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ABSTRACT 

We study a system of non-relativistic two dimensional spin-l/2 fermions minimally coupled to Chern­

Simons and Maxwell gauge fields, .at zero temperature. A self-consistent mean field approach leads to a 

ferromagnetic ground state which nevertheless is also superconducting. We calculate the spin and current 

correlation functions and show that there is a Meissner effect for weak external magnetic fields, characterised 

by two penetration lengths. The dispersion relations for the two longitudinal excitations is given. Further, / 

the system supports spin waves which are massless in the absence of electromagnetic fields. 
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1. INTRODUCTION 
I 

Since the discovery of the high temperature superconductors and the fractional quantum Hall effect, 

considerable attention has been focussed on physics peculiar to particles confined to two spatial dimensions. 

In particular, 'anyo~s', particles with fractional statistics l , are believed2 ,3 to arise as excitations in strongly 

coupled electron systems. The commonly considered model for anyons is to equivalently look upon them as 

ordinary particles with flux lines attached to them, dynamically achieved by the interaction with a Chern­

Simons (CS) gauge field. While there is some uncertainty regarding this equivalence in the relativistic 

context4 , such correspondence could be viable in the realm of non-relativistic condensed matter physics. 

It is by now generally accepted that a system of anyons exhibits the property of superfiuidity and, 

8if charged, is also a superconductor5- . Thus, eg., the analysis of Ref. 6 (CWWH) starts with spinless 

fermions interacting with the'CS field and goes on to establish the existence of a long range (massless) mode, 

characteristic of superfluidity, by using mean field theory and Random Phase Approximation. Hosotani and 

Chakravani7 (HC) on the other hand, start with spin 1/2 fermions and obtain similar results, by using self­

consistent mean field theory including fluctuations. Subsequently Randjhar-Daemi et af!, have performed a 

finite temperature analysis and they find that the Meissner effect, in fact, persists at all temperatures. 

The purpose of this paper is to analyse, in a consistent manner, the behaviour of a system of nonrela­

tivistic spin 1/2 anyons. It is our opinion that the treatment of spin in the earlier works is incomplete and 

rather ad hoc: HC couple the spin only to the Maxwell magnetic field, if only for convenience. A variant 

model of Kapusta. et aiiO treats spin as an internal degree of freedom, having little to do with its association 

with the rotation group. Lykken et a(3 have analysed the mean field theory for relativistic fermions (i.e, 

described by the Dirac lagrangian) interacting with the CS field. The minimally coupled Dirac equation of 

course incorporates the Zeeman coupling. The difference with the present work is that their Dirac lagrangian 

describes a single spin component, while we adopt a Pauli description involving both the spin components as 

might be more relevant for the physical case of real fermions confined to a plane. Also, in our non-relativistic 

approach, as will be seen, a non-zero spin density immediately leads to a non-zero Maxwell magnetic field, 

a fact that is not very apparent in the relativistic approach. 

Admittedly, the coexistence of anyonic nature and superfluidity might be taken to be quite robust, not 

necessarily affected by the introduction of additional degrees of freedom such as spin. However, the inclusion 

of spin to anyons is by no means a subject of mere academic interest. Surely, any search for the evidence 

for anyonic superconductivity should involve these other attributes. Indeed, there is a definite evidence for 

the Zeeman splitting (and doubling) of Landau levels due to spin in integer quantum Hall effect11. Spin has 

also been successfully incorporated in theories I2 of fractional quantum Hall effect - a phenomenon which is 

possibly closely related 2,13 to anyonic s~perconductivity. 

