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Abstract 

Alekseev A.I. and Arbuzov B.A. Analyticity and Minimality of Nonperturbative Contribut.ions 

in Perturbative Region for il,: IHEP Preprint 97-26. - Protvino, 1997. - p. 8, tables 1, refs.: 23. 

It is shown, that a possibility of freezing a QCD running coupling constant at zero in the 

approach with "forced analyticity" can not be in accord with the Schwinger-Dyson equation for 
the gluon propagator. We propose to add to the analytic expression the well-known infrared 

singular term l/q2 as well as a pole term corresponding to "excited gluon". By this example 
we formulate the principle of minimality of nonperturbative contributions in the perturbative 

(ultraviolet) region, which allows us to fix ambiguities when introducing nonperturbative terms 
and maintain the finiteness of the gluon condensate. As a result we obtain estimates of the 

gluon condensate, which quite agree with the existing data. The nonzero effective mass of the 

"excited gluon" leads also to some interesting qualitative consequences. 

AHHoTaU;UJl 

AJIeKceeB A.H., Ap6y30B B.A. AHaJIlfTlflIHOCTb H npmrmm MHHH:MaJIbHOCTH HerrepTyp6aTHBHbIX 
BKJIa.llOB B rrepTyp6aTHBHoH 06JIaCTH .llJI.SI il,: IIpenpHHT H<I>B3 97-26. - IIpoTBHHo, 1997. - 8 c., 

1 Ta6JI., 6H6JIHorp.: 23. 

IIOKa3aHO, "liTO "3aMOpa)l(HBaHHe" 6erymeH KOHcTaHTbI CB.SI3H KXLI B6JIH3H HyJI.SI, rroJIy"lla

eMoe MeTo.lloM "aHaJIHTH3aUHH", He corJIacyeTc.Sl c ypaBHeHHeM IIIBHHrepa-LIaHcoHa .llJI.SI nllO

oHHoro rrporraraTopa. IIpe.llJIo)l(eHo .llo6aBHTb K aHaJIHTH"'qeCKoMY BbIpa)l(eHHlO H3BeCTHbIH CHH
ryJI.SIpHbIH B HH<ppaKpaCHoH 06JIaCTH "lIJIeH BH,lla 1/q2, a TaK)l(e rrOJIIOCHOH "'qJIeH, cooTBeTcTByIO

IIJ:HH "Bo36y)l(.lleHHoMy rmooHY". C<POPMYJIHPOBaH npmm;HII MHHHMaJIbHOCTH HerrepTyp6aTHB
HbIX BKJIa.llOB B rrepTyp6aTHBHoH (YJIbTpa<pHOJIeTOBoH) 06JIaCTH, KOTopbm rr03BOJI.SIeT 3a<pHKcH

pOBaTb npOH3BOJI BBe.lleHH.SI HerrepTyp6aTHBHbIX "lIJIeHOB H o6eCrre"tIHTb KOHe"'qHOCTb rmooHHoro 
KOH.lleHCaTa. IIoJIy"lleHHa.Sl oneHKa BeJ']]{tlHHbI rmooHHoro KOH.lleHcaTa HaXO.llHTC.SI B COrJIaCHH C 
3KCnepHMeHTaJIbHbIMH ,ZlaHHbIMH. HeHyJleBoe 3Ha'tJeHHe 34>4>eKTHBHoH MacclU "Bo36Y)l(,ZleHHoro 

rJIIOOHa" npHBO.llHT TaK)l(e K rrpe.n;CTaBJI.SIIOIInIM HHTepec Ka"lleCTBeHHbIM CJIe.n;CTBHHM. 
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The discovery of the asymptotic freedom property [1] in non-Abelian gauge theories 
turned out to be a decisive factor in the formation of QCD as a strong interaction theory. 
The negative sign of QCD J3-function J3(g2) = J3og4 + ... ,130 = -bo/(167r 2), bo = 1102/3 
2Nf /3 in the vicinity of zero, provided a number of active quarks being not too large 
(for SUc (3) N f ~ 16), gives a coupling constant, which describes quarks and gluons 
interaction at large Euclidean q2, i.e. at small distances, 

