I- 0 (m :I- 0). In our optimization scheme, 
this nontrivial minimum (maximum) is normally the PMS stationary point at which 

we obtain the value of the physical quantity in the weak-coupling region. The fact that 

a nontrivial local minimum occurs suddenly as we cross from the strong-coupling into 

the weak-coupling region can be used to estimate the location of a phase tran~ition 
point in lattice gauge theory. 

Thus for. the mixed SU(2)-SO(3) lattice gauge theory, we have determined phase 
transition points by applying the PMS optimization criterion: 

aRI... = o. anI( = 0
oj '8m (13) 

for the three separate cases R = F, EF, EA. At a transition point the free energy 

F~O. 

To determine the phase transition points in the two-coupling space of the mixed 

system, we fix {3, say, and vary PA until a nontrivial local minimum just appears or 

disappears depending on which side of the coupling, strong or weak, we approach it 

from. Such a point ({3, {3A), where the PMS point just appears or disappears is a phase 

transition point. 

All the phase transition points we have determined in this way are first order 

the physical properties of the system change discontinuously at the transition points. 

We thus find lines of first-order phase transitions separating the strong-coupling and 

the weak-coupling regions of the mixed fundamental-adjoint SU(2) pure gauge theory. 
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3. Phase Structure of The Mixed Action 

Using Eqs. (4), (5), (7), (11) and (12), we have calculated expressions for the free 
energy and order parameters of the system. To study the phase structure of our 
model in the various coupling limits, we consider the following expressions for the 
O( fJ) free energy and the D(fJ) order parameters (corresponding to D(( 2 

) free energy) 

calculated for the moment without gauge fixing: 

(i) 
3 4 4

F = Fo +2JV2 +mt - '2(PC1t +PAV3 ) (14) 

where Fo = -(I/Nt)lnZo = -In(11(2J)/J) -In(cosh m) 

(ii) 

1 4 1 , 4 3C 2 1 ( 2 8 6 2 2 EF=2C1t -2JC1t -2mt l(l-t )+2.8D21-C1t +20t (D22 -C1t» 

+ ~.8At4(D31 - C1D21 + 20(D32 - C1D21 » (15) 

(iii) 

4 1 , 1 2 2
EA = V3 - 3J D21 + "9.8A(D41 - D21 +20(D43 - D21 » 

+ ~.8t4(DJl - C1D21 +20(D32 - C1D21 » (16) 

where C1 , Dij denote plaquette diagram correlation functions with respect to the 

single-link 5U(2) trial action and the primes represent first-order differentiations w.r.t. 
J. We give in the appendix the definitions and complete expressions for these diagrams. 

In general they are functions of ratios of the modified Bessel functions of the form, 

Fr = I r (2J)/I1(2J). We have denoted t = tanh m. 

In the limit .8A = 0 ({3 = 0), Eqs. (14-16) reduce to the respective expressions 

describing the 5U(2) (50(3» pure lattice gauge theories to 0(6). The limit fJA = 00 is 
less trivial. In this limit, J = 00, and the modified Bessel function ratios Vr = 1, with 

their derivatives w.r.t. J equal to zero. Using this property in Eqs. (15) and (10), we 

obtain 

EA = 1 

and 
E,.. = t4 + 2.8(1 - t8 + 20t6(1- t2»- 4mtJ(1 - t2) =< ap > . (17) 

Hencf' in the limit 13.-\ = 00. the mixed system is in the weak-coupling region of the 

50(3) gauge throry and t.he order parameter EF reduces directly to the ('xprpssion 

for the plaquette energy for the Z2 lattice gauge theory in the LDE (or variational 

cumulant expansion) with action 

Sz = PLqP. (18) 
P 

and trial action 

SOm =m Lqt 
t 

This confirms explicitly that in the limit PA = 00, the mixed 5U(2)-50(3) pure lattice 
gauge system reduces to a Z2 pure lattice gauge system. We therefore have three 

distinct phase regions, as observed earlier. It is remarkable to note that with the 

choice of the single-link 5U(2) trial action in the LOE, the Z2 gauge system emerges 
very simply from the properties of the modified Bessel function ratios in the limit 

.8A = 00 (J = (0). 