Apart from this, as mentioned earlier, the commonly considered model for the anyons are particles with 

singular flux tubes attached to themselves (see ego Ref. 14 for an elementary discussion). The Aharanov­

Bohm (AB) mechanism then attributes these particles with additional arbitrary phases on interchange. 
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However, it is known15 that the inclusion of the Zeeman interaction of the spin with a singular flux tube (as 

would be natural when considering the AB mechanism for spin-1/2 particles) leads to certain' novel features, 

like the relevance of irregular wave functions - complications which are absent if the fermions are taken to 

be spinless. Such features have been also found to have a macroscopic significance for a system of spin-1/2 

flux carrying particles. In fact, Blum et. al16 have computed the second virial coefficient for such a system 

in the high temperature low density limit and find substantial differences arising from the spin degree of 

freedom. In particular, there is an increased compressibility of the system as a direct effect of the irregular 

states. Recall that quantum effects are more manifest in the low temperature high density limit. We thus 

propose to study in detail the zero temperature properties, including superconductivity, of a gas of spin 1/2 

anyons. 

Section II starts with a mean field approach to a system of spin 1/2 fermions interacting with the Chern­

Simons as well as the Maxwell gauge fields to which it is minimally coupled via the Pauli equation. The 

self-consistent ground state at the zeroth order is found to have non-vanishing spin density which makes the 

system spontaneously magnetised, i.e., a ferromagnet. We then apply the qualitative arguments a ia CWWH 

which show that the energy of the system increases when a weak external magnetic field is applied. This 

suggests the existence of Meissner effect even for spin 1/2 fermions and hence the possibility of the coexistence 

of ferromagnetism with superconductivity. Indeed, fluctuations around the mean field Hamiltonian do not 
I' 

destroy this magnetisation; however, they yield equations (which substitute the London equations in BCS 

theory) and which ensure the expulsion of the fluctuating as well as weak external magnetic fields. Further, 

the Meissner effect is now characterised by two penetration depths, signalling parity violation in the system. 

In section 3, we set up an effective lagrangian which embodies the expressions for the current density and 

the spin densit.y and evaluate the response of the currents to an external Maxwell field, by computing the 

current- current correlators. Significantly, we find that apart from the massless mode in the current- current 

correlator (which signifies superfluidity), a calculation of the spin correlation function shows that there is 

also a spin 'wave' which has the dispersion relation quite similar to that of the massless mode. This is very 

different from what one gets in the usual ferromagnets. The emergence of these exotic magnons could be of 

interest from an experiment.al point. of view. We conclude with some brief comments in section 4. 

II. MEAN FIELD THEORY FOR SPIN 1/2 ANYONS 

We follow the approach of HC closely, both in the method and notation.. VVe start with the Pauli 

lagrangian for a. system of spin up and and down fermions interacting minimally with the CS field (aJJ ) and 

the Maxwell field (A JJ ), 

L = -~FJJvFJJV - !!..(>,vpa>.ova p + t/Jt iDot/J - -2
1 

IDkt/J12 + -2
e 

(B + b)t/Jt 0"3t/J - eAone , (1)
4 2 m m 

with DIJ = olJ - ie(A JJ +aJJ ) and B = olA2 - 02Al' b = Ola2 - 02al. It should be noted that in (1) the spin 

density couples to both the CS and the Maxwell magnetic fields. (The last term in (1) is included to achieve 

overall neutrality of the system). 
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The equations of motion that follow from the lagrangian are 

(2) 

(3) 

with 

(4) 

where 

(5) 

is the spin density. The fermion field satisfies 

iottf; = Htf; = [- _1_[Di + e(B + b)0"3] - e(Ao + ao)]tf; (6)
2m 

Henceforth the calligraphic letters AI" B, £i will denote the quantities AI' +al" B+b and Ei+ei == FOi+ fOi 

respectively. 

In the zeroth approximation we assume that the fermions move in a mean field produced by the rest 

of the system. We take the mean field to consist of uniform CS and Maxwell magnetic fields bCO) and BCO), 

respectively, which will have to be solved self-consistently at the end of the calculation. Note that we differ 

with the usual choice6 - 9 by not setting BCD) to zero, as in fact required by consistency. Choosing the Landau 

gauge, AiO
) = -B(0)x2; A~O) = A~O) = 0, the Hamiltonian becomes 

(7) 

where the magnetic length I is' given by 
2 1 (8)I = leBCO)I' 