-2( 2/ 2 ) g2 (1)9 q I-l ,g = 1- J3og 2 In(q2/fL2) , 

tending towards zero. Therefore, in the deep Euclidean region we are allowed to use 
the perturbation theory. In expression (1), which takes into account the main loga
rithms, fL is a normalization point. An account of the next g2 corrections does not 
change an asymptotic behaviour (1) for q2 ~ 00. By introducing a dimensional constant 
A2 = 1-l2exp( -47r/(boa s)), as = g2/47r, we turn from explicitly renormalization invariant 
expression (1) to the following formula 

_ 2 47r 
as(q) = b ln(q2/A2)" (2)o

It is reasonable to estimate parameter A in approximate expression (2) to be around 
of few hundreds MeV. With decreasing q2, effective constant (2) increases, which may 
indicate a tendency of unlimited growth of the interaction at large distances, leading to a 
confinement of coloured objects. However, at q2 = A2 in expression (2) the pole is present, 
which is nonphysical at least due to the failing of the perturbation theory, starting from 
which formula (2) has been obtained. 

In recent work [2] a solution of the problem of a ghost pole was proposed with imposing 
a condition of analyticity in q2. The idea of "forced analyticity" goes back to works [3,4] 
of the late fifties, which were dedicated to the problem of Landau-Pomeranchuk pole [5] 
in QED. Using for O:s(q2) a spectral representation without subtractions, the following 
expression for the running coupling constant was obtained in paper [2] 

(3) 
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This expression has the asymptotic freedom property and its analyticity in the infrared 
region is due to nonperturbative contributions. It does not contain any additional pa
rameter and has a finite limit at zero, Q:~1)(0) == 47r /bo ~ 1.40 (freezing of the coupling 
constant), which depends only on symmetry factors. This limit turns out to be stable 
with respect to higher orders corrections. 

As it is noted in work [4], a procedure of summation of leading logarithmic terms is not 
defined uniquely. A partial fixation of this ambiguity in QED is realized by using a method 
of summation of the perturbation theory series under the sign of the spectral integral 
of the Kallen-Lehmann representation. Nevertheless after such summation a functional 
ambiguity remains, which on the one side, does not violate correct analytic properties of 
Green functions in a complex plane of a corresponding invariant variable and on the other 
side, contains nonanalytic dependence on constant 92

. In work [6] while investigating the 
photon propagator in QED it was shown, that ambiguities in summation procedure of the 
diagram series could be removed provided one demands not only the validity of spectral 
representation, but also the fulfillment of equations of motion. 

In the present paper we consider a problem of consistency of the constant behaviour of 
the effective charge in the infrared region with Schwinger-Dyson (SD) equation for a gluon 
propagator. Further we include into consideration nonperturbative terms, the singular in 
the infrared region term rv 1/q2 in particular, the necessity of the renormalization invari
ance being taken into account. Then we discuss possibilities of an adjustment of demands 
of confinement, asymptotic freedom, analyticity, accordance with the perturbation theory 
and correspondence with estimates of the gluon condensate value. 

To study the problem of a possibility of a constant behaviour of the running constant 
in the infrared region let us consider the integral SD equation for the gluon propagator 
in ghost-free axial gauge [7] A:1JJ-L == 0, 1JJ-L - gauge vector, 1J2 =I O. In this gauge 
the effective charge is directly connected with the gluon propagator and Slavnov-Taylor 
identities [8] have the simplest form. The important preference of the axial gauge consists 
in a possibility to exclude the term from the SD equation, which contains the full four
gluon vertex by means of contraction of the equation with tensor 1JJ-L1Jv /1/2 

. 

