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Abstract

Logunov A.A. Classical Gravitational Field Theory and Mach Principle: IIIEP Preprint 95-53. —
Protvino, 1995. — p. 29, refs.: 7.

Iquations for the massive gravitational field have been derived in the framework of the
special theory of gravitation, based on the geometrization principle. Graviton mass has been
shown to be crucial for the elaboration of the relativistic theory of gravitation. According to
this theory, homogeneous and isotropic Universe develops in a series of alternating cycles, from
high to minimal density etc., and can not be other than flat. The theory predicts the presence of
a large latent mass of matter in the Universe and prohibits the existence of ‘black holes’. Also,
the theory explains all observable events so far known to occur in the Solar system.

Aunnoraumus

Jlorynos A.A. Teopus KIaCCHYeCKOTO IPABUTAIMOHHOrO mois ¥ npunuun Maxa: Ipenpunt
UPBD 95-53. — Mporsumno, 1995. — 29 c., 6uGmuorp.: 7.

B pa6oTe B paMKaX CIEIIMAIBLHOI TE€OPHH OTHOCHTEILHOCTH Ha OCHOBE IIPHIIIMIIA TeOMeTPH-
3allllH HaXONSTCA YPaBHEHUA IS MAaCCHBIOrO IPaBUTALMOHHOrO moms. Halluume Maccol rpaBu-
Tolla HMeCT MPUHUNIHKAIbIOe 3HaYeH e VI ocTpoenus Teopuu. CoryacHo 5Toil TeopHu rpasi-
Tallilf, OMHOPONHas U M30TponHas Bcenennas pasBuBaeTcs HHKJIMYECKM, OT BONLIION IIOTHOCTH
0 MHHMMAJIBHONH U T.O., I MOXKeT OLITh TONBKO TNOCKO#X. Teopus MpeacKasblBaeT CYIIECTBO-
Banue Bo BceseHioil 3HaMMTCIBHON CKPHITOl Macchl BernecTBa. CyruecTBoBanne Bo Bcenennoit
“yepnbIX” OBIP MONHOCTHIO HCKIOYaeTcs. Teopud o6bACHIET BCC M3BECTHHIE HablllogaTelnblbie
¢daxTil B Conmneunoii cucreme.

(© State Research Center of Russia
Institute for High Energy Physics, 1995



Introduction

Einstein’s General Relativity Theory (GRT), whose basic equations were constructed
by Hilbert and Einstein in 1915, opened a new stage in the investigation of gravitational
phenomena. But though quite successful this theory from the very first moment of its
existence met with principal difficulties in determining physical characteristics of the
gravitational field, and as a consequence, in formulating energy-momentum conservation
laws.

Einstein clearly understood the fundamental importance of the energy-momentum
conservation laws, moreover, he considered, that a total tensor of matter and gravitational
field taken together should be the source of the gravitational field. Hence in 1913 he wrote
that “ the tensor of the gravitational field 0, is a source of the field alongside with the
tensor of the material systems O ,,. An ezxclusive position of the gravitational field energy
as compared with other forms of energy should lead to inadmissible consequences.” In the
same work Einstein came to a conclusion, that “n a general case the gravitational field is
characterized by ten space-time functions,” components of metric tensor of Riemannian
space g,,. However sticking to this of constructing the theory Einstein did not manage
to make the tensor of matter and gravitational field the field source, as instead of the
gravitational field tensor in GRT there arose a pseudotensor in the Riemannian space.

In 1918 Schrédinger showed that under a proper choice of the coordinate system all the
components of the energy-momentum pseudotensor of the gravitational field outside the
spherically-symmetric source may be turned into zero. In this connection Einstein wrote:
“As for Schréodinger considerations, they are very convincing due to their analogy with the
electrodynamics, where the stresses and density of energy of any field are different from
zero. However I cannot find the reason, why we are to have the same state of things for
the gravitational ﬁelds The gravitational fields may be given, without introducing stresses
and energy density.”

As we see Einstein gave up the concept of classical Faraday-Maxwell type field, that
possessed energy-momentum density as far as the gravitational field was concerned,
though he made an important step forward having related the gravitational field with




a tensor quantity. Einstein took a metric tensor of the Riemannian space g,, as such
a quantity. This trend of thought seemed to Einstein quite natural, since his point of
view on the gravitational field formed under the influence of the equivalence principle for
the inertia and gravitation forces, introduced by himself: “..for an infinitesimal domain
one can always choose the coordinates in such a way, that the gravitational field would be
absent from it.”

He stressed this idea several times, for instance in 1923 he wrote: “For any infinitesimal
neighborhood of a point in an arbitrary gravitational field we can always point out a local
coordinate system in such a state of motion, that there would be no gravitational field w.r.t.
this local system (local inertial system)”. In this way a notion arose, that the gravitational
field could not be localized. The presence of the energy-momentum pseudotensor is, in
Einstein’s opinion, in complete correspondence with the equivalence principle.

However Einstein’s previous statement is not, in fact, fulfilled in GRT since the cur-
vature tensor of the Riemannian space is to be considered here as physical characteristic
of the field. It is Synge to whom we are obliged for clear realization of this fact. He
wrote: “If accept the idea that space-time is Riemannian four-dimensional space (and if
we are “relativists”, we are to do it) then, our first task will obviously consist in feeling
this four-dimensionality, similar to the ancient sailors were to feel sphericity of the ocean.
And the first thing we are to realize is the Riemannian tensor, since this tensor is nothing
else but the gravitational field: if it turns into zero ( and only in this case), the field does
not ezist.. However, and which is very strange, such an important fact was withdrawn to
the background.” Then he added: “In Einstein’s theory depending on the fact, whether the
Riemannian tensor is different from zero or equals zero, the gravitational field is either
present or absent. This property is absolute, it is connected in no way with the world line
of any observer.”

Hence according to GRT, the matter (all substance fields, except gravitational) is
characterized by the energy-momentum tensor, and the gravitational field is characterized
by the Riemannian curvature tensor. In this if the first one possesses the second rank, the
second one has the fourth rank, i.e., in fact there appeared a principal difference between
the characteristics of matter and gravitational field in GRT.

The introduction of the energy-momentum pseudotensor of the gravitational field did
not help Einstein to conserve the energy-momentum conservation laws in his theory. This
fact was clearly understood by Hilbert. In connection with this he wrote in 1917: “...I
state that for the General Relativity Theory, i.e. in the case of general invariance of the
Hamiltonian function, no energy equations, that.... correspond to the energy equations in
orthogonal-invariant theories, exist, I could also stress this circumstance as a character-
istic feature of GRT.”

In virtue of the absence of ten-parameter space-time group of motions in GRT, in
principle, one cannot introduce in it the energy-momentum and angular momentum con-
servation laws like those taking place in any other physical theory. These laws are the
fundamental ones in nature as just they introduce the universal physical characteristics
for all forms of matter which allow one to consider quantitatively the transformation of
one forms of matter into others. In this connection it is expedient to construct such gra-



vitation theory, where all energy-momentum and angular momentum conservation laws
would be fulfilled and gravitational field would possess the energy-momentum density as
it is the case for the electromagnetic field of Faraday-Maxwell.

In GRT as different from all other physical theories, the scalar Lagrangian density of
the gravitational field contains second-order derivatives.

About 50 years ago Rosen showed in his work [1] that if, in addition to the Riemannian
metric g,, one introduced the Minkowski metric 7,, then one might always construct a
scalar Lagrangian density of the gravitational field with respect to arbitrary coordinate
transformations, that would contain derivatives of the order not higher than one. In par-
ticular, he constructed the Lagrangian density that led to the Hilbert-Einstein equations.
That was the way the bimetric formalism came into existence. However, this approach
immediately complicated the construction of the gravitational theory, because using the
tensors 7y, and g,, one could write quite a large number of scalar densities with respect to
arbitrary coordinate transformations, making it completely unclear which scalar density
should be chosen as the Lagrangian density when constructing the gravitation theory.