In the temporal (axial) gauge, we set all link elements Ut -+ Utqt = 1 in the time 
direction, so that only elements on the spatial links are active. This differs slightly 
from the gauge fixing procedure adopted in the mean field methods [19) where the Z2 
elements have been kept active on all links, both spatial and temporal. 

To D(6) our expression for the free energy is exactly the same as that obtained 
in the variational method [18J, and without gauge fixing (eq. (14» gives precisely the 
same results for the phase diagram, since at this order the LOE optimization procedure 

coincides with the variational principle used as a criterion in determining the phase 

transition points in the variational method. However, in the temporal gauge, our O(fJ) 

free energy gives a much better picture of the phase structure of the system compared 

to the variational and mean field results [18-20] at this order, even though a line of 

first-order phase transitions crosses the fundamental 5U(2) axis (2P ~ 2.34)- at a 
point where there is normally some activity in the 5U(2) gauge system. This result 
does not agree with the Monte Carlo picture, as explained in the introduction. At this 

order in the LOE the order parameters are trivial and cannot be used to monitor the 

behaviour of the system using the optimization criterion of eq. (13). 

Taking the calculation to D( fJ2) in the free energy and 0(.5) in the order param

eters, and applying eq. (13), we obtain much improved results in general agreement 

with the MC picture. The optimization criterion produces an end-point observed in 

the MC measurements at this order in the LDE. The O(fJ2) free energy and the corre

sponding order parameters now locate the phase transition point on the 50(3) axis at 

fJA ~ 2.533, very close to the MC point .8A ~ 2.5. We locate an end-point within the 

same region as the MC observation; our end-point occurs at (2{:J,(JA) ~ (1.5,0.73) and 
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(2d. d..,) ~ (1.64,0.9) det.ermined with free energy and order paramet.ers respectively. 

The Me end-point t occurs at (2tJ,tJA) ~ (L57 ± 0.05,0.78 ± 0.05). 

The O( 63 ) calculation (free energy) simply confirms the order-hy-order conver

,I1;('nc(' of the LDE to the MC results. The phase transition point on the 50(3) axis 

now coincides with the MC point at {JA ~ 2.5. The Z2 transition is localized around 

2/1 ~ 0.44, while we locate the triple-point at (2tJ, tJA) ~ (0.535,2.35) compared to 

the MC point (2tJ, tJA) ~ (0.55 ± 0.03,2.34 ± 0.03). The end-point at this order is 

est.imated at (2tJ,/1A ) ~ (1.56,0.82). All our phase diagrams arf.' shown in figs. (1-3). 

Me points have been extracted from ref. [91. 

To conclude this section, we make a few remarks about the end-point., which is 

an important feature of the phase structure of the mixed SU(2)-SO(3) lat.ticf' gauge 

syst.em. According to the argument presented in ref. [241, the end-point of first-order 
phase transitions in mixed fundamental-adjoint SU(N) lattice gauge theories should 

oc(~ur above the line 
N'l-l 

~A + 2N'l tJ cos(27r/ N) = 0, (19) 

helow whirh the nontrivial local minima of the one-plaquette action hecome unstable. 

In our optimization scheme, the end-point (2tJc, tJA)occurs where the system just 

('nt.ers entirE-Iy into the weak-coupling region, with PMS points now appearing for all 

(2J1,tJA) as we move away from the end-point towards the fundamental SU(2) axis. In 
partirular, since Wf.' are in the weak-coupling region, the free energy remains negative 

and no longer changes sign as we vary fJA down to fJA =0 for any {3 > tr. Hence there 

are no more first-order phase transitions between the strong-coupling and the weak

coupling regions. Notice that our end-point coordinates are in excellent agrccment 

with the criterion of eq. (19). 