In what follows we shall work in the Euclidean momentum space, where smallness of 
the momentum squared is immediately connected with smallness of its components. The 
equation to be considered has the form: 

[D;: (p) - D~)J-LV(p)] 1/J-L~V == IIJ-Lv(p) 1/J-L~V , 
1/ 1/ 

II",,(p) = - C~(~:;~n Jd"kr~~).p(p, -k, k - p)D>.u(k)Dp5(p - k)x 

x r30"0v(k,p-k,-p), (4) 

where IIJ-Lv(p) is the one-loop part of the polarization operator, DJ-Lv{p) is the propagator, 

rO"ov( k, p-k, -p) is the one-particle irreducible three-gluon vertex function, r~~p(p, -k, k
p) is the free three-gluon vertex. 

We suppose the approximation DJ-Lv{p) == Z(p2)D(o)J-Lv(p) to be appropriate to study the 
infrared region. Let us divide the momentum integration domain in expression (4) in two 
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2 parts: k2 < ..x2 and k2 > ..x2 , where ..x is sufficiently small, but finite. Then domain k2 > ..x
in the case of absence of kinematic singularities in three-gluon vertex gives a contribution, 

2which is regular in p2 for p2 ~ 0, and in domain k2 < ..x full Green functions can be 
approximated by free ones up to constant factors according to an assumption of a running 
constant to be frozen at zero. Then one can write 

x Di~(k)D~~\p - k)r~~ov(k,p - k, -p)"lIl"lvl"l2 + Q(p2 j y,..x, n). (5) 

Here y = (p"l)2Ip2"l2 is the gauge parameter. The integration in formula (5) can be 
extended up to the entire domain of momentum, which results in a change of the regular 
in p2 contribution Q. Thus one has 

() "lll"lv _ Z(O)n(l)( )"lll"lv Q( 2. )n IlV P -2- - IlV P -2- + p, y, n , (6) 
"l "l 

where n~J(p) is the one-loop perturbation theory contribution to the polarization opera
tor. This contribution has been calculated in [9] and has rather a complicated structure. 
Let us present the expression for the leading terms of convolution (6) at y ~ O. We have 

(1) ) 771l"lv 2 [22 22 ( p2) 70n (p - = Cp -- - - I - 2 + In -- --+
IlV 772 3f 3 41rJL2 9 

40 2 ]+3Y In Y + O(y, y ln y) . (7) 

Here C = g2C2/321r 2 , I is the Euler constant. From expression (7) we see, that singularity 
at y = 0 is smooth and the limit at y = 0 does exist. Term"J 11f (n = 4 + 2f) as well as 
constant ones could be absorbed into function Q, while the logarithm of the momentum 
squared necessarily persists. The equation for function Z(p2) takes the form 

Z-1(p2) = 1+ Z(O)~~~~ 1; In p2 + Q(p2;n). (8) 

We see, that behaviour Z(p2) ~ Z(O) #- 0 for p2 ~ 0 does not agree with the SD equation. 
This conclusion stimulate us to look for the possibilities different from the assumption 

on the finiteness of the coupling constant at zero. Recently a possibility of the soft singular 
power infrared behaviour of the gluon propagator has been discussed [10], D(q) "J (q2)-I3, 
q2 ~ 0, where (3 is a small positive non-integer number. In Ref. [11] the consistency of 
such behaviour with Eq. (4) was studied. A characteristic equation for the exponent (3 
was obtained and this equation was shown not to have solutions in the region 0 < {3 < 1. 
The authors of Ref. [12] also came to the conclusion on the inconsistency of the soft 
singular infrared behaviour of the gluon propagator. The case of possible interference 
of power terms was studied in Ref. [13] and it was shown that in a rather wide interval 
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-1 < 13 < 3 of the non-integer values of the exponent the characteristic equation had no 
solutions. At present a more singular, in comparison with free case, infrared behaviour 
of the form D(q) ~ M 2/(q2)2, q2 ---+ 0 seems to be most justified [14,15,16]. The physical 
consequences of such enhancement of zero modes are discussed in reviews [17,18]. Bearing 
in mind the remarks stated above let us consider the following expression for the running 
coupling: 

2 2
47r [1 A A ]

a.(q2) == 1;;; lnq2/A2 + A2 _ q2 + c~ .� (9) 