Following this direction Nathan Rosen chose different scalar densities for the La-
grangian density and constructed on their basis various gravitation theories, which, gener-
ally speaking, yielded quite naturally different predictions for these or those gravitational
effects. Below we shall see that within the SRT (Special Relativity Theory) frames, that
describes phenomena in inertial and noninertial reference frames, with the help of the
geometrization principle reflecting the universality of the gravitational interaction with
matter, and with introduction of the graviton mass, we shall manage to unify the Poincaré
idea of the gravitational field [2] as a physical one in Faraday-Maxwell spirit with Ein-
stein’s idea of the Riemannian space-time geometry. It is this geometrization principle
that will help us to find an infinite dimensional noncommuting gauge group that will
allow us to construct the Lagrangian density of the proper gravitational field. All this
has brought us to the Relativistic Theory of Gravitation (RTG) [3] that possesses all
conservation laws, as it takes place in all physical theories.

In this theory, owing to geometrization, the conservable total energy-momentum ten-
sor of matter and gravitational field is the source of the gravitational field, right what
Einstein wanted when constructing the gravitation theory. In what follows we shall see
that quite general physical requirements bring us to unambiguous construction of the
complete system of equations for a massive gravitational field. Equations (66) and (67)
in this theory considerably differ from Hilbert-Einstein equations, since it cormserves the
notion of inertial coordinate system, and gravitational forces differ, in principle, from the
inertia ones, since they are caused by physical field. It should particularly be stressed
that the rest mass of the gravitational field, as we shall see further on, is of principal
importance. This article once again presents the basic principles and equations of the
theory with certain additions and clarifications.

The Relativistic Theory of Gravitation with graviton mass is a field theory to the
same extent, as the classical electrodynamics, therefore it might be called classical gravi-
dynamics.




1. Basic Postulates of the RTG

Passing to the construction of the gravitational field theory we will proceed from the
following basic postulates.
Postulate 1.

The Relativistic Theory of Gravitation is based on the Special Relativity Theory. This
means that the Minkowski space, i.e. the pseudo-Euclidean geometry of space-time is a
fundamental space for all physical fields, including the gravitational one. This statement
is necessary and sufficient for both the energy-momentum and angular momentum con-
servation laws to hold true for matter and gravitational field taken together. In other
words the Minkowski space reflects the dynamic properties common for all forms of mat-
ter. Thus they are provided with the existence of common physical characteristics, which
allow one to quantitatively describe the transformation of one forms of matter into others.

The Minkowski space cannot be considered as the a priori existing one because it
reflects the properties of matter and, hence, is indispensable from it. Though formally,
just due to the independence of space from the forms of matter, it is sometimes treated
abstractly, neglecting matter.

The Minkowski space admits the description in both inertial coordinate system (e.g.
Galilean coordinates) and noninertial one (accelerated). From the mathematical point of
view it is quite obvious, because a wide class of admissible coordinate systems (curvilinear
including) can be introduced into the Minkowski space. However this quite simple fact
was not clear for the long period even to some great physicists. This can be explained
by the fact that the Minkowski space was considered by many scientists as a formal
geometric interpretation of the Special Relativity Theory. Such understanding reduces
the SRT framework considerably. To construct the RTG one was to proceed from the
most general formulation of the SRT, which reads: all physical processes (gravitational
one including) go on in the four-dimensional world, i.e., in space and time with pseudo-
Euclidean geometry. This understanding of the SRT removes the clock synchronization,
the principle of the light velocity constancy to the background, since they are of a rather
limited, particular character, because only the interval carries physical sense.

At the beginning of the century H.Poincaré wrote in his book “Science and Hypothe-
sis” that though “..experience plays a necessary role in the geometry origin, but it would
be a mistake to conclude that geometry — at least partially - is an experimental science. If
it were experimental, it would have only temporary, approzimate — and very roughly ap-
prozimate — meaning. Then he went on: “Geometry studies only particular <<group>>
of displacements, but the general group notion first erists in our minds, at least in the
form of a possibility”.

“Under this choice the experiment gives us a direction, however not making it obliga-
tory; it shows which geometry is more convenient for us rather than which geometry is
the most correct one.” If we follow this stream of Poincaré’s thoughts, then guided by
the fundamental physical principles, such as matter energy-momentum and angular mo-
mentum conservation laws, we are to use just the pseudo-Euclidean space-time geometry
as the foundation. This choice is not only convenient, it is actually the unique till the



moment the conservation laws hold. In 1921 A. Einstein wrote in his book “Geometry
and Experiment”: “The question whether this continuum has Euclidean, Riemannian or
any other structure is a physical question, and the answer can be given by an experiment,
rather than by an agreement on choosing on the basis of pure expediency”.

In principle it is true, however, there arises a question — what experimental facts are
needed, so that we would be able to unambiguously characterize the geometry? In our
opinion, the fundamental energy-momentum and angular momentum conservation laws
may be taken as such facts, since namely they reflect general dynamical properties of
matter. This brings us to the pseudo-Euclidean space-time geometry, as the simplest
one.

Hence when establishing the structure of space-time geometry, one should naturally
proceed from fundamental physical principles obtained through generalization of numer-
ous experimental data, related to different forms of matter, rather than the particular
experimental facts (e.g. light and test bodies motion).

The Minkowski space has a profound physical meaning as it defines the universal
properties of matter, such as energy, momentum, angular momentum.

The gravitational field is described by the second-rank symmetric tensor ¢*” and is a
true physical field possessing an energy-momentum density, rest mass m and polarization
states corresponding to spins 2 and 0. The representations corresponding to spins 1 and
0’ are eliminated from the states of field ¢** by making the components of ¢** obey the

field equation
D,¢* =0, (1)

where D, is a covariant derivative in the Minkowski space.

In addition to exclude the nonphysical field states, Eq.(1) introduces into the theory
a Minkowski metric 7,, thus allowing one to separate the inertia forces from the action
of the gravitational field. Choosing the Galilean metric 4,, one can eliminate the action
of the inertia forces completely. The Minkowski metric makes it possible to introduce the
notion of the standard length and time interval in the absence of the gravitational field.
Below we shall see that the interaction of tensor gravitational field with matter can be
introduced in such a way, that it would cause the one deforming the Minkowski space by
varying the metric properties, but without violating causality.
Postulate 2. Geometrization Principle

Since the gravitational field is described by the symmetric second-rank tensor ¢** and
its interaction with other fields may be considered as universal one, a unique opportunity
is opened up “to join” this field directly to the tensor 4# in the matter Lagrangian density
according to the rule

Lam(3*, ¢a) — Lm(3*, 64), (2)

where

P =B G = TG A = T B = VT (3)
¢4 are matter fields; g = det g,,; v = det y,; §*§uo = 6%. The tensor g,, is found from
the last equality. The field indices are lifted and lowered with the help of 4,, and those




of tensor g¢g* with the help of the Riemannian metric tensor. Speaking about matter
we understand all forms of substance excluding the gravitational field.

This form of interaction between the gravitational field and matter introduces the
notion of the effective Riemannian space, where the motion of matter takes place, and is
termed the geometrization principle. According to this principle, the matter motion under
the action of the gravitational field ¢*” in the Minkowski space with the metric v,, is
identical to its motion in the effective Riemannian space with the metric g, . The eflective
Riemannian space has literally the field origin due to the presence of the gravitational
field ¢*v.

Since the metric properties are determined in the presence of the gravitational field
by the effective Riemannian tensor or by the Minkowski tensor «,, in its absence, this
theory can answer the question about the variation in the body dimensions and in the
advance of a clock under the action of the gravitational field. And if the theory does not
contain the tensor 7,, in the field equations, basically it cannot answer such questions.
In the GRT the gravitational field is characterized by the metric tensor g,,, whereas in
our theory it is defined by the tensor quantity ¢** and the effective Riemannian space is
constructed with the help of the field ¢** and also the Minkowski metric tensor 4** fixing
a certain choice of the coordinate system.