Imposing the periodic boundary condition in the Xl direction over a length L, one has the well known 

solutions of the Schrodinger equation, 

(0) _ 1 'k X2 
.1. (x) = -e-' :r,u (- - kl)v (9)'l'nko VLi n I 0, 

where n = 0,1,2 ... ; k = ~(p E Z), un(z) = (2n."fiin!)-l/2ez'/2(J:'.. e- z') and 0"3Vo = O"Va = ±vo' The 

energy eigenvalues are 
1 

We =---. (10)
m[2 

corresponding to Landau levels. 'vVe note that the lowest level, i.e. n = 0 supports only spm up state, 

(0" = +1). As is clear from Fig.l all the higher levels in the ground state configuration are degenerate with 

respect to spin up and spin down. The ground state of the spin 1/2 system is thus ferromagnetic, having a 

spontaneous spin polarization. It should also be noted that the spin up and spin down particles having the 

same energy have different spatial wave functions. 
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We next reqUlre that the ground state be non-degenerate and hence to consist of completely filled 

Landau levels. Given the density of particles to be n e and the degeneracy of the Landau levels PI = 1/27r{2, 

it is not difficult to see (Fig. 1) that our requirement of completely filled Landau levels implies that 

(11) 

where fi is the number of filled Landau levels. This in turn implies, using (8), 

(12) 

We note that at the ground state we have pb(O) = ene . Thus the CS magnetic field gets fixed by the 

particle density. What fixes B(O)? We shall find this once we calculate the expectation values of the current 

in the ground state. First, (see Fig.l) 

n-l 

< jO >= e[ 2: L ~,~~;(x)t/J~02,,(x) + 2: t/J~~~(x)t/J~oJ+(x)] 
n=O k" k 

Substituting l,b~oL(x) from (9), one finds < l >= ene . Similarly we have for the spin density < j" >= z;P 
and < ji >= Z;l1 (ij ()j < j" >. On the other hand from l'vlaxwell's equations we have to zeroth order 

o2B(0) =< jl >= 2~11 02 < j" >, which has the solution 

enCO) = _e_ < j" >= __e_n..:._...,... (13)
2m 2m(2ii + 1) 

Here it is to be noted that both B(O) and < j" > have vanishing spatial derivatives (by uniformity) but this 

fact should not be imposed in the determining equation before solving it since then it would reduce to a 

trivial identity. 'vVe also note that B(O) is determined upto a constant. But since we attribute the magnetic 

field B(O) to the spin density it should vanish when the spin density vanishes, which determines the constant 

of integration to be zero. 

The non-vanishing of B(O) has a significant impact on the quantization condition on the CS parameter 

J-l. Substituting B(O) in (12) we get 

e2 (2ii + 1) e-')

p( = 2 ; f =(1--) (14)
7r 47rm 

9which is qualitatively different from that found in the previous works6 - . If we look upon J-l as a statistics 

parameter, then we see that this model does not describe anyons with additional phase (under exchange). 

of the form 7r/N,N E Z, and in particular. semions which correspond to N = 2. This fact could well,be 

of crucial significance in establishing the relevance of a system of spin 1/2 anyons as a model of high Tc 

superconductivity. However, the factor ( in (14) is quantitatively very close to unity since e2/47rm is small. 

and hence the statistics change can be made arbitrarily close to 7r / N. 

Next we argue qualitatively, a la C\V'\\"H. that our system despite having a ferromagnetic ground st"l.te 

will exhibit the Meissner effect. To that end we show that a small applied external magnetic field 6B tends 
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to increase the energy of the system in whatever direction it is. First of all when no field is applied, there 

are n Landau levels filled. F~om the expression for the energy eigenvalue it is seen that the lowest level has 

zero energy. Then the ground state energy is easily shown to be 

(15) 

We now calculate the energy of the ground state in the presence of the external magnetic field, for the two 

possibilities: 

(i): bB parallel to B(O) 

