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Abstract 

Kim Dae Kwan, Klimenko K.~. Finite Density Effect in the Gross-Neveu Model on a Weakly
 
Curved Surfaces: IHEP PreprInt 97-71. - Protvino, 1997. - p. 11, figs. 3, refs.: 25. ,
 

The three-dimensional Gross-Neveu model in Rl X M2 spacetime, where M2 is a weakly 

curved two dimensional surface, is investigated, using an effective potential at a finite curvature 

R and nonzero chemical potential p. The critical values of (R, p) are derived, such that a system 

undergoes the first order phase transition from the phase with broken crural invariance to the 

symmetric phase. The fermion density is found to be of nonanalytic behaviour at the critical 
value of the chemical potential. 

AHHoTa:QuJI 

KHM 1I.K., KJIHMeHKO K.r. 3epepeKT HeHyJIeBOH IIJIOTHOCTH B MO.n;eJIH rpocca-HeBbe Ha CJIa
60HCKpHBJIe:HH:LIX nOBepXHOCTn:: IIpenpHHT H<I>B3 97-71. - IIpoTBHHo, 1997. - 11 c., 3 pHC., 

6H6JIHorp.: 25. 

PaccMaTpHBaeTcK TpexMepHaK Mo.n;eJIb rpocca-HeBbe B npOCTpaHCTBe-BpeMeHH BH.n;a R1 X 

M 2 , r.n;e M 2 - CJIa60HCKpHBJIeHHaK .n;ByMepHaK nOBepXHOCTb, a TaK)l(e npH H~ XHMH

'tIeCKOrO nOTeHllHaJIa p. B 06JIaCTH MaJIbIX 3Ha'tleIIH:K KpHBH3HbI R HCCJIe.n;OBaH 3epepeKTHBHbIH 

nOTeHnHaJI H nOJIy'tleHbI KpHTKtleCKHe 3Ha'tleHHK (R, p), npH KOTOp:bIX. B Mo.n;eJIH npOHCXO.n;HT BOC

CTaHOBJIeHHe KHpaJIbHOH CHMMeTpHH C nOMoIllbIO epa30Boro nepexo.n;a nepBoro po.n;a. IIOKa3aHO, 
.'tITO epepMHOHHaK nJIOTHOCTb B KpHTKtleCKOH TO"tIKe HeaHaJIHTlftIHa no XHMlftIecKoMy noTeHIJ;HaJIy. 
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Introduction 

In recent years four-fermion field theories in (2 + I)-dimensional Minkowski spacetime, 
which are known as Gross-Neveu (GN) models [1], are under extensive investigation for 
purely theoretical motivation and also due to their applications to planar condensed mat
ter physics. Such theories possess many desirable propert~es: the renormalizability in 1/N 
expansion, dynamical breaking of chiral symmetry and generation of fermion mass for a 
large coupling constant as in QeD [2], the analogy to the BeS theory of superconductivity 
in two spatial dimensions and the possibility to describe a new phenomenon of high tem
perature superconductivity [3], the reduction to the S = 1/2 quantum antiferromagnet 
Heisenberg model in the continuum limit [4] and so on. Main features of these models, 
obtained by large N expansion technique, are confirmed within the framework of other 
nonperturbative approarches [5]. 

Since there are no closed physical systems in nature, the influence of different external 
factors on the vacuum of the simplest GN model was considered. In [6] some critical 
phenomena of this theory were studied at nonzero temperature T and chemical potential JL. 

Recently, on the same foundation a new property of external (chromo- )magnetic field 
H to promote the dynamical chiral symmetry breaking has been discovered [7]. (At 
present it is the well-known effect of dynamical chiral symmetry breaking catalyst by 
external magnetic field [8], which is under intensive consideration [9].) The role of T, H 
as well as of JL, H in the formation of a ground state of the GN model was also clarified [10]. 

The study of dynamical symmetry breaking in spacetimes with curvature and non
trivial topology is also of great importance, since in the early universe the gravity was 
sufficiently strong and one should take it into account. A copious literature on this sub
ject is available (see the review [11]). The effect of curvature and nontrivial topology 
on the chiral symmetry breaking in four-fermion models was first discussed in [12,13]. 
The curvature-induced first order phase transition from a chirally symmetric to a chi
rally nonsymmetric phase was shown to exist in those models in the linear curvature 
approximation. It turns out that in specifiC' spacetimes such as Einstein universe [14] 
and maximally symmetric spacetimes [15] the above-mentioned models can be solved ex
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actly in the leading order of large N expansion technique. Finally, dynamical symmetry 
breaking in the external gravitational and magnetic fields was considered [16]. 

