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Abstract 

Anikeeva V.A., Bornyakov V.G. Solution of Partial Eigenvalue Problem in Lattice Gauge Theory: IHEP 
Preprint 2000-44. - Protvino, 2000. - p. 4, tables 1, refs.: 4. 

Recently the problem of finding few eigenvalues and the corresponding eigenvectors of large sparse real 
symmetric matrices arose in some studies of the lattice regularization of the nonabelian gauge theories. 
We present the program designed to solve this problem. The basis of the algorithm used in the program 
is the subspace iteration method together with the Rayleigh-Ritz procedure and Chebyshev acceleration. 
The code is compact and well suited to handle large scale matrices. It is comparable in power with the 
specialized package ARPACK but is of higher mobility. The code has been checked in computations for 
matrices of the size up to 0(105). 

AHHoTaU;lul 

AHHKeeBa B.A., BOPHjlKOB B.r. PemeHHe qaCTHqHOH npo6neMbI co6cTBeHHblx 3HaqeHHH B pemeTOqHOH 
KanH6pOBOqHOH TeopHH: IIpenpHHT I1:<I>B3 2000-44. - IIpOTBHHO, 2000. - 4 c., 1 Ta6n., 6H6nHorp.: 4. 

B nocne.nHee BpeMjI 3a.naqa HaxO)l{.neHHjI HeCKonhKHX co6cTBeHHhIx 3HaqeHHH H COOTBeTcTByIOmHX 
HM co6cTBeHHblx BeKTopOB .nnjl pa3pe)l{eHHblX .neHcTBHTenhHblx CHMMeTpHQHhIX MaTpH:U; 6onhmoro pa3­
Mepa CTana aKTyanhHoH B HeKOTopblX 3a.naQax pemeTOQHOH perynjlpH3a:U;HH Hea6eneBblx KanH6pOBOQHblX 
TeopHH. B pa60Te npe.nCTaBneHa nporpaMMa .nnjl pemeHHjI 3TOH npo6neMbI. OCHOBOH anropHTMa, HC­
nonh3yeMoro B nporpaMMe, jlBnjleTCjl MeTO.n HTepHpOBaHHjI no.nnpOCTpaHCTBa COBMeCTHO C npo:u;e.nypoH 
P3nejl-PHT:u;a H Qe6hImeBcKHM yCKopeHHeM. IIporpaMMa KOMnaKTHa H y.no6Ha .nnjl pa60TbI C MaTpH:u;aMH 
6onhmoro pa3Mepa. IIo 3<p<peKTHBHoCTH oHa cpaBHHMa co cne:U;HanH3HpoBaHHhIM naKeToM ARPACK, HO 
60nee Mo6HnhHa. IIporpaMMa 6b1na npOTeCTHpOBaHa Ha MaTpH:U;ax pa3Mepa BnnOTh.no 0(105). 
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Introduction 

The problem under consideration arises in the scope of the lattice field theory. In the lattice 
regularization of the gauge field theories the gauge fixing is used to study gauge noninvariant 
observables, e.g. gluon or quark propagators, and also to separate the degrees of freedom, playing 
the main role in the nonperturbative phenomena. 

The gauge fixing conditions of interest are given by the differential equation. Its solutions can 
be found as extrema of the corresponding gauge fixing functional. For example, for the Landau 
gauge condition the differential equation and the gauge fixing functional have the following form: 

(1) 

F[A9] =Jd4Z[A~(z)]2, (2) 

where Ap(z) is a gauge potential, A~(z) is a gauge potential after the gauge transformation 
g(z). 

Many years ago V.N. Gribov discovered the problem of existence of multiple solutions of this 
equation. This is called the Gribov problem. In the scope of the nonperturbative gauge fixing 
this problem can be solved by choosing the global minimum of the functional F. In practice this 
problem cannot be solved exactly while even an approximate solution requires large resources. 

Recently another class of gauge conditions has been suggested [1] to replace the one above. In 
this case the problem offinding a minimum is replaced by the problem of finding the algebraically 
smallest eigenvalue and the corresponding eigenfunction of the covariant Laplacian 

(3) 

~(A)4>(z) = >"4>(z), (4) 
where fa.bc are the structure constants of the gauge group. This gauge is called the Laplacian 
gauge. After the space-time has been discretized in the scope of the lattice regularization, this 
problem is reduced to the common eigenvalue problem 

Mv = >..V (5) 

for N X N real symmetric matrix M of large dimension (up to 107
). 

For the Laplacian center gauge used in the confinement phenomena studies [2] it is necessary 
to find two eigenvectors with smallest eigenvalues. 
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1. Description of the program 

Our program SIMET designed to solve this problem is based on the algorithm by Rutishauser 
([~]~ and is written in Fortran77. Attractive features of the program are its compactness, sim­
pliCIty and some elegance combined with sufficient power. These features provide mobility of 
the program and easy use on any computer platform. 

Program SIMET finds the eigenvalues with maximal absolute values and the corresponding 
eigenvectors of the real symmetric matrix by the subspace iteration method, which is direct 
generalization of the power method. One has no need of storing the matrix explicitly. A user 
should provide the routine to calculate the product of the matrix and arbitrary vector. In this 
wayan essential saving of memory is achieved and the user can deal with matrices of large 
dimension. 