The degeneracy changes to PI =PI + f~~ and the energy gap increases to ::Je=We + eg~. The energy of 

the lowest level remains at zero. As the degeneracy has increased the top level will be partially filled. The 

number of particles p in the top level is easily seen to be p = 2ei:O) - f~~ (2ii - 1). The modified energy is 

thus E+ =2 2:~11 PI (lw e ) + p(iiW e ) which gives 

')­

E+ = e~n [(ii + 1)B(0)2 + B(O)bB - (2ii - 1)bB 2 ]. (16) 
21l"m 

(ii): bE anti-parallel to B(O) 

The degeneracy is now P; = PI - e~B while the energy gap is ..;~ = We - eg~. The energy of the lowest 

level continues to be zero. As the degeneracy has now decrea>;ed particles will mab:: a transition to (ii + 1)tl. 

level with the number of particles q in that level being q = f~;1 (211 + 1). Thus, the modified energy is 

E_ =22::':1 p;(lw~) + q(n + l)w~ which becomes 

2 
E_ = e (ii + 1) [iiB(0)2 + B(O)oB _ (2ii + 1)bB2 ]. (17)

21l"m 

From the terms linear in bB in (16) and (17) we see that the external field II1crea>;es the energy as 

compared to that given by (15). Hcnce the system while retaining the" frozen" mcan magnetic fields would 

prefer to exclude any weak extra magnetic field. 

In the above analysis we confined ourselves to uniform external magnetic field which was at least large 

enough to allow particles to make transitions. In order to demonstrate the ~Ieissner effect for non-uniform 

and still smaller perturbations which do not cause transitions among the Landau levels, we carry out the 

self-consistent calculation including fluctuations about the mean field in the Section III, using standard first 

order perturbation theory. 

III. FIRST ORDER FLUCTUATIONS 

\Ve now consider the effect of fluctuations of the gauge fields around the background, A~O) -+ AI' = 
A~O) + AV). We shall adhere to the gauge choice AI' = (Ao, AI, 0). To simplify the calculation we take 

AI' = AI'(X2) which leads to £1 = O. We only briefly outline the steps below. 

The gauge field fluctuations give rise to a perturbation of Ho by the potential (neglecting terms quadratic 

in the fluctuations) 
e (1) X2. e (1) (I)V=--A 1 (--zol)--B (/3- cA (18) 
m /2 2m 0 
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with its matrix elements with respect to the unperturbed states given by 

(19) 

with C(V, k) = fAll) + mA~I) and e= t - kl. The change in eigenfunctions is given by standard non­

degenerate perturbation theory, 

(20) 

,p~~L being the eigenfunctions of Ho. Next we define 

(21) 

where h is any function and 7J = (x/' - kl). We also introduce K[h(X2, y, k); X2] =L~:b Rn[h(X2,Y, k); X2]. 

With the above defined quantities, the expressions for the expectation values for the current and the 

spin densities are found, to first order in fluctuations, to be 

e2 _ B(I)(V) 
< jO(X2) >=ene + e2 J([C(V, k); X2] + 2"J(j\[C(v, k) + 2 ], 

. _ n e e (I) e -... B(I)(V) 
< Ju(X2) >- (2n + 1) + "2 K [B (y)] + "2!\j\[C(V, k) + 2 ], 

2 (22). (2ii + 1)e2 (I) e • e2 - 7JB(I)(y)
<JI(X2) >=- 27l'm[2 Al + m/"[7JC1+ 2mpJ(j\[7JC (y,k) + 2 ] 

e 8 .+ 2m 2 < J" >, 

< h(X2) >=0. 

Taking the magnetic length I to be small, we can evaluate the fu~ctions Rn and J( by performing a Taylor 

expansion of h(X2, V, k) in the vicinity of V = X2. We then find Rn[f(v)] = -~8~f, Kn[( -~,1J)f(y)] = ~82f, 

and Rn [~1Jf(v)] = ~ [f + 12(2n + 1)8U]· 

We ultimately get (neglecting terms involving higher derivatives of Sand t:i) 

< jO(X2) > =ene + CIS(l) + C282dl 
) 

_e_ < j,,(X2) > = /ne 
) + C4S(l) + C582t:~I) 