It is well-known that low dimensional four-fermion field theories, especially the (2+1)
dimensional GN model, in curved spacetimes [13,17,18,19] and in the nonsimply connected 
spacetimes [20,21] may be very useful for the investigation of physical processes in thin 
films and in the materials with layer structure. The matter is that an external stress, ap
plied to the planar system, can change the topology and curvature of a surface. A great 
amount of observable physical phenomena are due to nonzero particle density (supercon
ductivity, quantum Hall effect, etc.). So, here the influence of both chemical potential 
and curvature of space on the phase structure of (2+1)-dimensional GN model is studied. 
Especially, we shall consider R 1 X M 2 spacetime to clarify our discussion. Here M 2 is an 
arbitrary weakly curved noncompact two dimensional spatial surface. 

In Section 1 we evaluate the one-loop effective potential in R 1 X M 2 spacetime at 
nonzero chemical potential. In this we suppose that surface M 2 curves slowly, so we keep 
only terms independent of curvature R and terms linear in R. Section 2 gives a detailed 
analysis of the effective potential, which shows the existence of a phase transition restoring 
the chiral symmetry of the system while the curvature R and chemical potential JL are 
varied. Finally, we summarize our results in Section 3. 

1. Effective potential in R 1 x M 2 spacetime at f-L =1= 0 

The four-fermion model in the R 1 X M 2 spacetime, where M 2 is the two dimensional 
weakly curved space, is described by the action [11,13,18] 

(1) 

where 9 is the determinant of the spacetime metric g~v, V ~ is the covariant derivative 
and the summation over j is implied (j = 1,2, .. , N). Here fermion fields 'l/Jj are taken in 
the reducible four dimensional representation of 8L(2, C). For this case the algebra of 
the ,-matrices is presented in [2]. This action has the discrete chiral symmetry, 

(2) 

As a result, the chiral symmetry is maintained at any order of ordinary perturbation 
theory. However, as is evident from different nonperturbative approaches [1,2,5] the sym
metry may be broken dynamically for large values of coupling constant A. To see the 
nonperturbative features such as spontaneous symmetry breaking and dynamical mass 
generation in the present model, it is convenient to rewrite the above action in an equiv
alent form [1] by introducing the auxiliary field u(x), 

8 = Jd3XN [ -i'l/Jj,~(x)V~'l/Jj - u'l/Jj'l/Jj - - 2AN u2] . (3)
2 

This expression suggests explicitly that the vacuum expectation value of u field plays the 
role of mass for the fermions. In order to find the effective potential in the theory with the 
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action of Eq. (1), we follow [12,13] where this quantity was considered in a weak curvature 
approximation. First of all let us integrate over the fermion fields in Eq. (3) and evaluate 
an effective action Seff (u) describing the self-interaction of u field: 

exp(iNSeff(u)) == JD"pD{Jexp[iS("p,~,u)]. (4) 

Here we use the 1/N expansion which is the fermion-loop expansion. In the mean-field 
approximation, where the u(x) field is assumed to be constant, and to the leading order in 
the large N, one can obtain the one-loop effective potential U(u) from the action Seff(U): 

2 

U(u) == ~2 + i tr(xlln(i,lJ(x)\71J - u) Ix), (5) 

where tr is over indices other than spacetime indices. Using the Green function GF(x, Yj u) 
defined by the relation 

(6)
 

we rewrite Eq. (5) as follows: 

(1)
 

The logarithm can be eliminated from this equation by introducing the parameter s: 

K - U] ItT 1 
[ (8)In K == - Jo ds K - s ' 

where an operator K is given as i,lJ(x)\71J in the present case. Therefore, Eq. (1) is 
rewritten in the following form: 

u
2 ItT 3 

kJ d
U(u) == 2,\2 - i tr Jo ds (21r)3. GF(kj s), (9) 

where the momentum-space Green function GF(k; s) has been used. 
Now one can introduce the Riemann normal coordinate [22] with origin at any point in 

the spacetime. In this local coordinate system we use the weak curvature approximation 
for the Green function GF(k; s): 

