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Abstract

Klimenko S.V., Smirnova V.V. Detection of Homoclinic Points in Dissipative Dynamical Sys-
tems: IHEP Preprint 96-101. — Protvino, 1996. — p. 5, figs. 2, tables 1, refs.: 14.

We consider some methods for finding homoclinic points of dissipative dynamical systems.
The existence of these homoclinic points implies the existence of invariant hyperbolic sets. It is
shown for the Lorenz, Rikitake, Rossler attractor and for a simple attractor.
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Most of the natural phenomena exhibit chaotic behavior. Its presence can be defined
as the existence of intersections of stable and unstable manifolds of hyperbolic fixed point
or as the existence of homoclinic point or homoclinic trajectories. The existence of the
latter in a dynamical system enables us to discuss some of its properties. The existence
of hyperbolic set follows from existence of transversal homoclinic trajectories.

There has not been any rigorous proof, found at the level of a theorem, for the problem
of existence of homoclinic trajectories in a common dynamical system. In some cases
homoclinic trajectories appear at small periodic disturbances of autonomous Hamiltonian
systems with one degree of freedom, having closed separatrix of loop. To determine the
presence of homoclinic trajectories, it’s possible to use Melnikov’s method [1] (or Palmer’s
method for n-dimensional cases [2]). But only if the dissipation is low and the equations
for manifolds with zero dissipation are known this method is applicable.

This criterion does not imply anything about the appearance of a strange attractor in
dissipative dynamical system showing a stable chaotic behavior in a large area of the phase
space. It should be noted that an attractor is not a manifold. Let us assume that the
dissipative dynamical systems are given in which the presence of homoclinic trajectories
or homoclinic points should be tested, but the equations for the manifolds of hyperbolic
fixed point are unknown.

We consider three-dimension dissipative dynamical systems with a strange attractor.
All the notions and definitions used here are listed in Appendix 1.

Let us assume that for the given nonlinear differential equations there exists an inter-
section of stable and unstable manifolds for the hyperbolic fixed point and the Poincare
map. In this case the unstable manifold returns to the crossing plane. In this case the
Poincare map is not determined in the intersection of the stable manifold and crossing
plane, and is not continous in its neighbourhood.

There are several ways of searching for homoclinic points.

Method 1. One constricts the stable and unstable manifolds for hyperbolic fixed
point and finds the intersection of these manifolds. While building the stable manifold
for a hyperbolic fixed point z, with real eigenvalues, the latter manifold can be approx-
imated with a plane stretched over eigenvectors belonging to negative eigenvalues. An
approximation of curved manifolds W* and W* with planes in some neighborhood of the



hyperbolic fixed point induces an error in the computation of invariant manifolds. The
error can be estimated using quadratic asymptotics of the manifolds mentioned [8]. Some
other difficulties in constructing the stable manifolds are discussed in [7]. For example,
let us consider the construction of the intersection of the stable manifold with the cross-
ing plane, and of the Poincare map for the Lorenz attractor (Fig. 1). Because of the
exponential instability of trajectories on strange attractors,the probability of getting the
intersection of stable manifold and the crossing plane at the Poincare map is small [3].
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Fig. 1. Intersection of the stable and unstable Fig. 2. Stable and unstable manifolds of the
manifolds of the orign with the cross- origin for the Lorenz attractor.
ing plane, and the Poincare map for
Lorenz attractor.

Method 2. For building the stable and unstable manifolds of hyperbolic fixed point
the A-lemma [4] can be used. The lemma can be applied to a local diffeomorphism and
even to a C'-mapping in the Banach space in some neigborhood of the hyperbolic fixed
point. It demands that the partial derivatives be uniformly continuous, and that both
the stable and unstable manifolds be of finite dimensions. So, the local stable (unstable)
manifold of the hyperbolic fixed point of the diffeomorphism should always be considered
in the neighborhood of the fixed point in the stable (unstable) subspace of the linear part
of mapping f. '

As an example we show the construction of the stable and unstable manifolds for the
Lorenz attractor (Fig. 2) by means of the A-lemma.

Method 3. Now, we find the homoclinic points in the strange attractor without
requiring the calculation of the manifolds of the fixed point and the construction of the
intersection of the stable manifold and crossing plane W of the Poincare map.