2m 2m 2n + 1 (23) 
< il(X2) > = -C382S(1) - Clt:~l) 

<h(X2»=0, 

where 

(24)
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Our result for < ju > is very 'different from that found in HC, owing to our inclusion of Zeeman coupling of the 

spin. Further, the spin effects in < j/J(X2) > are seen in the modified coefficients occuring above as compared 

with Ref. 7. The similarity of the form, however, suggests that i\leissner effect and superconductivity would 

follow in this case as well, in spite of the fact that the ground state is a ferromagnet. Indeed, the Meissner 

screening operates only on the fluctuating and weak B fields doing little to the spontaneous field produced 

by the spin density. 

Parity violation in this two dimensional system gets manifest in the emergence of two penetration depths, 

a result already noted by Ref. 9. We shall not pause to show it here, but defer it to the next section where 

an effective Lagrangian is set up and all these properties are discussed at length. 

IV. THE EFFECTIVE LAGRANGIAN -BULK PROPERTIES OF SPIN 1/2 ANYONS 

In the previous section we have derived the effect of fluctuations of the gauge fields from the background 

configuration on the fermionic currents and the spin density. However, the quantum averages indicated in 

Eqs. (23) are only partial in the sense that the gauge fields were taken to be classical potentials. In other 

words we have so far only performed an integration over the fermionic variables, so to speak. VVe next derive 

the current and spin correlation functions, [{I'V(x, y) and ~(x, y) respectively, by completing the quantum 

average over the gauge fields. These completely summarize the electromagnetic response of the system. \\ e 

then show that there is a complete Meissner effect for external magnetic fields provided they are sufficiently 

small. This is a remarkable fact in the sense that while the system retains a "frozen" magnetic field within 

itself, arising from the spin polarized ground state, it prefers to eliminate external magnetic fields from itself. 

It is in this sense that the spin-l/2 system manages to behave both as a ferromagnet and a perfect diamagnet! 

The spin correlation functions are also of interest since they reveal the existence of further excitations of the 

system. While these can be regarded as spin waves, not unexpected in a ferromagnetic ground state, the 

dispersion relation we find is different. In what follows we present results for both neutral (i.e., excluding 

.the Maxwell field) and charged spin 1/2 systems. 

The computation of the correlation functions is most conveniently carried out by the introduction of 

external sources. For this purpose we include in (1) a minimal coupling of the fermion to an external vector 

source A~, along with a scalar source hE which couples only to the spin density. The sources are taken to 

be weak enough to be included along with the fluctuations of the potentials. Then the modification of (23) 

due to the inclusion to these sources can be seen without much difficulty to be (ommitting the superscript 

previously used to denote fluctuating quantities) 

- E E< jO(X2) > = en. + C1(5 + B ) + C2fh(£2 +£2) - C~/)~hE 

e "': () en. (E E 2 E
2m < Ju > x2 = 2m(2n + 1) + C4 5 + B ) + C502(£2 + £2) - C602h 

(25) 
- E E E< 1l(X2) > = -C302(5 + B ) - C1(£2 + E2 ) + C402h 

< J2(X2) > == 0 
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where the new constant appearing is 

(26) 

It is convenient to introduce a low energy effective lagrangian LeII involving only the gauge fields, which 

summarizes the results obtained so far. LeII then takes the significance of a Landau-Ginzburg action for 

superconductivity6-9 for the spin 1/2 system. We summarize the results of Eqs. (25) by introducing the 

effective lagrangian, 

Lell = L o + L I ,
 

- 1F FjjlJ P. jjlJP ~
 L 0--4' jjlJ - if ajjUlJap, 

CI C C (27)
L I = 2{jjlJP(A + AE)jjOlJ(A + AE)p + -f(£ + EE)2 - -f(l3 + BE)2 

E C6 - 2+ C4 ( l3 + BE)hE + CSoi(E: + E )ihE - 2he \J hE. 