,.·tka + s R ,aka + S 2 IJ ~ ( ,aka + 8) 
k2 - 8 2 - 12 (k2 _ 82)2 + 3RIJ~k k (k2 _ s2)3 

1 aJcdR klJ. 1 (10)- 2' cdalJ (k2 _ 82)2 ' 

where Jab == ~ [,a, ,b], and the Latin and Greek indices refer to a local orthonormal frame 
and general coordinate system, respectively. Eq. (10) is the linear approximation for 
the Green function GF(k; s) in the curvature R [11,12,13]. According to the well-known 
method developed in [23], one should neglect any terms involving derivatives higher than 
those of the second order in the metric tensor expansion to obtain Eq. (11). 
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Now let us consider the effect of nonzero 
JIII ~~u 

chemical potential 1£ on the system. It is com
ioo mon knowledge that the fermion-number den

sity is directly related to the chemical po
tential 1£. Mathematically, the presence of 
nonzero chemical potential is realised by shift
ing the energy levels ko-----.-------1----.-_

c	 

in the propagator 
o I'	 GF(kj s) by the amount of 1£ [24]. Thus, we 

are to evaluate the effective potential U(u) in 
Eq. (9) under effects of both Rand 1£. Using 

-1.:X) the contour integration method [24], we can 
perform the integration over momentum klJ • 

Denote 11 as the integral of the first term in 
GF(kj s) over k and s. Its calculation proceeds 

Fig. 1.	 Tfle contour C in the complex kO as follows: first, the procedure of integration 
plane. over ko, denoted as I~, gives the result: 

.-	 Jdko "'Y°(ko + 1£) + "'Y'k, + s 
I~(k,s) - tr 21r (ko+I£)2-E~ 

_ ~ 1'00 s dz + ~ 1 s dz 
1r -'00 Z2 - E~	 1r Jo Z2 - E~ 

21'00 s dz	 2is 8( E ) (11)
- - 2	 2 + - 1£ - Ie·

1r -'00 Z - Ele Ele 

Here, E~ _ k2 + s2, the contour C is given in Fig. 1, and the unit step function 8(z) = 
1 for z > 0, 8(z) = 0 for z < 0 has been used. Thus, we get 

2rr J	d k
11 =	 -i}o ds (21r)2I~(k,s) 

u2 [!!- _~] + 8(1£ - u) [.l!-u2 _ ~U3] + 8(u _1£)1£3, (12)
31r 1r2 21r 31r	 6 

where A is the cutoff parameter. Here and in what follows, we can confine ourselves to 
the u ~ 0 region due to a reflection symmetry u f-+ - u of the effective potential U(u). 
However, note that this symmetry is broken when the system selects one of the two ground 
states. In a similar way one finds the contributions 12,13 ,14 of the remaining terms of 
GF(kj s) to potential (10): 

12 - !!:..... [-u + 8(1£ - u)(u - ~(2) + 8(u -p)!!:.] ,
241r	 21£ 2 

13 _1_ [R u - Roo [8(1£ - u)(u - ~(2) + 8(u -I£)!!:.]] ,
121r	 21£ 2 

1 
- 121r R U, 

14 - O. (13) 
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We confine ourselves to the Roo = 0 case without losing the generality of our discussion.. 
So, in the third line of Eq. (13), we have set Roo = o. However, the fourth line of Eq.(13) 
is due to a relation tr[,i,;,Ic] = o. 

At this stage it is convenient to introduce the mass parameter M instead of the 
coupling constant A by the following way [2]: 

31 kE 1fA d
A2 - 4 (27r)3 k1 + M2 

2 1 
- -A--M. (14)

7r2 7r 

So, we shall consider the case A > Ac only, where A;2 =4JA d3kE(27r)-3k'E2. Summing 
up all terms Ii in Eq. (12) and (13) and inserting the above equation into Eq. (9), one 
sees that the two A-dependent terms cancel out, and thus the finite effective potential to 
one-loop order is obtained. Then, the p- and R-dependent one-loop contributions U11J ( u) 
to the potential U(u) are completely separated from the Minkowski-space result: 

(15)
 

where UF(U) is the effective potential of the original theory in the flat Minkowski space
time. Here 

(16) 

In this expression one can find the following two facts. Firstly, Uk ( u) is finite and,
lJ 

as R, p ~ 0, U1
1J
(u) vanishes. Thus, the renormalisation procedure is identical to the 

case of Minkowski spacetime. Secondly, in the limit p, R ~ 0, U(u) is reduced to the 
Minkowski-space effective potential UF(u). 