Since there are Galilean (inertial) coordinate systems in our theory, acceleration has
the absolute nature. The motion of a test body in the effective Riemannian space follows
the geodesic line of this space, but it is not free as it is caused by the action of the
gravitational field. If a test body was charged it would irradiate electromagnetic waves
because it would move in the field with acceleration.

As the effective Riemannian space is produced by the gravitational field ¢*¥ present
in the Minkowski space, it can always be specified, which is a very important point, in
one coordinate system. This means that we will deal only with such Riemanuian spaces
which are specified in one chart. In our viewpoint, the Riemannian spaces possessing a
complicated topology are eliminated completely as they are not of the field origin. It
should be noted that as matter moves in the effective Riemannian space, the Minkowski
metric tensor 7y,, will not be contained in the equations of matter motion. The Minkowski
space effects the matter motion only through the Riemannian metric tensor g,, found from
the equations containing the metric tensor +,,.

Hence, though the geometrization principle allows one to go over to the description of
motion in the effective Riemannian space, nevertheless the metric of the initial Minkowski
space has not been excluded. As we will see in what follows it remains in the gravitational
field equations, thus conserving the notion of the inertial system, where the inertia forces
are identically equal to zero.

2. Gauge Transformation Group

Since the Lagrangian density of mattcr has the form

L@, da), (4)



then one can easily find the gauge transformation group, under which the Lagrangian
density of matter changes only by a divergence. For this purpose let us use the invariance
of the action

S = [ Lu(3, ¢a)d's (5)
at an arbitrary infinitesimal variation of the coordinates
' = 2%+ £%(a), (6)

where £ is an infinitesimal displacement 4-vector. Under these coordinate transforma-
tions the field functions §*¥, ¢4 vary in the following way

" (@) = §(z) + 83" (z) + £ (2)Dad” (z),
¢a(a) = da(z)+6cpa(z) + £ () Dada(2), (7)

where the expressions
6¢g" (z) = §"" Dal”(z) + §"* Dat*(z) — Da(£°3"),

8¢pa(z) = —€(2) Dada(e) + Frj5 ¢8(c) Dat’(z) (8)

are Lie variations.
The operators &, satisfy the conditions of the Lie algebra, i.e. the commutation relation

[6&’ 6&2](') = 6€a () (9)
and Jacobi identity
[651, [6&» 663” + [6535 [661, 662]] + [662, [663, 6&1]] =0,

where
&= i‘Dué.'z/ - gD#ﬁl = lau€2 auﬂ’- (10)
So that (9) take place, it is necessary that the following conditions should be fulfilled

Fgilt Fgig S Fgi =g FAT7 (11)
where the structure constants f are equal to
o = 05006, — 6,6565. (12)
One can easily get convinced that they satisfy the Jacobi identity
fouir Joeis + Fili7 fopis + feir fouis =0 (13)
and possess antisymmetric properties

fouic = —Fusic-




Under coordinate transformation (6) the variation of the action is equal to zero
8.5y = / Ly (z') d*z’ — / Lu(z) diz = 0. (14)
Q' Q

The first integral in (14) may be presented in the form

/L’M(w’)d“ ':/ J L (2') d'e
Qf Q

6wla
J = det(@zﬁ> )

In the first order over £~ the determinant J is equal to

where

J =14 0,¢%(z). (15)
With an account of the expansion

0L
Oze’

as well as of (15) one may present the expression for the variation in the form

Ly (') = Liy(z) + £ ()

8.5m = / [6La(2) + 8a(6° Ly (2))] d'z = 0.
Q

Owing to the arbitrariness of the integration volume {2 we have an identity

6 Ly (z) = —0a(¢% (z) Lm()), (16)
where Lie variation §Las is equal to

OL g _OLu

5 5(9 0L oL _O0Lm
85+ 7 T 8(0ag™)

0¢a 9(0a4)

Whereof, in particular, it follows that if the scalar density depends only on §** and its
derivatives then under transformation (8) it will also change only by a divergence

§Lu(z) = o§") + 7 b4+ 75— 6(0ata).  (17)

6L(g* (z)) = —0a(€%(2) L(§* (), (16a)
where Lie variation 6L can be equal to
oL oL oL
ny my ~ v ~pv
5L(g (.’E)) a uv 6 + a(aaguu) 6(8019 ) + a(aaaﬁguu)é(aaaﬁg ) (17(1)

Lie variations (8) were found in the context of coordinate transformations (6). How-
ever one can stick to another point of view, and then in agreement with it one can consider



transformations (8) as gauge transformations. In this case the arbitrary infinitesimal 4-
vector £%(z) will already be a gauge vector rather than a coordinate displacement vector.
In what follows in order to stress the difference between the gauge group and coordinate
transformation group, we shall denote the group parameter as €*(z), and the transforma-
tions of the field functions

3" (z) — §*(z) + 6§ (z),  da(z) — da(z) + 6¢a(z) (18)
with increments
69" (z) = §"* Dag”(z) + §"* Dag”(z) ~ Dale®§"),
8.64(z) = —*(z) Dadpa(z) + Fi's ¢5(2) Do’ (z) (19)

will be called gauge transformations.

In complete agreement with formulas (9) and (10) the operators satisfy the same Lie
algebra, i.e. the commutation relation

[‘Sev 562](') = 563(') (20) ;

and Jacobi identity |
[be1s [8e2s bes]] + [Oess [6ers Be,]] + [6ezs [besy 6e,]] = 0. (21)
Similar to the above we have ‘
& = et D,if — Dyt = el — byt

The gauge group sprung out from the geometrized structure of the scalar Lagrangian
density of matter Lps(§**, ¢4), which owing to identity (16) changes only by a divergence
under gauge transformations (19). Hence, the geometrization principle, that has deter-
mined the universal character of the interaction between the matter and gravitational
field, gives us a possibility to formulate non-commuting infinite dimensional gauge group
(19).

An essential difference between the gauge and coordinate transformations will manifest
itself at a decisive point of the theory when constructing the scalar Lagrangian density of
the proper gravitational field. The difference appears due to the fact, that under gauge
transformations the metric tensor +,, does not change, and consequently in virtue of (3)
we have ‘

6.3* (z) = 6.6* ().
Basing on (19) there follows the transformation for the field

8.4 (z) = §* Da€”(x) + §"* Do €*(z) — Da(e™ §*).
However this transformation differs greatly from the one under coordinate displacement

6 9 () = ¢"* Dat”(z) + ¢"* Dat"(z) — Da(€" $*).
Under gauge transformations (19) the equations of motion for the matter do not change

since under any such transformations the Lagrangian density of the matter changes only
by a divergence.



3. Lagrangian Density and Equations of Motion for the Proper
Gravitational Field

As is known, if using only the tensor g,,, one cannot construct the scalar density of
the Lagrangian for the proper gravitational field with respect to the arbitrary coordi-
nate transformations as quadratic form of the derivatives not higher than the first order.
Therefore the metric 4, will necessarily enter the Lagrangian density alongside with the
metric g,,. Since the metric 4,, does not change under gauge transformations (19), then
it follows that in order to make the Lagrangian density of the proper gravitational field
change under this transformation only by a divergence, strong limitations for its struc-
ture should arise. This is right the point where principal difference between gauge and
coordinate transformations appears. _

While the coordinate transformations impose almost no limitations on the structure of
the scalar Lagrangian density of the proper gravitational field, the gauge transformations
allow us to find the Lagrangian density. A straightforward general method to construct
the Lagrangian is given in [3].