Let us represent this expression in explicitly renormalization invariant form. It can be 
done without solving the differential renormalization group equations. In this order we 
write a. (q2) = 92(q2 / J.L 2, 92)/47r and use the normalization condition 92(1,92) = 92. Then 
we obtain the equation for wanted dependence of the parameter A2 on 9 2 and J.L2: 

From dimensional reasons A2 = J.L2 exp{ -<p(x)}, where x = b092/167r2 == boo../47r, and for 
function <p(x) we obtain the equation: 

x ==� _1_ + 1 + ce-tp(:r).
<p(x) 1 - etp(:r) 

The solution of this equation at c > 0 is monotonously decreasing function <p(x), which 
has the behaviour <p(x) ~ l/x at x ---+ 0 and <p(x) ~ -In(x/c) at x ---+ +00. The 
relation obtained ensures the renormalization invariance of a.,( q2). At low 92 , we obtain 
A2 = J.L2 exp{-47r /(boo..,)}, which indicates the essentially nonperturbative character of 
both last terms of Eq. (9) and these terms are absent in the perturbation theory. With 
the given value of the QeD scale parameter A, the parameter c can be fixed by the string 
tension K or the Regge slope a' = 1/(27rK) assuming the linear confinement V(r) ~ Kr = 
a2r at r ---+ 00. We define the potential V(r) of static qq interaction [19,20] by means 
of three-dimensional Fourier transform of 0..,( if)/if with the contributions of only one 
dressed gluon exchange taken into account. This gives the following relation 

(10) 

At large q2 from Eq. (9) one obtains 

(11) 

From Eq. (11) it is seen that in the ultraviolet region the nonperturbative contributions 
decrease more rapidly than all renormalization group improved perturbation theory cor
rections. The value c == 1 corresponds to the maximal suppression of nonperturbative 
contributions in the ultraviolet region. Accepting this condition, one obtains the connec
tion of the QeD scale parameter A and string tension K == a2 of the form A2 == 3boK/87r . 
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Taking a ~ 0.42 GeV, one obtains for A a reasonable estimation, A ~ 0.434 GeV (bo == 9 
in the case of 3 light flavours). 

Considering the nonperturbative contributions, the following arguments can be ex
pressed. One knows QCD to be renormalizable in the perturbation theory and, as usual, 
the renormalization procedure can be developed to remove the divergences in all the 
orders. However, what about the nonperturbative contributions? If they bring in the 
additional divergences, then the problem of renormalization turns out to be unsolved. 
The situation, when nonperturbative contributions do not violate the perturbative renor
malization properties seems to be more attractive. It takes place if the nonperturbative 
contributions decrease at momentum infinity sufficiently fast and do not introduce the 
divergences in observables. So, it is natural to demand their fastest of possible decrease 
at large momenta. An application of the principle of minimality of nonperturbative con
tributions in the ultraviolet region will be shown further by taking as an example the 
important physical quantity, namely, the gluon condensate, K = < a ll /1r : G~v G~v :> . 
According to the definition (see e.g., [17]) up to the quadratic approximation in the gluon 
fields, one has after the Wick rotation 

4 
- 48 f d k (- (k 2 ) -pert(k2 )) _ 3 foo -np( ) d (12)K - -;- (21r )4 all - all - 1r3 J all Y y y,o 

where a~P is nonperturbative part of the running coupling constant. In our case the two 
last terms of Eq. (9) should be taken. By substituting these terms in Eq. (12), one can 
see the logarithmic divergences of the integral at infinity and at finite point k2 = A2 

. 

The acceptance of the cancellation mechanism for the nonphysical perturbation theory 
singularities (2) by the nonperturbative contributions leads to the necessity of supplemen
tary definition of the integral (12) near point k2 = A2 

. This problem can be reformulated 
as a problem of dividing perturbative and nonperturbative contributions in all resulting 
in the introduction of some parameter ko = 1 -;- 2 GeV. This provides the absence of the 
pole at k2 = A2 in both perturbative and nonperturbative parts. The divergence of the 
integral (12) at infinity stimulates a further modification of the running coupling constant. 
Going over from Eq. (3) to Eq. (9), the isolated singularity has been introduced. In this 
case the singularity corresponding to the unitary cut was not changed and in accordance 
with the approach of Refs. [3,4,2] is determined by the perturbation theory. Following to 
this logic, let us consider the expression for all with one more isolated singularity in the 
time-like region. The tachion singularity in the space-like region is certainly prohibited. 