Let f(z) be the first point where, the unstable manifold originating at ¢ € W intersects
the plane W. This defines the map f : W\S — W. Here S is a line of discontinuity,



it divides W into two parts, W; and W,. Then there is a unique limit p; of the images
of the points from W, approaching S on one side, and there is a unique limit p, of the
images of the points from W,, approaching S on the other side.

Let us consider the process of searching for homoclinic points. To find a homoclinic
point we use the fact that the Poincare map is not determined in the intersection of
manifolds and is not continuous in its neighborhood. First, we test the Poincare map for
discontinuity in the neighborhood of some point. As soon as the neighborhood is found,
we search for a point from the crossing plane where the Poincare map is not defined.
Let us denode this point by z on the plane. Then f*(z) the images of point z obtained
by letting the mapping f act k times are situated along some curves (or curve) on the
plane. Let these curves be called the right (RB) and the left (LB) branches, respectively.
Let P, be a segment of the curve LB. We select points p1,p; € P12 C LB such that
P € LBN W1 , P2 € LBN Wz, and f(p]_) € LBN Wz, f(pz) € RBN (W]_ U Wz) Then
we find sequential points pi,p) € P}, C Pj;'-.. C LB such that f(p{) € LBNW,;
and f(p2) € RB N (W1 UW,). It is clear that if as we have homoclinic points, we have
lim; .o P}, = p* € S, where point p* is a point for which f(p*) is ill-defined. If such a
point cannot be found, there are no strange attractors in the dynamical system.

Modifications of this method for attractors with one branch of the Poincare map is
obvious. This algorithm was used for finding homoclinic points of the Lorenz and Rikitake
attractors, as well as the Rosler attractor and a simple attractor.The results obtained
for the coordinates of the homoclinic points are shown on Table 1. It was made clear
that the Cantor structure exists in the neighborhoods of the homoclinic points of these

attractors [13].
Table 1. The coordinates of the homoclinic points.

X Y Z
Lorenz attractor * | -2.98317 | 1.01683 | 27.
Rikitake attractor * | -0.93793 | 0.33621
simple attractor | 8.6103 | -2.9687
Rossler attractor | -4.1892 -3.401

(IR

*The coordinates of the homoclinic points are given only for the left branch of the Poincare map.
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Appendix 1

Let us introduce some general terminology.
f: M — M be a diffeomorphism of smooth C™-manifold M, 1 < m < oo of dimension not

less than 2.

An f-invariant set A C M is said to be hyperbolic if for every z € A the tangent space

T,M can be written as a direct sum of spaces E¥, E!, T,M = EV @ E:, where dimE* = u,
dimE! = u, u+ s = dimM and

We

1. df(E;) = Ej(z), df(E7) = Ef(z),
2. there exist constants ¢ > 0 and A € (0, 1) such that

a) [ldfeoll < eAflo], v € B,
b) [[df-vll < cAullvll, v € B2, n > 0,

3. E! and E depend continuously on z € A.

denote by B,(z) the ball of radius » with a center at z € A



Definition 1. A submanifold W C M is called locally stable of radius v passing through z € M
if W = Npsof ™(f"(z)). We write W = W/ (z). W = W¥(z) locally unstable of radius r passing
through z if it is a locally stable manifold of radius r of the diffeomorphism f ! passing through z.

Definition 2. If A is a compact hyperbolic set of diffeomorphism f : M — M, then the set
W*(z) = Unxo f " W/(f"(2))]

is called the stable manifold of point = € A.
W*(z) = Unzo /M W(F))]

is called the unstable manifold of the point z. Let p be a hyperbolic fixed point of diffeomor-
phism f. The homoclinic point is called the point of intersection of stable manbifold W*(p) and
unstable manifold W*(p).

Appendix 2

Lorenz attractor

t=o0y— oz

y=rz—y—=zz, for o=10, r=28, b=28/3
z=zy— bz

Rikitake attractor [10]

T =—pz+ 2y
y=—py+(z— Az, for p=1, A=3.75
z=1-=2zy

Rossler attractor [11]

z=—(y+2)

y =z + Ay, forr A=02, B=-04, (C=5.7
2=B+4+zz-Cz

Simple attractor [5]
z=z+y+ 02z
y=z+0.2y
z2=-2z(z+3)+1
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