Here we shall choose a simpler technique to construct the Lagrangian. Basing on (16a)
we conclude that the simplest scalar densities /=g and R = \/—gR, where R is the scalar
curvature of the effective Riemannian space, vary in the following way

V=9 = V-9 - D.("V/-9), (22)
R— R—-D,(¢"R), (23)

under gauge transformation (19). The scalar density R is expressed through Christoffel
symbols

F;)u = g)‘a(au 9ov + 0y Gou — 05 Guv) (24)

N —

in the following way
R=-g*(T,,T5, — T, ) — 8§ Ty, — 3" T},)- (25)

Since the Christoffel symbols are not tensor quantities, each term in (25) is not a scalar

density. However if tensor quantities G’"),,,

1
G;:u = Elg/\a(Dugav + D, go, — Dog;w)a (26)
be introduced, then the scalar density may identically be presented in the form
R=-§"(G), G5, — Gl, Go) — Du(§* G, — §*° GL,)- (27)

Note, that in (27) each group of terms separately behaves as a scalar density under
arbitrary coordinate transformations. With account of (22) and (23) the expression

M(R+D, Q")+ Xv/=g (28)
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changes only by a divergence under arbitrary gauge transformations. Choosing the vector
density ¥ equal to
Q" =" G, ~ G

uo?

we exclude the terms with derivatives higher than the first order from the previous ex-
pression, and hence obiain the following Lagrangian density

- ’\lg‘w(G;);u Ka’ - G;\w Gﬁx) + ’\2 vV—g. (29)

Hence we see that the requirement that the Lagrangian density of the proper gravi-
tational field changes only by a divergence under gauge transformations (19) unambigu-
ously determines the structure of Lagrangian density (29). But if one restricts himself
only with this density, then the gravitational field equations will be gauge invariant, and
the metric of the Minkowski space «y,, would not enter the system of equations, deter-
mined by Lagrangian density (29). Since in this approach the metric of the Minkowski
space disappears, then a possibility to present the gravitational field as a physical field of
Faraday-Maxwell type in the Minkowski space is excluded.

With the Lagrangian density (29) the introduction of the metric -y,, with the help of
equations (1) does not save the situation, since the physical quantities — the interval and
curvature tensor of the Riemannian space, as well as the tensor ¢/ of the gravitational
field — will depend on the choice of the gauge, which is inadmissible from the point of
view of physics. In order to conserve the notion of the field in the Minkowski space and to
avoid such ambiguity, the Lagrangian density of the gravitational field should be enriched
with term, violating the gauge group. At first sight, it may seem, that there arises a great
arbitrariness in choosing the Lagrangian density of the gravitational field, since the group
may be violated in many different ways. However it turns out not to be true, since our
physical requirement of the polarization properties of the gravitational field as a field with
2 - and 0 - spins, imposed by equation (1), brings us to the necessity to choose the term
violating group (19) in a way so that equations (1) would be consequences of the system
of equations for the gravitational field and fields of matter, because only in this case no
over-determined system of differential equations would arise. For this purpose we shall
introduce a term of the form '

S (30)

into the scalar Lagrangian density of the gravitational field. In the presence of (1) and
under transformations (19) this term also changes by a divergence, however only on the
class of vectors, satisfying the condition

9"’ D,D,e’(z) = 0. (31)

Almost an analogous situation takes place in electrodynamics with the photon rest
mass different from zero. With an account of (28)-(30) the total scalar density of the
Lagrangian has the form

Ly = =g (G, G5y — Ghy Gox) + Xav/=g + A3 7 3™ + /=7 (32)
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The last constant term in (32) was introduced in order to turn the Lagrangian density
into zero in the absence of the gravitational field. The reduction of the class of gauge
vectors owing to the introduction of term (30) brings us automatically to the fact that
equations (1) will be the consequences of the gravitational field equations. We will get
convinced in this fact in what follows.

According to the principle of the least action the equations for the proper gra,wtatlonal
field have the form

6L,
6g = AI-R;w + = /\2 Guv + A3 Yuv = 0 (33)
h
waere 6L, _ 9L, _, 0L,
T A T W T
and the Ricci tensor R,, will be given in the form
R, =D, G - D, G",\ + Gy, G’\ Z,\ G,’),. (34)

Since in the case of the absence of the gravitational field equations (33) are to be identically
fulfilled, it follows that
A2 = —2)s. (35)

Now let us find the density of energy-momentum tensor of the gravitational field in the
Minkowski space

6L 1 6L
= ~25 0 = 2/ WS — 223" — A A*,  (36)
where
I = DaDg(y™ % + 7§ — 42 g =y §°F). (37)

If one takes into account dynamic equations (33) in expression (36), then we will get an
equation for the proper gravitational field, that will have the following form

A] J‘w - 2 /\3‘6’“’ - /\4 ’7‘"’ = t;y. (38)

In order this equation be identically fulfilled in the absence of the gravitational field, one
should put

Ay = —2As. (39)
As the equality

D,t" =0 (40)
always takes place for the proper gravitational field, then from equation (38) it follows

D,g" =0. (41)

Hence equations (1) that determine the field polarization properties, follow straight-
forwardly from equation (38). With account of (41) field equations (38) may be presented
in the form )

1% Do Dp ¢ — ¢ = (42)

A
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In Galilean coordinates this equation has a simple form

~ A4 -~ 1
O¢* — — o' = ——th”. 43
PRt (43)
It is reasonable to give the meaning of graviton mass squared to the numeric factor
—X4/A1 = m?, and according to the correspondence principle the value for —1/); should
be taken equal to 167. Hence all the unknown constants entering the Lagrangian density

have been determined:

1 m?2
M= —-]E;, A=Ay =2 1\3 = 16_7{‘- (44)

The constructed scalar density of the Lagrangian of the proper gravitational field will
have the form ‘

1 ~ BV [ YA o A m2 1 ~py
Ly = 15 (GL 6%, — Gl O — o (S — VTG - V). (9
Its relevant dynamic equation for the proper gra.vi'ta.tiona,l field may be given in the form
JH —m? ¢* = —16m v, (46)
or ,
v m2 v a v
RY - —(¢" ~ ¢"°9" Yap) = 0. (47)

These equations considerably restrict the class of gauge transformations, leaving only
trivial ones, satisfying Killing conditions. Such transformations follow from the Lorentz
invariance and take place in any theory.

The Lagrangian density constructed above, brings us to equations (47), from which it
follows that equations (41) are their consequences, therefore outside the matter we will
have ten equations for ten unknown field functions. With the help of equation (41) the
unknown field functions ¢°* can easily be expressed through the field functions ¢**, where
¢z and k run the values 1,2,3. Thus, in the Lagrangian density of the proper gravitational
field the structure of the mass term, that violates the gauge group, is unambiguously
determined by the polarization properties of the gravitational field.

4. Equations of Motion for the Gravitational Field and Matter

The total Lagrangian density of matter and gravitational field is equal to

L= Lg + LM@”", ¢A)7 (48)

where L, is defined by expression (45).

Basing on (48) and with the help of the least action principle we obtain a complete
system of equations for matter and gravitational field

6L

Y lad

=0, (49)
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6Lu _

Since under arbitrary infinitesimal changes of the coordinates the variation of the action
6.5 is equal to zero,

0cSm = b, / LM(g‘wa ¢A)d4-75 =0,

then one can obtain an identity [3] in the form

5LM

) 5L
g,‘.,V,\T’\ = —DV(5¢ A,I‘ ¢B( )) 2

3o, Dw $a(z). (51)

Here T» = —26Lps/6gy, is the energy-momentum tensor density of matter in the Rie-
mannian space; V) is a covariant derivative in ‘this space with the metric g),. From
identity (51) it follows that if equations of matter motion (50) are fulfilled, then the
following equation takes place

VAT = 0. (52)

In that case if the number of equations (50) for matter is equal to four, one can use
their equivalent equations (52) instead of them. Since in what follows we will deal only
with such equations for matter let us always use the equations for matter in form (52).
Hence the complete system of equations for matter and gravitational field will have the
form

6L
55 = 0, (53)
VAT = 0. (54)

The matter will be described by the velocity ¥, matter density p and pressure p. The
gravitational field is determined by ten components of the tensor ¢**. Hence we have
fifteen unknown quantities. In order to determine them we are to add the equation of the
matter state to fourteen equations (53)—(54). If one takes into consideration the relations

8L, 1 m?