4. Conclusions 

In this paper we have sought to extend the range of applications of the linear delta 

expansion within the context of lattice gauge theory. Hitherto the method has been 

applied only to the plaquette energy, for U(l) [5] and pure SU(2) systems [6-81. In 

principle the choice of trial action should ultimately be immaterial, but of course in 
practice it is important to choose a trial action which gives rapid convergence. 

From this and previous studies it seems that the trial action So based on single 

links [251 is suitable for a wide variety of situations (although in the strong-coupling 

regime of lattice SU(2), an action based on a maximal tree of plaquettes [71 gives 
rather better results for Ep). The method developed in the appendix for evaluating 

higher-order correlations makes it feasible for such calculations to be carried out even 

when the number of plaquettes involved is quite large. 

As in previous applications of the method, the role of the PMS criterion is crucial. 
It is this aspect of the method which makes it truly non-perturbative, although the 

methodology prior to optimization is perturbative in nature. As mentioned in the 

introduction, the PMS is also crucial for the convergence of the expansion. This is 
certainly the case in practice, and it has now been proved analytically [3,41 in zero and 

one dimensions. 

One can therefore be optimistic about the prospects for applying the method to 

further aspects of lattice gauge theory, such as finite temperature, string tension, mass 

gap etc. We shall be investigating some of these aspects in future papers. 

Ref. 191 quot.es (1.48 ± 0.05,0.9 ± 0.03), but both the diagram in that paper and 

ref. [101 give (1.5i ± 0.05,0.78 ± 0.05) for the f.'nd-point. 
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Appendix 

In ref. (25), a method was given for evaluating the expectation values of plaquette di
agrams w.r.t. the single-link trial action, So based on the group integration technique 
of Creutz (26). This method becomes increasingly tedious, making progress exceed
ingly difficult beyond diagrams involving four plaquettes, for example beyond 0(63

) 

in calculating the plaquette energy of the SU(2) system. In this appendix, we present 
a simpler technique and a set of identities for calculating these expectation values to 

any desired order. We also illustrate how to handle the Z2 degrees of freedom in the 

calculations. 

SU(2) 

We shall include only the important steps. We note at the outset that our single-link 

trial partition function Zo = fntdUtexp(Lttr (J,Ut», where we have taken J, = J 
as constant in our calculations, is basically a generating function for group integrals, 
and we can therefore obtain values of group integrals by successive differentiations of 

Zo w.r.t. J. The starting point in the calculation of plaquette diagram expectation 

values is that for a single link element in the order n calculation, we have the simple 

formula 

< (tr U)'I >0 = JndUtesO(tr uya 
t 

1 dn j(J) 
(AI)= j(J)---;[jR 

For the SU(2) group, 
j(J) = II(2J)

J . 

Denoting Wrl =< (tr u)n >0, and performing the calculation in cq. (AI), we find 

the following general form: 

W n = a) Vn+1 + 0'2 Vn - I + ..... + 0'1; VL. (A2) 

with l'r = Ir(2J)/I)(2J). The order of the modified Bessel functions, r. decreases in 

steps of 2 down to L = 2 (1) for n odd (even). The coefficients OJ obey the simple 

relations: 
Ie 

a) = (n + I); 0'2 = (n - 1)2; and LOi =2rl 
• (A3) 

i=) 

A few illustrative examples may be useful; 

W) = 2V2 

W2 = 3V3 + I 
W3 = 4V4 + 4V2 

w4=5V5 +9V3 +2 

etc. Notice that the coefficients in each case obey eq. (A3) above. 