It is well established that there are two distinct phases in the three-dimensional GN 
model [1,2,7]. For a weak coupling phase with the coupling A < Ac , we have (u) = O. 
Thus, the fermions are massless and the chiral symmetry remains intact. However, for 
the strong coupling phase A> Ac , u field has nonzero vacuum expectation value (u) = M 
, so the chiral symmetry Eq. (1) is dynamically broken and fermions acquire the mass, 
which is equal to the mass parameter M from Eq. (14). 

For simplicity of our analysis in the next sections, we shall introduce the following 
rescaled dimensionless quantities defined as U(z) =-rrU(U)/p3, R == R/p2, Z =u/p, and 
p, =p/M. In terms of these quantities, Eq. (15) is rewritten in the much simpler form: 

for z < 1 
(17)

for z ~ 1, 
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where U(x) is a continuous function at x = 1. We also wish to find the induced fermion 
mass (a-) as a function of curvature R and chemical potential JL. Then, the gap equation 
f,,?r the fermion mass can be obtained by taking the derivative of the effective potential 
U(x) with respect to x, and so we obtain 

0= {(I-k-~)x+~, forx<1	 (18) 
2 z+R r >1 . x	 - P. 24' lor x _ . 

2. Restoration of chiral symmetry 

Now we shall analyze in detail the effective potential of Eq. (17) in order to investigate 
the phase structure of the model in the (R,JL) plane. The fermion mass (CT) will be derived 
which depends on Rand JL and the nature of the phase transitions will be discussed. For 
clarity, we shall consider three distinct cases: JL =J 0 and R = 0, then R =J 0 and JL = 0, 
and finally R =J 0 and JL =J o. 

A. The	 case JL =J 0 and R = 0 

Let us first examine the effect of nonzero chemical potential on the system. In the 
limit R -t 0, the effective potential Eq. (17) is reduced to a simple form: 

- { (1 - ~) z2
2 

, for x < 1 
U(x) = (_ J.L3 ) z2 ! r 1 (19) 

x 2jl 3 + 6' lor x 2:: . 

To see a phase transition as (t increases from a broken phase to a symmetric one, it is 
necessary to examine the behavior of U(x) as a function of ft. It is possible to find the 
following two properties of U( x). For (t > 1, U(x) is a monotonically increasing function 
of x, and so the global minimum of U(x) occurs at x = o. While for (t < 1, U(x) has a 
global minimum at x = 1/{t with the value: 

fJ (x = .!.) = _ 1 (1 - (t3) . (20)
{t 6 (t3 

These facts indicate that the system undergoes a phase transition from the (CT) = M state 
to the (0-) = 0 state at the critical value JLe of the chemical potential, given as 

/-£e = M.	 (21) 

Solving the gap equation for the induced fermion mass, Eq. (18) with R = 0, one can find 
that 

(CT) = M (22) 

below /-£Cl and (CT) = 0 above JLe. Except when JL = JLe, the order parameter (CT) does not 
(\'	 depend on the value of JL. That is, the value of order parameter (CT), which minimizes the 

potential, jumps discontinuously from (]" = M to CT = 0 at the transition point JLe. Hence, 
at the point JL = JLe we have a first order phase transition from a massive chirally broken 
phase to a massless chirally invariant phase of the model. 

6 



B. The case R -:f 0 and JL = 0 

In this case only the effect of curvature on the system will be considered. In the limit 
JL -+ 0, the general effective potential of Eq. (17) has the following form: 

(23) 

U(lT) 

This expression coincides with that obtained in [14~18]. From Eq. (23) one can see that 
in the region of small values of IT the dominant contribution to U( IT) comes from the R
dependent linear term in IT. Thus, there is a potential barrier between IT = 0 and second 
local minimum of U(lT). As a result, it turns out that with the curvature R increase the 
discontinuous phase transition occurs from a chirally broken phase to a symmetric one. 
The critical value of the curvature Rc , at which a first order phase transition occurs, is 
defined by the following two conditions: 