55 = Ton Pt 35, (O — M), (55)
S L 1 1
& (i) )

then the system of equations (53), (54) may be given in the form

1 m? 1,
(R* - 59" R)+ —[¢" + (9*°9" = 5 9"9™) Yas] =

s
T, 57
5 (57)
VAT =0. (58)

In virtue of the Bianchi identity

1
V(R - g R) =0
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from equations (57) we have
1
m*v=9(¢"*9"" = 5 6" 9" )VuYap = 167 V,, T+, (59)
Taking into consideration the expression

VivYep = _GZa Yo — GZﬁ Yoo (60)
where G, is defined by formula (26) we find

oV, 1 v v g o
(g"°g"" — 59“ 9*®) Vi Yap = 1urg" (Do ¢°* + G2 5 g°*). (61)
However since
vV=39(D, g°* + G55, ¢**) = D, §*°, (62)

expression (61) takes the form

VIS = 5 96 Vuran = r g™ D 5. (63)
Using (63) one can rewrite expression (59) in the form
m2y,, ¢"' D, §* = 167V, T*.
This expression can be rewritten in the form
m?D,§* = 16w y¥V, T (64)
With the help of this relation equation (58) may be replaced by the equation
D,g” =0. (65)

Therefore the system of equations (57) and (58) reduces to a system of gravitational
equations in the form

14 1 4 m2 4 a YV, 1 v a 87r 14 |
(B = 59" B)+ 516" + (9" — 56" 6" el = =T, (66)

D, §* = 0. (67)

These equations are form-invariant w.r.t. the Lorentz transformations, i.e. in any inertial
(Galilean) coordinate system the phenomena are described with the same equations.

A concrete inertial Galilean coordinate system is singled out by the statement of the
physical problem itself (initial and boundary conditions). The description of the given
physical problem in different inertial (Galilean) coordinate systems, is of course different,
however this does not contradict the relativity principle. If we introduce the tensor

2
NHW = R* _ mT[gW _ g""g"ﬁ’)’aﬁ], N =N"g,,
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then the system of equations (66) and (67) may be presented in the form
1 8w

N¥ — —g""N=—T", 66a
RV (662)
D,g" =0. (67a)
It can also be presented in the form
8w 1
N¥ = T — = g*"'T), 68
ZT - 5 T) (69)
D,g"" =0, (69)
or
8w 1
NIJV = \/——___‘é-(Tm, - ‘2‘9‘“, T), (680)
Dug#u =0. (69a)

It should particularly be stressed that the Minkowski metric tensor enters both system
(68) and system (69).

The coordinate transformations leaving the Minkowski metric form-invariant connect
the physically equivalent reference frames. The simplest among them are inertial ones.
Therefore possible gauge transformations satisfying the Killing conditions

D,e, + Dye, =0,

do not take us out the class of the physically equivalent reference frames.

If we admit the possibility of the experimental measurement of the characteristics of
the Riemannian space and of matter motion to arbitrary high accuracy, then proceeding
from equations (68a) and (69a) we can define the Minkowski metric and find the Galilean
(inertial) coordinate systems. Hence, basically the Minkowski space becomes observable.

The existence of the Minkowski space is reflected in the conservation laws; therefore
their verification in physical phenomena is, at the same time, the verification of the
structure of space-time.

The system of gravitational equations can be given another equivalent form:

¥*fD,Dpd*’ + m? " = 16 7 t*, (70)
D, ¢* =0, (71)
where t*¥ = —26L/6+,, is the conserved energy-momentum tensor density of matter and

gravitational field in the Minkowski space. The form of these equations is similar to the
equations of electrodynamics with a photon mass g in the absence of gravitation:

¥*BDaDpA” + u? A® = 47§, (72)
D, A* = 0. (73)
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In electrodynamics the source of the vector field A” is the conserved electromagnetic
current j” produced by charged bodies, whereas in RTG the source of the tensor field is
the conserved total energy-momentum tensor of matter and gravitational field. Therefore
the gravitational equations will be nonlinear even for the proper gravitational field.

It should be particularly stressed that in addition to the known cosmological term
in equations (66) there appeared another one containing the Minkowski metric v,,, with
the two terms having the common constant coinciding with the graviton mass, that is
therefore extremely small. The second mass term in equations (66) containing the metric
4, is responsible for the production of repulsion forces, rather large in strong gravitational
fields. This circumstance changes the nature of collapse and evolution of the Universe.

As we saw before, the presence of the graviton rest mass has a paramount importance
for the construction of the field theory of gravitational field. Just due to this, it follows
from the theory that the homogeneous and isotropic Universe can be but just flat.

In conclusion to this Section it is worth to note, that the theory of the tensor gravi-
tational field in the Minkowski space, that introduces effective Riemannian space-time, is
possible only under condition, that the gravitational field does possess the rest mass.

5. The Causality Principle in RTG

The RTG, like the theories of other physical fields, has been constructed within the
frames of the Special Relativity Theory (SRT). According to the latter, any motion of a
point-like test body takes place inside the light causality cone of the Minkowski space.
Hence, noninertial reference frames realized by test bodies should also be inside the causal-
ity cone of the pseudo-Euclidean space-time. This defines the whole class of possible non-
inertial reference frames. The 3-dimensional inertia and gravitation forces acting upon a
material point will be locally equal if the light cone of the effective Riemannian space does
not escape outside the causality light cone in the Minkowski space. Just only in this case
the 3-dimensional force of a gravitational field acting upon a test body can be compen-
sated locally by changing over into an admissible noninertial reference frame connected
with this body.

If the light cone of the effective Riemannian space escaped the light causality cone
of the Minkowski space this would mean that for such “gravitational field” there is no
admissible noninertial reference frame in which this “field of the force” acting upon a
material point could be compensated. Putting it in other words, the local compensation
of a 3-dimensional gravitation force by the inertia force is possible only if gravitational
field as a physical one acting upon particles, does not take their world lines beyond the
causality cone of the pseudo-Euclidean space-time. This condition should be treated as
the causality principle, allowing us to select the solutions to the system of equations (66)
and (67), having a physical sense and corresponding to gravitational fields.

The causality principle is not fulfilled automatically because the gravitational inter-
action enters the coefficients of the second-order derivatives in the field equations, i.e.
varies the initial pseudo-Euclidean space-time geometry. This is an inherent feature of
gravitational field only. The interaction of all other known physical fields typically does
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not effect the second-order derivatives in the field equations and therefore does not vary
the initial pseudo-Euclidean space-time geometry.

Now let us formulate analytically the causality principle in the RT'G. Since in this
theory the motion of matter under the action of gravitational field in the pseudo-Euclidean
space-time is equivalent to that in the relevant effective Riemannian one then for causally
related events, i.e. for the world lines of particles and light, we should, on the one hand,
have the condition

ds® =g, dz* dz" > 0, (74)

and, on the other hand, for such events the inequality
do? =, dz*dz" > 0 (75)

should necessarily hold true. For the chosen reference frame realized by physical bodies
the condition
Yoo > 0 (76)

must be fulfilled. Let us single out in expression (75) the time— and space-like terms:

i\ 2
Yoi dz* ik
= | VYoo dt + —— | — sixdz’dz". (77)
\/ 700

Here the Latin indices z, k range the values 1, 2, 3,

Sik = —Yik + — 701701: (78)

700

s;k is a metric three-dimensional space tensor in the four-dimensional pseudo-Euclidean
space-time. The spatial distance squared is determined by the expression

d? = s; dz* dz*. (79)

Now present the velocity v = dz'/dt as v’ = ve', where v is the velocity value, €' is
an arbitrary unity vector in the three-dimensional space

sixe' e = 1. (80)

In the absence of gravitational field the velocity of light in the chosen coordinate system
is easily found from expression (77) by putting this expression equal to zero:

Yoi AT

= s;p dz’ dz*.
Vv oo)

(, /Yoo dt +

Whereof we find that )
Yoi €'

v=,/'yoa/(1——-————). (81)

700
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Hence, the arbitrary four-dimensional isotropic vector u” in Minkowski space is
u’ = (1, ve). (82)

For conditions (74) and (75) to be fulfilled simultaneously it is necessary and sufficient

that for any isotropic vector
Vuw u¥u” =0 (83)

the causality condition
guwutu’ <0 (84)

should be fulfilled. This condition just means that the light cone of the effective Rieman-
nian space does not escape the light causality cone of the pseudo-Euclidean space-time.
The causality conditions can be put down in the following form:

Guv v oY =0, (830,)

'7#1/”“ ,Uu 2 0. (84(1)

In the GRT, of physical sense are the solutions to the Hilbert-Einstein equations satisfying
at each point of space-time the inequality

g < 0,

and also the requirement called the energy dominance condition formulated as follows.
For any time-like vector K, the inequality

T"K,K, >0
should hold true and for this vector the quantity
T" K,

should form a nonspace-like vector.