With t links under the trace, we find the general property, 

< (tr (UI U2 .....Ut»n >0= 01 V~+J +...... +OkV{ (A4) 

For a closed loop of links, t is the perimeter of the loop. This property is crucial in 
evaluating plaquette diagram expectation values, as we explain below. Consider first 

the case t = 2. Eq. (A4) gives immediately 

< tr (UI U2 ) >0 = 2vl 
< (tr (U I U2 »2 >0 = 3V3

2 + I 
2< (tr (U1U2»3 >0 = 4V4

2 + 4V2 (A5) 

< (tr (U1U2 »4 >0 = 5vl +9V3
2 +2 

etc. Identifying V2 =WI, V3 = n, V4 = A and V5 = (W4 - 3w2 +1)/5 in the notatio~ of 
ref. [25], eqs. (A5) are exactly the results obtained with the previous method, which 

also obscured the simple relation involving V5 above. For n plaquettes sharing all four 
links (f = 4), we have 

4< tr Up >0 =2V2 

< (tr Up)2 >0 =3V3
4 + 1 

4< (tr Up)3 >0 =4V: +4V2 (A6) 

< (tr Up)4 >0 =5V5
4 +9V3

4 +2 

etc., which are the expressions for diagrams Du,D2 ), D31 and D41 respectively in 

ref. [25J. It is thus very easy to calculate the expectation values of plaquettes sharing 

all four links, i.e., plaquettes occupying the same location on the lattice. Diagrams 

in which plaquettes share fewer than four links in all possible ways can be evaluated 

by noting that the general property in eq. (A4) is obtained by integrating over each 

link successively. By keeping mathematical complications to a minimum, we adopt a 

simple way to recover the integration over a given link, e.g., 

< tr U >0 = 2V2 ::} V2 = 2I < tr U >0 

< (tr Ufl >0 = 3V3 + I ::} V3 = ~ < (tr U)2 - I >0 

etc., so that in eq. (A5) we can write 

< tr (U I U2 ) >0= 21 
< tr U I >0< tr U2 >0 
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1
< (tr (l'IU2»2 >0= 3 < [(tr Ud2(tr U2)2 - (tr Ud2 - (tr (T2)2 + 4J >0 

dc., which are the identities calculated in ref. [25J. By carrying out such elt'mentary 
steps and integrating completely over only one link in each case, we derive the following 

identities: 

(i) 

< tr (UIU2) >0=< V2tr U2 >0 

(ii) 

< (tr (U1U2))2 >0=< V3 [(tr U2)2 -IJ + 1 >0 

(iii) 
< (tr (UIU2))3 >0=< V4 [(tr U2)3 - 2tr U2]+2V2 tr U2 >0 

(iv) 

< (t.r (UI (T2))4 >0=< V.~[(tr rh)4 - 3(tr U2)2 + IJ + 3V3[(tr U2)2 - IJ + 2 >0 (A7) 

(v) 
< (tr (UI U2))5 >0 =< \l6[(tr U2)~ - 4(tr U2)3 + 3tr U2J 

+ 4V4[(tr U2)3 - 2tr U2J +5V2tr U2 >0 

(vi) 

< (tr (UIU2))6 >0 =< V7[(tr U2)6 - 5(tr U2)4 +6(tr U2 )2 - 1] 

+ 5V5[(tr U2)4 - 3(t.r U2)2 + 1] + 9V3[(tr U2)2 - IJ + 5 >0 

Using the recurrence relation for group characters, 

X,+!(U) = X,X!(U) - X,_!(U) 

we ('an write these identities in terms of the characters X,+ ~ (U) of the various rep

resentations q + 4 of the SU(2) gauge group. For example, the identity (vi) can be 

written in terms of characters in the form: 

< (t.r(UIl'2))6 >0=< \'7\3(U2)+51'5X2(U2)+9V3 XI(U2 )+5 >0 

In each case the highest representation is n/2. As a by-product of our elementary step 

in recovering link integrations, we obtain the following general result: 