The convergence of the algorithm in the process of finding m eigenvalues with maximal 
absolute values is linear. It depends on the ratio of the minimal out of the found eigenvalues 
to the maximal out of the left ones. It is evident that the relative effectiveness of the algorithm 
depends on the distribution of the eigenvalues and the choice of the internal parameters of the 
program. More precisely, simultaneous iterations with p (p > m) vectors are performed to 
calculate m eigenvalues with maximal absolute values and this number p affects the convergence 
rate. Let us enumerate the eigenvalues according to their absolute value: l.Ad > 1.A21 > ... > I.AN/. 
Then, the convergence rate of the iterative process is limited by the values of l.Ap/.Aml and 
exp( - cosh- 1 (I.Am/.Apl)). The convergence rate is close to the first number when the ratio l.Ad.Ami 
is large and it is close to the second one when this ratio is of order 1. This algorithm turns out 
to be rather effective in many practical situations. 

The iterative procedure consists of four steps. 

1.	 External loop which includes eigenvalues calculation by the Jacoby method. This step 
is rather time consuming in comparison with others due to the operations with columns 
of matrix X(N,p) containing approximations of eigenvectors being searched for. In some 
sense this is the price for memory saving. The following loop is introduced to reduce the 
time of calculations by decreasing the number of calls in the external loop . 

2.	 Loop for intermediate calculations including the Chebyshev acceleration. 
3.	 Randomization is used to avoid instabilities of iteration process when the choice of initial 

subspace is unsuccessful, i.e. p-th column ofmatrix X (N, p) is replaced by a random vector, 
being orthogonal to the rest vectors of the basis. This is the simplest way to minimize the 
probability to lose any of the eigenvectors being searched for. Randomization is performed 
only during three first calls of loop 1. 

. 4. Check of the solution precision. The calculation of the eigenvalue is finished when relative 
increase of the corresponding Rayleigh-Ritz ratio turns out to be less than e/10, where 
£ is the parameter defined by the user. The convergence of eigenvectors is slower and 
their errors are calculated more accurately. It is important that for close or equal in 
absolute value eigenvalues of initial matrix the check of eigenvectors precision is performed 
simultaneously. 

2. Comparison with ARPACK 

We made comparison of our program SIMET with the public domain package ARPACK [4]. 
ARPACK has been used by other authors [2] to solve the eigenvalue problem we consider here. 
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Our computations were made with a set of matrices of different size with the largest matrix of 
dimension N = 196608 (that corresponds to the lattice with extension L = 16 and the gauge 
group SU(2)). Since SIMET finds the eigenvalues maximal in their absolute values, while we 
need eigenvalues algebraically smallest, we carried out a proper shift of the matrix to make the 
needed eigenvalues maximal in the absolute values. The discrepancy of the eigenvalues defined as 

dn. = IAn.,AR - An.,SI! (6) 
!An.,ARI 

turned out to be 0(10- 9 ). The discrepancy for the eigenvectors components, defined in a 
similar way, was 0(10- 6 ) (eigenvectors were normalized to 1). This result is quite satisfactory 
for the problem under consideration. The calculated numbers for the eigenvalues and several 
components of the first two eigenvectors are given in Table below. The computations were made 
with a double precision at AlphaServer 8200 in ffiEP, Protvino. We found that SIMET is by a 
factor of 1.5-1.7 slower than ARPACK. This is not quite a noticeable disadvantage of SIMET 
in view of its simplicity (SIMET code consists of 0(500) lines). 

Table. Comparison of SIMET and ARPACK. SIMET parameters: £ = 1.00E-10, N = 196608, m = 2, 
p= 20. 

Eigenvalues 
SIMET I ARPACK 

1.74962844353513 1.74962844522513 
1.75187775426450 1.75187775252235 
1.75357796019262 1.75357796006998 
1.76045982303397 1.76045981931244 

Eigenvectors
r--------------~Ir__--__:_==__,___"., -- ­

SIMET ARPACK 

#1 I #2 I #1 I #2
 
1.2121719E-03 -1.1582481E-03 1.2121729E-03 -1.1582472E-03 

-4.4862248E-04 -5.7145053E-04 -4.4862305E-04 -5.7145057E-04 
-2.0270178E-04 3.1757135E-05 -2.0270198E-04 3.1757151E-05 
-1.3595531E-03 7.3657876E-04 -1.3595540E-03 7.3657767E-04 
3.0775913E-04 8.5726348E-04 3.0775939E-04 8.5726334E-04 

-6.8840846E-04 3.7147894E-04 -6.8840963E-04 3.7147839E-04 
-6.7704302E-04 8.6564027E-04 -6.7704293E-04 8.6563912E-04 
-2.1420253E-03 6.3581455E-04 -2.1420263E-03 6.3581258E-04 
8.1211520E-04 -3.3373447E-05 8.1211587E-04 -3.3372664E-05 

-2.1716384E-04 3.1304149E-04 -2.1716431E-04 3.1304157E-04 

We, thus, demonstrated that SIMET had high enough speed and precision. The advantage 
of this program is its simplicity. It can be easily adapted to any dedicated computer used in 
simulations of the lattice gauge theories. One example of such computer is APE, successfully 
used by many groups in. Italy and Germany and recently installed at JINR, Dubna. This 
computer is equipped with a high level programming language close in syntax to Fortran. It is 
easy to adapt SIMET to this computer. 
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