. The principle of minimality of nonperturbative contributions in ultraviolet region then 
leads to the following unique expression for the running coupling constant 

(13) 

with fixed residue and mass parameter mg, 

(14) 
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for the newly introduced term. Expression (13) can be represented in explicitly renormal
ization invariant form similar to expression (9). Nonperturbative contributions in Eq. (13) 
decrease at infinity as 1/q6, the integral in Eq. (12) converges and we can obtain 

4 
K = -2 A4 {In( c - 1) + k~ / A2 + In( k~ / A2 

- 1)} . (15)
37t" 

Phenomenology gives the positive value of the gluon condensate K in the interval 
(0.32 GeV)4 - (0.38 GeV)4 (21,22]. As an example, we take values ko = 1.2 -;- 1.3 GeV. If 
one regards the string tension parameter to be given, then from Eqs. (14), (15) and (10) 
one has the dependencies of all the values under consideration on the parameter c, which 
are presented in Table I. 

Note that values c == 1.063, A = 422 MeV, m g == 1.682 GeV, ko = 1.265 GeV corre
spond to the conventional value of the gluon condensate [21] K = (0.33 GeV)4. Certainly, 
these results should be considered as tentative, but nevertheless, they seem encouraging. 

Table 1.� Parameters of the running coupling constant (13) and gluon condensate as functions 
of parameter c. 

c A,GeV m g , GeV K 1!4 GeV, K 1!4 GeV, K 1!4 GeV, 
ko = 1.2 GeV ko = 1."25 GeV ko = 1.3 GeV 

1.01 0.433 4.332 0.298 0.309 0.318 
1.02 0.431 3.048 0.307 0.317 0.326 
1.03 0.429 2.476 0.312 0.321 0.330 
1.04 0.427 2.134 0.315 0.324 0.332 
1.05 0.425 1.900 0.317 0.326 0.334 

1.06 0.423 1.726 0.319 0.327 0.335 
1.07 0.421 1.591 0.320 0.328 0.336 
1.08 0.419 1.481 0.321 0.329 0.337 
1.10 0.415 1.313 0.322 0.330 0.337 
1.12 0.411 1.187 0.323 0.330 0.337 
1.16 0.404 1.010 0.323 0.330 0.337 
1.20 0.397 0.889 0.322 0.329 0.336 
1.24 0.391 0.798 0.321 0.328 0.335 
1.30 0.382 0.697 0.319 0.326 0.332 

It is seen from Eq. (13) that the pole singularities are situated at two points q2 = 0 and 
q2 = -m;. It corresponds to the two effective gluon masses, 0 and mg. Therefore, the 
physical meaning of the parameter m g is not the constituent gluon mass, but rather the 
mass of the exited state of the gluon~ It is essential that the residue at m; is very small, 
so the states with the exited gluons should be quite narrow in contrast to the spectrum 
of the coupled massless gluons. 

The qualitative picture of the glueball states corresponding to the running coupling 
constant (13) with m g ~ 1.7 GeV could be the following: 
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1) The states 9 9 - continuous spectrum and very wide resonances are probable; 
2) The states 9 g' - resonances with probable mass interval 1500 - 1800 MeV and 

with width suppression fact,or (1 - c); 
3) The narrow states g' 9' - resonances with possible masses 3000 - 3600 MeV and 

with width suppression factor (1 - C)2. 
Note that in region 2) there are the glueball candidates. Region 3) is insufficiently 

investigated, some indications in favour of the narrow states arise (see e.g., [23]). 

We would like to thank Yu.F. Pirogov and V.E. Rochev for interesting discussion. 
A.I.A. is grateful also to C.D. Roberts, J.M. Namyslovski, and J.P. Vary for stimulating 
discussions. 
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