< \j(U) >0= (2j + I)V2J+I 

12 

A general trend thus emerges which we can use to generate as many of such identities 
as we desire. Together with the identities we have given in ref. [8J, the above are enough 
to evaluate diagrams of up to n = 7 plaquettes connected in all possible ways. The 
first four identities above are exactly the same as the results in ref. [25J with the link 
element UI integrated out completely. Through the process of successive integrations 
using the ident.ities, we note that each link element integrated out contributes an 

appropriate factor Yr' 

We now give the expressions for the remaining diagrams used in eqs. (14-16): 

C1 =< tr Up >0= 2V2
4 

D22 =< tr (UI U2uiu:) tr (U~u6utui) >0= V26w2 

D32 =< (tr (U1U2UlU:))2 tr (U5 U6UiUi) >0 

= V2
3[V3

3(W3 - 2V2) + 2V2J (A8) 

D43 =< (tr (U1U2uiU:))2(tr (U~U6Uiui))2 >0 
6= V3 (W4 - 2w2 + 1) + 6V3

4 + 1 

As observed earlier, in the limit J = 00, all Vr = 1 and eqs. (15), (16), (A6) and (A8) 
give the Z2 result, eq. (17). 

Z2 Elements 

To handle Z2 degrees of freedom, we use the formula 

n 1 dng(m)
< (nd >0= -(-)-d-

9 m m n 

with the general result 

< (nt)n >0= tor 1 

for n odd or even respectively. For the single-link Z2 trial action adopted here, g(m) = 
cosh m and t = d(logg)/dm = tanhm. 

We use the following examples to illustrate the calculation of connected expecta

tions in our mixed model: 

< tr (Upnp) >0 =< tr Up >0< np >0= C l t
4 

< (tr (Upnp))2 >0 =< (tr Up)2 >0< (np)2 >0= D21 (A9) 

< (tr (Upnp))2 >c =< (tr (Upnp))2 >0 - < tr (Upnp) >~= D21 - C:t8 

Finally, based on the general properties eqs. (A2)-(A4), the following observations are 

important. 

(a) In the limit J = 00, 

< (tr Up)n >0= 2n 
. (AI0) 
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In fact, for n plaquettes connected in all possible ways, we have 

n 

< II tr UPi >0= 2n 

i=l 

at J = 00. Connected expectation values are zero in this limit, i.e., 

" 
< II tr UPi >c= 0 

i=l 

at J = 00 except for the case n = 1, which gives < tr Up >c=< tr Up >0"; 2 
ill this limit. As a consequence, the plaquette energy of the SU(2) system becomes 

Ep =< 4tr Up >= 1 at J = 00. 

(b) In the limit J = 0, all Vr = 0 and 

< (tr Up)" >0= Qk.	 (All) 

We know that at J = 0, < (tr Up)" >0= lfitdUt(tr Up)" leads directly to the 
strong-coupling limit of the system. In fact, the result, Qk, obtained from eq. (All) is 

exactly the same as the SU(2) character expansion result [12], 

fIT dUt( !tr Up)n = C [(n -1)l! _ (n + I)!!] (A12) 
t 2 n!! (n +2)!! 

where the constant C = 4/7r or 2 for n odd or even respectively. Note that the 

term in square brackets can be simplified to [(n - l)!!/(n +2)!!]. This identity (A12) 

suggests a direct link between the strong-coupling limit we obtain with the single-link 
trial action and the strong-coupling character expansion. The connected expectation 

values of plaquettes sharing all four links is equal to a constant for n even and zero for 

n odd at J = O. Similarly the connected expectation values of all plaqucttes sharing 

fewer than four links are zero at J = O. That is, 

< (tr Up ya >c= constant 

and 
" 

< IT(tr Up;) >c= 0 at J = n. (A13) 
i=1 
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Figure Captions 

Fig. 1 

Fig.2(a) 

Phase Structure from F to O(6) 

Phase Structure from F to 0(62) 

Fip;.2(b) 

Fig. 3 

PhRSe Structure from Ep to 0(6) 

Phase Structure from F to 0(63 ) o FIg. t 2 {J 
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