In our theory, only such solutions to equations (68a) and (69a) have physical sense
which, alongside with these requirements, also satisfy causality conditions (83a) and (84a).
Proceeding from equations (68a), the last condition can be written as

8w ( m?
A /_g 2
If we take the density of energy-momentum tensor for matter in the form:

Ty =v 'g[(P + p)UU, — pgul,

then from (68a) it is possible to derive the following relation between the interval of
Minkowski space do and effective Riemannian space ds:

R, K*K* <

1
Tuw = 5 9 T) K*K* + o g K*K*. (85)

m2 2

) d02 = d32[47r(p + 3p) + %" - RpuU#Uu],
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where U* = dz* [ds.
Due to causality principle there is an inequality:

m2
R, U*UY < 47 (p + 3p) + —,

which is a partial case of inequality (85) or
vV—gR,, v*v” 5‘ 87T, v v". (85a)

In 1918 A.Einstein formulated the equivalence principle in the following way: “Inertia
and gravity are identical; from this as well as from the results of Special Relativity Theory
it inevitably follows, that symmetric <<fundamental tensor>> g,, determines the metric
properties of space, inertial motion of bodies in it and also the action of gravitation.”
Identification in the GRT the gravitational field and metric tensor g, of the Riemannian
space allows one through the choice of the coordinate system to make all the components
of the Christoffel symbol equal to zero on all the points of an arbitrary line. However in
this case the gravitational field is not excluded in GRT through the coordinate system
choice, since the motion of two close material points will not be free because of the presence
of the curvature tensor, that, owing to the tensor properties can never be turned into zero
by choosing the coordinate system.

In RTG the gravitational field is a physical field in Faraday-Maxwell spirit, therefore
the gravitational force is described by the four-vector, and consequently only by conditions
(83) and (84) fulfilled one can balance with inertia forces the three-dimensional part of
the gravitation force by choosing the relevant coordinate system. The continence of the
equivalence principle in RT'G changes drastically and reduces to conditions (83) and (84)
that provide a possibility to choose such a coordinate system, where the gravitational force
will be balanced by the inertia force. The motion of the material point in the gravitational
field, no matter what coordinate system we have, can never be free. The last statement
is evident especially if we write the geodesic line equation in the form [1]:

DU¥ v y
= ~GUUP (62 — U*U,).
. v 14 dmu
Here do? = ~,,dz"dz”, U’ = .
A free motion in the Minkowski space is described by the equation:
DU¥ du* urrh
= — v =0
do do T AU ’

7%y are Christoffel symbols of the Minkowski space. We see that the motion along a
geodesic line of the Riemannian space is the motion of a test body under the action of a

force F*:
FY = —G’f,ﬁU“Uﬁ(&; -U%U,),
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and this force has a four-vector nature. We have here the same situation as in the case
for other known physical forces.

In SRT there is a principal difference between the inertia and physical forces (electro-
magnetic, nuclear, etc.). The inertia forces may always be turned into zero by a simple
choice of the reference frame, while physical forces cannot be turned into zero by any choice
of the reference frame, because they are of vector nature in the Minkowski space. In GRT
gravitational forces are locally identical to the inertia forces, therefore they greatly differ
from any. other physical forces. In RTG contrary to GRT, gravitational forces, as all other
physical forces, have one and the same, vector nature in four-dimensional space-time.

Einstein recognized a profound reason for the equality of the inertial and gravitational
masses from the local identity of inertia and gravitation. However, in our opinion, as it
is seen from equations (70) the reason for this equality is in the fact that the source of
the gravitational field is the conserved total density of the tensor of matter and gravita-
tional field. That is why the equality of the inertial and gravitational masses does not
demand of the local identity of the gravitation and inertia forces. However geometrization,
determined by the geometrization principle, turns out to be necessary.

6. Some Physical Conclusions of RTG

The RTG system of equations (66) and (67) leads to completely different, qualitatively
new physical conclusions than the GRT. For example, the picture of collapse changes
completely. It turns out that during collapse of a spherically symmetric body of an
arbitrary mass the contraction process in the region close to the Schwarzschild sphere
ceases to be replaced by further extension. This means that in addition to contracting
objects in the Nature there should exist extending ones. Therefore, according to the RTG,
the possibility for “black holes”, i.e. objects having no material boundaries and “cut” off
out of the external world, to exist in the Nature is ruled out completely.

Another important physical conclusion concerns the evolution of the homogeneous
and isotropic Universe. It follows from equations (66) and (67) as well as from causality
conditions (83) and (84) that homogeneous and isotropic Universe has been existing for
an infinite period of time and its three-dimensional geometry is Euclidean. This Universe
evolves cyclewise from the maximal finite density till the minimal one, then till the max-
imal again (in the absence of dissipation), etc. Our theory predicts the existence in the
Universe of a large “hidden” mass of matter because, according to equations (66) and
(67) the total matter density is presently equal to

et = (Y (86)
P=PT 167G\ h |
Whereof it is seen that the matter density even for a sufficiently small graviton mass is

close to the critical density p. determined by the Hubble constant H and equal to

_3H?
Pe=82G"

(87)
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The RTG explains all the known gravitational experiments in the Solar system and, as
we saw before, makes it possible to introduce for gravitational field the notion of energy-
momentum tensor, as it can be done for other physical fields. As due to geometrization
the conserved total tensor density of matter and gravitational field is the source of the
gravitational field, from equations (70) directly follows, that inertial mass of a static body
is exactly equal to its active gravitational mass. Here thls equality does™ suggest the local
identification of gravitation and inertia.

From the other side a motion of a neutral test body in the given gravitational field does ;.c&
depend on the body mass, as it is along the geodesic line of the effective Riemannian space.
So, it should be concluded that the passive gravitational mass of the test body is also
equal to its inertial mass and, therefore, the passive gravitational mass of the test body is
equal to its active gravitational mass. The energy-momentum tensor density —26L,/8g,.,
of gravitational field in the Riemannian space outside matter is, according to equations
(66), equal to zero. However, this does not mean the absence of gravitational radiation
because the gravitational wave carrying energy moves along the effective gravitational
background.

As to the gravitational radiation of massive gravitons it was expounded in article [4],
in which the author showed that the calculations made earlier were based on the gen-
eral expression for intensity obtained incorrectly. Those deducing this expression did not
take into account the important fact that gravitons actually propagated in the effective
Riemannian space rather than in the Minkowski one. Consideration of this fact led the
author to the statement that the intensity of the gravitational radiation of massive gravi-
tons was a positive-definite value. Its expression is presented in paper [4]. The system
of gravitational equations (66) and (67) opens up new possibilities for both specific and
comprehensive studies of these or those gravitational phenomena.