The above Lagrangian is valid only at low energies since we have ignored all the higher derivative terms 

in the expression for < jjj >. It should be noted we take Lell to be the Lagrangian involving only the 

fluctuations of the gauge potentials. More explicitly, we have dropped a constant term arising from the 

background fields, which can be absorbed along with the irrelevant overall normalisation, and also linear 

terms since these do not affect the calculation of the correlation functions once the external sources are set 

to zero. 

A crucial feature noted in all the previously referred works on anyonic superconductivity is the cancel­

lation of the net Chern-Simons term in LeIJ for the CS gauge field. This signifies the presence of a massless 

mode and is really the central result on which the argument for !>uperfluidity of the neutral system (and 

hence superconductivity of the charged system) rests. This cancellation is not unexpected if one considers 

the qualitative argument of CWWII who reason that a fully filled Landau level ground state where the 

background magnetic field is tied to the background density together imply the existence of gapless density 

perturbations. In the present case there is a crucial difference since the background also gets a contribution 

from the Maxwell magnetic field arising from a non-zero spin density. For the neutral case, i.e. neglecting 

the effects of the Maxwell field, the cancellation is easily ascertained from an inspection of LeI I and the 

quantization condition on the CS parameter imposed by our requirement of fully filled Landau levels. How­

ever, for the general case this is not exact as one sees from the altered condition on p., (14). Nevertheless, 

to the order of approximation for which our calculation is valid, i.e. O(e 2 ), t.he necessary cancellation does 

occur*. 

\Ve now turn to the calculation of the response functions. Since we are interested in the correlations 

of the fluctuations of the various densities about the mean field value, we define the subtracted expectation 

* By the Coleman-Hill theoremli higher order effects would not alter C I . Hence, the non-cancellation 

would appear to persist to all orders in the coupling. We have verified that the residual CS term does not 

qualitatively affect any of the results obtained here. 
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values < 0]1-' > and < 0]<1 >1 where 

~ ~ n e< 0]0 >=< JO > -ene ; < O]i >=< Ji >; < 0J<1 >=< J<1 > - (2n + 1)' 

The necessary correlation functions then follow from the definitions 

(28) 

(29) 

It is to be noted that in the above equations the vacuum expectation values are taken to include the vacuum 

averages of the gauge field variables also. 

The computation of the correlation functions is, though straightforward, fairly involved for the general 

case including both CS and I-.Iaxwell fields. We thus outline the steps for the simpler case for neutral spin 

1/2 particles. Basically, one has to identitify the independent gauge field variables. From L eJ J it is easy to 

derive the equations of motion, 

The first of these is seen to be the Gauss law constraint. The separation of the independent variables is most 

easily accomplished by imposing the radiation gauge condition ~ . ii = 0, which in turn allows one to write 

the spatial components of the gauge field as 

where ¢ is a scalar field. Substitution in the Gauss law then leads to the solution 

ao = -~ Jdx'D(x, X')Q(X' ), (31) 
C2 

where ~2D(x, x') = o(x - x'). Thus ao is entirely solved in terms of the sources. Next substituting in the 

second of the gauge field equations leads to 

(32) 

From this one derives the solution for the vacuum expectation value 

(¢(x)) = Jdx'{;(x, xl)(lnJJ;"K/(x' ), (33) 

(apart from an irrelevant homogeneous term) where Q(x, x') is the Green function satisfying ~2(C2a5 ­

C3~2)9(x, x' )·= o(x - x'). 
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Thus one has, for example, 

which is easily computed to be 

(34) 

The remaining components are similarly easily computed. As expected from gauge invariance and rotational 

2invariance, the components of I<IJV can be fitted to the form (gIJ V = + - -; q2 = w - if) 

(35) 

The results for the three form factors are as follows (the subscript denotes the neutral case), 

(36) 

2Thus one sees that the density-density correlation function has a pole w~th the dispersion relation C2W = 
C3if corresponding to a long range sound wave. Somewhat curiously we find the pole exactly cancels out in 

the parity violating form factor I<3. 

Similarly the spin correlation function can be found to be 

(37) 

Thus we find the same dispersion relation for the longitudinal spin wave as for the sound wave. This is not 

surprising since the spin wave is simply produced by the out of phase fluctutations of the two spin species. 