U'(lTo) = 0 and U(lTo) = 0, (24) 

where lTo denotes the second nonzero local minimum of the potential. Furthermore; one 
can find that only for R > Rc the minimum of the potential at the symmetric point IT = 0 
is lower than the asymmetric local minimum at a nonzero lTo. From the gap equation (18) 
with JL = 0, one can evaluate the local minimum of the potential lTo, 

(25)
 

which at the same time equals the fermion mass (IT), induced under the influence of 
curvature R for R < Rc only. Thus, applying the critical condition of Eq. (24) to the 
effective potential of Eq. (23), one can obtain the critical curvature 

(26) 

The phase transition under the influence of R is a first-order one since it occurs discontin
uously. The same result for the Rc in (2+1)-dimensional GN model in arbitrary weakly 
curved spacetime was obtained in [11,18]. . 

c. The case R -:f 0 and JL -:f 0 

In the given Subsection we are going to explore a general case wherein the system 
is specified by the curvature and finite chemical potential. To investigate the vacuum 
structure of the system when Rand JL are varied, one must first examine the behavior 
of the potential U(z) as a function of Rand JL. It .is very helpful to sketch qualitatively 
the effective potential U(z) from Eq. (17). For jl > 1 (JL > M) the global minimum of 
U(z) occurs only at z = O. While for jl < 1 (JL < M), the global minimum of U(z) lies 
certainly at nonzero point. Therefore, when jl < 1, it turns out that the system undergoes 
a phase transition from the (IT) -:f 0 vacuum state to the (IT) :::;: 0 state at a certain critical 
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curvature Rc depending on J-L. Using a much detailed analysis of the effective potential 
U(x) in Eq. (17), one can see that until the system approaches the critical point with 
the increase of curvature, the second local minimum of U(z) occurs only in the region 
x > 1. Therefore, in the procedure of determining the critical value of the curvature Rc' 

the effective potential needs to be considered only in the z > 1 region in Eq. (17). 
In this case we can obtain the critical curvature Rc also using the condition given in 

Eq. (24), with the only change (To ~ Zo, where Zo denotes the second local minimum 
of the potential. That is, in the present case the phase transition under investigation is 
also a first-order one. As can be easily checked from the gap equation (18), the second 
minimum lies at the point 

1 ( rRi2)3:0 = 2P. 1 + V1 - -t .	 (27) 

Thus, the critical condition of Eq. (24) with this value for Zo leads to the self-consistent 
relation on the critical curvature Rc : 

3 24z~ ( ) 16xo - -_- + 2zo + 1 Rc + 8 = 0,	 (28) 
J-L 

where Xo has the value given in Eq. (27), with R replaced by Re • 

5 r--~--~--~----~-----' 

0.2 ·-·-0~.-2-0~.-4--0.-6--0.-S--t-'-1.-2--1.-4-...J1.6 
0.2 0.4 0.6 O.S 1 

u/AlIt/lH 

Fig.. 2.	 The critical curvature R c /M 2 as a Fig. 3. The effective potential1rU(u)/M3 as a 
function of nonzero chemical potential function of u / M at the fixed value of 
J.t/M. In region B, chiral symmetry is J.t/M = 1/2. Four interesting cases of 
broken and fermions acquire dynami R, where R == R/M 2 , are considered, 
cal masses, while in 5, the symmetry and the critical curvature Rc is then nu
is restored by the curvature effect, and merically obtained: He = 2.96. 
fermions become massless. 

2 

3 

4 
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The numerical solutions of Eq. (28) are illustrated in Fig. 2. Note, that with J-L -+ 0, the 
R approaches 4.5 M2 and with R -+ 0, the J-Le approaches M. These limiting cases have e 
been already discussed in the previous Subsections. Eq. (27) suggests that the induced 
fermion mass (0'), with (0') = J-LXo, does depend on the curvature R only. That is, (0') 
does not depend on J-L, and thus it has the same expression as in Eq. (25). In Fig. 3, the 
effective potentials are given for four distinct values of R at fixed J-L = ~. 

3. Summary and Discussion 

In the present paper we have derived the effective potential of the three-dimensional 
Gross-Neveu model in the curved spacetime of the form R1 

X M 2 and with taking into 
account the chemical potential J-L as well. Then, the critical curvature Re at which dy
namical symmetry breaking disappears, was determined in terms of the induced fermion 
mass M in the limit R, J-L -+ °and at nonzero chemical potential J-L, as given in Fig. 2. 