In conclusion one should make some important remarks. Can one set the graviton
mass equal to zero? Since in our theory the graviton mass eliminates the degeneration in
the gauge group, putting it equal to zero directly in equations (66) and (67) is incorrect.
In our theory it must not be equal to zero. The system of gravitational equations (66)
and (67) is hyperbolic, with the causality principle ensuring the existence in the whole
space of a space-like surface crossed by each nonspace-like curve in the Riemannian space
only once. Putting it in other words, there exists a global Cauchy surface on which the
initial physical conditions are given for any specific problem.

Penrose and Hawking [5] proved the theorems on existence of singularity in the GRT
under certain general conditions. In virtue of causality conditions (85a) and proceeding
from equations (68a) outside of matter the inequality

Ry v*v” <0 (88)

holds true for the isotropic vectors in Riemannian space, therefore the conditions of the
theorems on the existence of singularity are not fulfilled in the RTG and, hence, their
statements are unacceptable for the RT'G. In our theory those events which are space-like
in the absence of gravitational field can never become under the action of gravitational
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ausality principle the effective Riemannian space—
me-like geodesic completeness.

ake the following general conclusion. If
the source of gravitational

feld time-like ones. In virtue of the ¢ :
time in the RTG will possess the isotropic and ti
The aforementioned reasonings allow us to m .
we accept in virtue of the universal nature of gravitation that y
field in the Minkowski space is the conserving energy-momentum tensor of matter an
massive gravitational field, then the field will manifest itself as a second-rank tensor one.

Similarly to electrodynamics the field equations can naturally be written as
O¢™ + m? ¢*¥ = A tH, 0. " =0.

But this system of equations follows from the Lagrangian formalism only in the case
if the matter-gravitational field interaction takes place according to the geometrization
principle, that just reduces the action of this ficld to the effective space-time geometry.

Hence, with the conserving matter energy-momentum tensor accepted as the universal
source of gravitational field, this necessarily leads to the effective Riemannian geometry.

As the field gravitation theory requires that the graviton mass be introduced, and,
according to the theory structure it is close to electrodynamics, then it may well be that
the photon rest mass is not equal to zero either.

7. Mach Principle

When formulating the laws ol mechanics Newton introduced the notion of absolute
space, that always remains the same and motionless. And right with respect to this space
he defined the acceleration of a body. This acceleration was of an absolute character. The
introduction of such an abstract notion, as absolute space, turned out to be rather fruitful.
In particular, the notion of inertial reference frames in the whole space, relativity principle
for mechanical processes sprung out from this idea. Besides it favoured the formation of
the idea of physically distinguished states of motion. In connection with this in 1923
Einstein wrote: “The coordinate systems found in such states of motion differ in the fact
that the laws of Nature formulated in these coordinates acquire the most simple form” and
then he went on: “..in accordance with the classical mechanics there ezists the relativity
of the velocity, but not the relativity of the acceleration.” Since then the idea of inertial
reference frames was established in the theory. In these inertial reference frames the
material points not subjected to the action of the forces do not undergo the acceleration
and are in their state of rest or of uniform and straightforward motion. However the
absolute Newton space or the inertial reference frames were in fact introduced a priori,
without taking into consideration the distribution of matter in the Universe.

Mach was brave enough to seriously criticize the basic postulates of Newton mechanics.
As he himself recognized later, it was very difficult for him to publish his ideas. Though
Mach has not constructed a physical theory, free from the drawbacks pointed out himself,
nevertheless he has greatly influenced the development of the physical theory. He attracted
the attention of scientists to the analysis of the basic physical notions.

Let us quote some statements by Mach [6], which later on were called Mach principle.
“No one can say anything about absolute space and absolute motion, it is only something
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sl o bl n et Th: Tstead of riing o s oy
of th i ystem) we sh-ould rather conszfler its relation to the bodies

€ wor » Which are the only ones allowing us to determine the coordinate system...
even in the simplest case, when we supposedly consider the interaction of only two masses
we cannot neglect the rest part of the world.... If a body rotates w.r.t. the sky with
motionless stars, then there arise centrifugal forces, however if it rotates w.r.t. some
other body, rather than w.r.t. the stars, no centrifugal forces arise. I have nothing against
calling the first rotation an absolute one, if we always bear in mind that it does not imply
anything else but the rotation w.r.t. the motionless stars sky.”

This is why Mach wrote: “...there is not any necessity to relate the inertia law with
any special absolute space. The most natural approach of a true scientist is as follows: first
we are to consider the inertia law as a rather approzimate one, to relate it spatially with
the motionless starry sky,... and then we are to expect some corrections or development
of our knowledge on the basis of our further experience. Recently Lange has published an
article saying how one might introduce a new coordinate system using his principles for the
case when usual rough reference to the motionless starry sky turned out to be inapplicable
due to more precise astronomic observations. There is no disagreement between me and
Lange in the theoretical formal value of Lange’s conclusions, i.e., the motionless starry
sky is in fact the only applicable reference system at present, as well as there is no dis-
agreement concerning the method of defining a new reference system through step-by-step
corrections.” Then Mach quotes S.Neumann: “Since all the motions are to be referred to
the alpha system (inertial system), it obviously represents some indirect relation among
all the processes going on in the Universe, and consequently, one may say, it contains so
a mysterious as a complicate universal law.” Mach makes a remark in this relation: “J
think, anyone will agree with this.”

From Mach’s remarks it is clear that since we are speaking about the inertia law,
according to which, if we follow Newton “..any separately taken body, since it is left to
itself, keeps its state of rest or of uniform straightforward motion...” then quite naturally
there arises the question about inertial reference frames and their connection with the
distribution of matter. Mach and his contemporaries understood quite clearly, that such
connection should exist in Nature. This is the meaning that will be embedded into the
notion of “Mach principle”.

Mach wrote: “Though I think that astronomic observations will entail first only rather
insignificant corrections, I still admit, that the inertia law, in its simple form, given by
Newton, has a limited and temporary significance for us.” As we will see in what follows,
Mach was mistaken here. Mach did not formulate his idea mathematically, that is why
numerous authors put their own ideas into Mach’s principle. Here we will try to preserve
the meaning, that Mach himself implied.

Poincaré, and later Einstein generalized the relativity principle for all physical phe-
nomena. In Poincaré’s formulation [2] it reads: ..the relativity principle, in agreement
with which all the laws of physical phenomena should be identical for motionless observer
and for the one, moving uniformly and straightforwardly, so that we have no means and
we cannot have those means to determine, whether we perform this motion or not.” The
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application of this principle to the electromagnetic Qhenomena brouglfxt Pom:zjmreé :2(3
then Minkowski to the discovery of the pseudeuChdean gfaometry ol spa.cel mfl i
thus gave an even more support to the hypothesis on the .ex1stence of inertia ri erefn
frames in the whole space. Such reference frames are physically preferred, and therefore
the acceleration w.r.t. them has an absolute meaning.

In the General Relativity Theory there are no inertial systems in the whole space. On
this point Einstein wrote in 1929: “The starting point for the theory is the statement,
that there is no physically distinguished state of motion, i.e. neither the velocily, nor
acceleration has absolute meaning.”

Mach principle in his formulation was not used in the GRT. However, it should be
noted, that the ideas of inertial reference frames in the whole space are quite enough
grounded experimentally, since, for example, passing from the coordinate system, con-
nected with the Earth, to the coordinate system, connected with the Sun, and then to
the Metagalaxy, we approach the inertial reference frame with higher and higher preci-
sion. Therefore there are no serious grounds to give up such an important notion, as the
inertial reference frame. On the other hand the existence of such fundamental laws as
energy-momentum and angular momentum conservation laws also leads us by necessity
to the fact of the existence of the inertial reference frames in the whole space. Pseudo-
Euclidean geometry of space-time reflects the general dynamic properties of matter, at
the same time it introduces the inertial reference frames. Though the pseudo-Euclidean
geometry of space-time arose when studying the matter, and hence it is indispensable
from it, nevertheless one may formally speak about the Minkowski space in the absence
of matter. However as before in Newtonian mechanics, the Special Relativity Theory does
not answer the question in what way the inertial reference frames are connected with the
distribution of matter in the Universe.