Nevertheless it signifies a new mode of excitation, which would be absent in the spinless system, and may 

be expected to affect the bulk properties such as the compressibility of the spin 1/2 system. 

For the case of a charged spin 1/2 system the analysis is considerably more cumbersome due to the 

mixing of the CS and the Maxwell gauge fields. We content ourselves to simply stating the results for the 

corresponding form factors, 

K _ Cf[C2(C2w2 - C3if) - (-C2q2+ Cn]q2 
1 - C?(w2 _ w~)(w2 - w:') 

K _ Cf[C3 - C2]q2if 
(38)

2 - Ci(w2 -w~)(w2 -w:) 

K _ CdC2W2 - C3 if]q2 
3 - C2(W2 _ w~ )(w2 - w:) 

Thus the massless pole gets replaced by two massive poles at the dispersion relations 

(39) 

From the general linear response relation 

(40) 
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the principal susceptibilities of interest are easily computed. Perhaps the most interesting of them is the 
I 

static magnetic susceptibility x(O, f), which follows upon specializing (40) to the case of a static external 

magnetic field. The screening current leads to a magnetisation M = XB E with, 

,J2) _ [ - K 1 + J{2] I _ _ C?[C? + i(2(C2 + C2C3 )J
X(0 ,q - w=o - ....,	 (41) 

if [q'lC2C3 + q-C?(C2 + C3 + C2C3) + Ct] 

In particular X(O, 0) = -I! Thus we see that the spin 1/2 system is a perfect diamagnet as far as external 

magnetic fields are concerned. The general Meissner effect is given by the relation B = (1 + X)B E giving 

the net field magnetic field in the system, 

(42) 

from which it follows that there are two penetration depths, 

).l.~ = 2~~3 [C2 + Ca + C2C3 ± V(C2 - Ca )2 + CiCj + 2C2C3(C2 + Ca)]. (43) 

, 
From the numerical estimates made by HC, it follows that 4~m is a small dimensionless quantity. We 

have also made the assumption that magnetic length [2 is small, i.e. (2fi+1) « 1. It can then be seen that'-'	 2 ,..-n c 

Ca is	 numerically much smaller than C 1 and C2 . If we neglect C3 in (42) the penetration depths reduce to 

C).2 =	 .la-, = --fL, which equals the BCS value, as noted by HC.C I	 e n c 

The dielectric constant c(w, f) follows from the response to an external electric field to be 

-'l K 1 -1 Ci(w2 - w~)(w2 - w:.) 
c(w,q )=[1+-.,] = ( C 2+C")( C "+C "') (44)q- - 2q i - 2W - aq­

and is seen to have zeroes signifying longitudinal modes at the two dispersion relations. Further, it also 

follows that external electric fields are also screened out by polarization effects. 

The conductivity tensor O"ij(W, cf) is computed to be 

(45) 

Thus the supercurrent has a transverse, "Ball"-like, conductivity.
 

Finally, we give a simplified expression for the spin correlation function
 

~( ) _ C?(C4 - ~)2f .
 (46)~ q - C (2 2)( 2 2 ) , 
2 W - W + W - w _
 

where we have left out terms involving numerically small constants, including C6 .
 

V. CONCLUSIONS 

The correlation functions we have derived summarize the bulk properties of the spin 1/2 system and 

in principle the constants introduced introduced in the effective lagrangian are measureable. There is an 

ongoing search, as yet inconclusive18 , for violation of parity and time reversal invariance in the high Tc 

superconductors, as predicted 19 by anyonic superconductivity. Hence it is too early to speculate about ex­

perimental significance of the spin effects that we find here. On the theoretical side the idea of fractional 

statistics continues to be popular19 in the context of both high Tc superconductivity and the fractional quan­

tum Hall effect. The work presented here serves to emphasize, as does Ref. 16, that unless phenomenology 

dictates otherwise, the spin degree of freedom cannot be ignored in systems of flux carrying particles. 
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