In Subsections A and C it was shown that at fixed curvature R < Re a critical value 
of chemical potential J-Le( R) was available. In this critical point the system undergoes a 
chiral phase transition of the first order. We also observed that the order parameter (0') 
of the phase transition, corresponding to the minimum of the potential, did not depend 
on the value of J-L, except at the critical value J-L = J-Le, even though the phase transition 
was induced by the chemical potential. This phenomenon is connected with the fact that 
the composed field 0' ,......, 1j}1jJ is a real field and carries no charge. It was observed also in 
two-dimensional GN model in R1 x 8 1 spacetime [21], however, in that model there is 
another massive phase, in which fermion mass is J-L-dependent quantity. 

Furthermore, analysing Eq. (21) one can come across an interesting fact. Let us sup
pose that particle density N(J-L) of the system is not zero. In this case, by the analogy with 
the condensed matter physics, the chemical potential corresponds to the Fermi energy, 
that must be greater than the minimal energy of one fermion, i.e. J.£ >< 0' >. Hence, 
at J.£ < J-Le = M there is a massive phase of the theory « 0' >= M), at which N(J-L) 
equals zero. At J.£ > J-Le = M the symmetric phase of the model is arranged. Here fermion 
density in the vacuum is not zero, and at the critical point J.£ = M, the function N(J-L) is a 
discontinuous one. Recently, a similar nonanalytic behaviour of Chern-Simons coefficient 
in the presence of chemical potential has been found in a (2+1)-dimensional QED [25]. 

In Subsection B we have shown that R e = 4.5M2 at J.£ = O. This can be roughly seen 
from the following two facts. Firstly, on dimensional grounds the critical curvature Re 

must be proportional to the square of some quantity with the dimension of mass. Secondly, 
the effective potential for the composite 0' field in Eq. (23) has two parameters R and M, 
and so, the remaining parameter apart from R in this theory is M. Note, that our value 
for Re is found in a weak curvature limit, and thus its more accurate value can be obtained 
by considering higher order corrections to scalar curvature R. However, in such improved 
schemes, it is expected that the system still shows the same qualitative properties as those 
found in the previous Sections, including the occurrence of a first order phase transition. 
(In [18] some speculations about the validity of the weak curvature expansion for large 
values of R are presented.) 
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Finally, one may consider the case of negative curvature since this method has the 
advantage of being applicable to any metric. Then, Eq. (25) indicates that under the 
effect of negative curvature R the minimum of the potential is located farther from the 
origin than without the curvature effect. Therefore, in this case the symmetry restoring 
phase transition does not happen. 

We hope that the above results may be useful for condensed matter physics and for 
astrophisical applications, especially for the description of different phenomena in the core 
of neutron stars as well. 

We are grateful to Prof. S.D.Odintsov and Dr. P.A.Saponov for reading the manuscript 
and some critical remarks as well as to Prof. V.P. Gusynin for useful comments. D.K. Kim 
thanks Prof. K.-S. Soh, Prof. C.K. Kim and Prof. J.H. Vee for helpful discussions. 
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1I.K.KHM, K.r.KmIMeHKO
 

3<t><t>eKT HeHyJIeBOK nJIOTHOCTH B Mo.neJIH rpocca-HeBbe Ha CJIa601lCKpHBJIe:HHbIX
 

nOBepXHOCT.sIX.
 

0pHrHHaJI-MaKeT no.nrOTOBJIeH c nOMOID:b1O CHCTeMbI U-TEX.
 

Pe.naKTop E.H.rOpHHa. TeXlIWlecKD pe.naKTOp H.B.OpJIOBa.
 

IIo,IumcaHo K ne-qaTH 29.10.97. <l>opMaT 60 X 84/8. 0<t>ceTHaJI ne-qaTb. 

IIe-q.JI. 1.37. Y-q.-H3.n.JI. 1.05. THpa>K 180. 3aKa3 1178. HH.neKc 3649. 
JIP N2020498 17.04.97. 

rHU P<I> HHcTHTyT <t>H3HKH BbICOKHX 3Heprd 

142284, ITpoTBHHo MOCKOBCKOH 06JI. 
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