The discovery of the pseudo-Euclidean geometry of space-time allowed one to consider
in an unified way not only the inertial, but accelerated reference frames as well. A great
difference sprung between inertia forces and forces caused by physical fields. Its essence
lies in the fact, that the inertia forces may always be made equal to zero by choosing
proper reference frame, while the forces, caused by the physical fields, cannot in principle
be turned into zero through a choice of the reference frame, for they have a vector nature
in the four-dimensional space-time. Since in the RTG the gravitational field is a physical
field in Faraday-Maxwell spirit, the forces caused by this field, cannot be turned into zero
by choosing the reference frame.

Another situation takes place in the General Theory of Relativity. Here gravitational
forces have no vector nature in the four-dimensional space-time, and hence they can
locally be turned into zero by choosing proper reference frame. Owing to the presence
of the rest mass of the gravitational field the basic equations of the RTG (66) and (67)
contain alongside with the Riemannian metric a metric tensor of the Minkowski space,
but it means that the metric of this space can, in principle, be expressed via geometrical
characteristics of the effective Riemannian space, as well as via the quantities character-
izing the distribution of matter in the Universe. It can easily be realized, if we pass from
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contravariant quantities to covariant ones in (66). Thus we obtain

m? 87 1 m?
77#”(3") = _——\/:_g-(T w EQWT) - Ry, + _2".9uu- (89)

As we see, the r.h.s. of the equation contains only geometric characteristics of the effective
Riemannian space and the quantities that define the distribution of matter in this space.

Experimental studies of the motion of particles and light in the Riemannian space may,
in principle, allow us to find a metric tensor of the Minkowski space, and consequently, to
construct an inertial reference frame. Hence, the RTG constructed in the framework of
the Special Relativity Theory, makes it possible to formulate mathematically the Mach
principle. As is seen, the special relativity principle has a global meaning independent of
the form of matter.

As to the gravitational field, its requirements are expressed through the form-
invariance condition of equations (66) and (67) w.r.t. the Lorentz group. Lorentz form-
invariance of the physical equations remains to be the basic physical principle when con-
structing the theory, for namely this principle gives us a possibility to introduce universal
characteristics for all forms of matter.

In 1950 A. Einstein wrote: “.. shouldn’t we finally try to conserve the notion of the
inertial system and give up all attempts to ezplain the fundamental property of gravita-
tional phenomena, that manifests itself in Newton’s system as equality of the inertial and
gravitational masses?” In Section 6 we have established that the equality of the inertial
and gravitational masses is a consequence of equations (70), where the conserved total
density of the energy-momentum tensor of matter and gravitational field is, owing to ge-
ometrization, the source of the gravitational field, and this equality does not exclude, to
the least extent, the notion of the inertial system. This notion remains in full in the RTG
and it reflects general dynamic properties of matter-energy-momentum and angular mo-
mentum conservation laws. Hence the equivalence of the inertial and gravitational masses
does not make one reject the notion of the inertial system. Contrary to our conclusion
A. Einstein answered the question in the following way: “The one, who believes in the
cognoscibility of Nature, should say — no.”

Mach’s ideas greatly influenced Einstein’s views of gravitation when constructing the
General Relativity Theory. In one of his articles Einstein wrote: “Mach principle: G-field
is completely determined by the masses of the bodies.” But it turns out that neither this
postulate is fulfilled in the GRT, since there exist solutions in the absence of matter.
An attempt to overcome this difficulty by introducing a A term was not a success. The
desirable result was not achieved. It happened so that even the equations with the A
term will have solutions, different from zero in the absence of matter. As it becomes clear
Einstein embedded quite a different sense into the notion “Mach principle”. However even
this interpretation did not allow Mach’s principle to find its place in the GRT.

Does the Mach principle take place in Einstein’s formulation in RTG? Contrary to
the GRT in this theory one has space-like surfaces over the whole space — global Cauchy
surfaces (which is due to causality principle). And if one of these surfaces lacks matter,
then on the basis of the energy-dominance requirement, imposed on the matter tensor,
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the matter will always be absent [5]. Since matter does exist in Nature, then it follows,
that the system of gravitational equations homogeneous in the whole space, does not
have solutions, realizable in Nature. On other words all the solutions of this system have
no physical sense under the present development of the Universe. Such rejection of the
solutions to the system of homogeneous gravitational equations became possible not only
due to the equations, but also to the character of the real Universe.

In principle, the equations of the theory do not reject the Universes, built of the
gravitational field without matter. They are rejected by the development of matter itself.
Why our Universe turned out to be with matter — the theory does not give an answer to
this question. Only solutions of the system of inhomogeneous gravitational equations have
physical sense, when in some part of the space or in the whole space there is matter. It
means, that the gravitational field and the effective Riemannian space in the real Universe
could not have been produced without matter generating them. We see that in Einstein’s
formulation also Mach principle is realized in the Relativistic Theory of Gravitation.

However there is quite a noticeable difference in understanding G-field in our theory
and in the GRT. By the G-field Einstein understood Riemannian metric, while in our
understanding the gravitational field is a physical field. Such field enters the Riemannian
metric alongside with the flat metric, hence in the absence of matter and gravitational field
the metric does not vanish, and remains a metric of the Minkowski space. In literature
one can find other formulations of Mach’s principle, that differ in their meaning from
the ideas of Mach and Einstein. But since in our opinion they have not been formulated
sufficiently definitely, we do not consider them. Since the gravitational forces in the RTG
are due to the physical field of Faraday-Maxwell type, then we cannot speak about any
unified essence of the inertia and gravitation forces.

Sometimes one sees the essence of Mach principle in the fact, that the inertia forces
are as if determined by the interaction with the Universe matter. From the field point of
view, such principle cannot take place in Nature. The thing is that though the inertial
reference frames, as was seen above, are connected with the distribution of matter in the
Universe, inertia forces are not the results of the interaction with the Universe matter,
for any interaction of matter can proceed only via physical fields, but this means that the
forces caused by these fields, cannot be made zero just by choosing the reference frame,
which is due to their vector nature. Hence the inertia forces are directly determined not
by the physical fields, but by a strictly determined structure of geometry and the choice
of the reference frame.

The pseudo-Euclidean geometry of space-time, which reflects the dynamic properties
common for all forms of matter, from one side has confirmed the hypothesis on the
existence of the inertial reference frames, and from the other side it has shown, that the
inertia forces, arising under a corresponding choice of the reference frame, are expressed via
Christoffel symbols of the Minkowski space. Therefore they do not depend on the nature
of the body. All this became evident when it was shown that the SRT was applicable not
only in the inertial reference frames, but in non-inertial (accelerated) frames as well. This
made possible to give in article [7] a more general formulation of the relativity principle:
“No matter what the physical reference frame we choose (inertial or non-inertial) one
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can always point out an infinite set of other reference’ frames, such that all the physical
phenomena would proceed identically to the initial reference frame, so we do not have and
we cannot have any ezperimental possibilities to distinguish, in what particular reference
frame out of all this infinite set we find ourselves.”

In the RT'G there is a great difference between inertial and gravitational forces: the
farther we are from the bodies the weaker the gravitational field is, while the inertia forces
may be arbitrarily large depending on the choice of the reference frame. And only in the
inertial reference frame they are equal to zero. Therefore it would be wrong to say, that
we cannot separate the inertia forces from the gravitation ones. In our everyday life their
difference is almost evident.

The construction of the RTG allowed one to establish the connection between the
inertial reference frame and distribution of matter in the Universe, thus making deeper
our understanding of the nature of the inertia forces and their difference from material
forces. In our theory the inertia forces are to play the same role, as they play in any other
field theories.

Author expresses his deep gratitude to S.S. Gerstein for valuable discussions.
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