|
: "
%\ %) STATE RESEARCH CENTER OF RUSSIA
li' O INSTITUTE FOR HIGH ENERGY PHYSICS
. FHEP ,,.
S 1
) ] ;
FERMILAB |
N
AN A IHEP 95-48
N
N R
1D
—
="
=n S.I.Alekhin*
==
%’Eg
‘=2 ON REDUCING SYSTEMATIC ERRORS IN SOME
=_ STATISTICAL ANALYSIS
gy

*alekhin@mx.ihep.su

Protvino 1995


mailto:alekhin@mx.ihep.su

UDK 519.254 M-24

Abstract

Alekhin S.I. On reducing systematic errors in some statistical analysis: IHEP Preprint 95-48. —
Protvino, 1995. — p. 4, refs.: 4.

We analyse statistical properties of the simplest x? estimator being applied to the analysis of
the data correlated due to common systematic uncertainties within the Bayesian approach. An-
alytical formula for the systematic errors and the bias of the parameter estimator are presented.
Stressing that this estimator is not efficient we show that the systematic errors of the fitted
parameters can be decreased by using in this task estimators based on the likelihood function
whereas the values of the fitted parameters are shifted to the true value. The described effect
probably can help resolve some contradictions in the particle phenomenology.

AHBHOTanuUsA

Anexun C.H. IlomaBneHne cMCTeMaTHYECKHX OIIMGOK B HEKOTOPHIX CTaTHCTHYECKMX O6pabOT-
kax: IIpenpunt UPBI 95-48. — IIporBuHO, 1995. — 4 c., 6ubnumorp.: 4.

Mu aHalIM3MpyeM CTaTHCTHYECKHE CBOWCTBa MpocTelilnell x? OUeHKH TpH aHallM3e MaHHBIX
¢ KOPPeIMPOBAHHEIMM CHCTEMaTH4YeCKMMHU onrmGkaMu Ha ocHoBe GaifecoBckoro moaxona. Ilpen-
CTaBlIeHHK aHAJATHYeCKHe (GOPMYIH JJIA CHCTEMATHYECKMX OUIMGOK IapaMeTpPOB M CMeIleHHA
ouenky. OGpamtas BHUMaHNA Ha TO, YTO JaHHAA OLEHKA He 5pGdeKTHBHA, MEI IOKa3hIBaeM, ITO
CHCTeMaTHJYecKHEe OIMMGKH GUTHPYEMEIX MapaMeTPOB MOTYT GHITH yMeHbIIEHH IPH MCIOIL30-
BaHNM OLEHOK, OCHOBAHHHIX Ha GOYHKIWHM MaKCHMAaJHHOIO NPABHONONOGHA; NP >TOM 3HAUYEHHS
HapaMeTpPOB CMEII[AIOTCS B CTOPOHY MCTHHHOrO 3HadeHHMs. OQuucaHHBIA 3PPeKT MOXET MOMOYb
OGBACHEHHIO PA3INYHEIX IPOTHBOPeYHii B (PeHOMEHOJIOI'HH.
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Modern particle physics development is often based on the analysis of precise experi-
mental data. One of the well known problem of such analysis is the account of systematic
uncertainties of the data which often are comparable or even larger than the statistical
ones [1]. It is customary that systematic errors are ignored at the first stage of the analy-
sis and at the second stage data are shifted by the value of a systematic uncertainty and
the analysis is repeated to evaluate systematic errors for the parameters of the applied
theoretical model (see, for example [2]). At the final stage individual systematic errors
can be combined in quadrature. The goal of this letter is to examine basic statistical
properties of the parameters estimator obtained using this method within the Bayesian
approach.

If data are explicitly described by a theoretical model and in the presence of K sources
of systematic errors experimental data can be presented as

i = fi + pioi + Mis?, (1)

where f; = f;(6°) is the value predicted by the theoretical model with parameter 8, y;
and ); are independent random variables, o; and s¥ - statistic and systematic errors from
the k-th source for ¢-th measurement, i =1---N, k=1:-- K, N is the total number of
points in the data set. If data come from the data sample with a large number of events,
¢ is normally distributed, as to A, the only assumption is that they have zero average and
unity dispersions. In accordance with the approach analysed here one finds the estimator
of the parameter é by minimization of x? functional

X2(0) = ; (f.'(o)a?— yi)®

To obtain the dispersion of  we will follow the method used in [3]. Following their
notations we introduce the quantities
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where < > means averaging over the repeated data sa.mples. In these notations
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and the rejected part of the expansion contains terms with the higher powers of 1/a. In
this approximation and neglecting o; fluctuations dispersion and bias of § can be expressed
as

<X?>
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a? + 2a3
If data points are uncorrelated averaging of X? and XY leads to the cancellation of most
terms in the double sum and one can obtain
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With the account of the data correlations the expression becomes more complicated
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where Cj; is the correlation matrix
E Sksk + (5,]0;01'

and 6;; is Kronecker symbol. At first we should note that the last formula gives an
analytical result for the dispersion and bias of 0 due to systematical errors as they are
treated in the considered approach and can be used to save computer time by omitting
fit repetitions. The second note is that the nominator of the expression for the disper-
sion is ~ N? whereas without correlations it is ~ N. This unpleasant property is also
reproduced in higher terms of expansion (2) and leads to increase of the estimator bias




and to worse statistical convergence of this estimator with increasing the data amount.
The reason of such worsening is obvious and is connected with the fact that with the
account of correlations minimization of the simple x? functional becomes nonequivalent
to the maximizing likelihood function which gives the efficient estimator and hence the
dispersion of 0 becomes larger than Cramer-Rao limit. For the given distribution of A
one can construct this likelihood function. Say if one supposes that they are normally
distributed, the most optimal estimator is provided by the minimization of the functional

N
xX*(0) = X_ 4:Eijq;, (3)
1,5=1

where ¢; = f;(0)—y;, and E;; is inverted correlation matrix. Dispersion of é, i.e. systematic
errors of the fitted parameter in this case is

$~ OA(®) E{jafj(e")]‘{

(4)

D(0) = [ a0 a6

i,j=1

As far Cj; is positive definite one can construct real matrix v/C;; giving its square root
and using triangle inequality we obtain regardless the shape of A distribution
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This means that even if the systematic errors are not Gaussian distributed the full treat-
ment of the correlations can give the estimator with smaller dispersion, though it can be
not efficient in this case. From the above one can see that the difference is the greater the
larger N is and the effect of reducing the systematics can be more significant for global
data analysis. Generalization on multi-parametric case is obvious. In this case 1/a is
replaced by the error matrix for the parameters and in the case of large correlations of
the parameters the effect of systematic errors reduction can be more pronounced.

One can argue that the Gaussian distribution of systematic errors is not a very strong
assumption (see, for example, discussion in [4]). If the systematic error arises from the
poor knowledge of some parameter of the experimental apparatus (geometrical dimen-
sions, counter efficiency, etc.) it is rather natural to suppose the Gaussian distribution



for the scale of this error which is obtained as the propagation of the error for this pa-
rameter. In the cases when the systematic error is evaluated as the error in correction
which is calculated using Monte-Carlo generation this approximation seems to be almost
correct. If K is large, y; tends to obey the Gaussian distribution for any distribution of A
in accordance with the central limit theorem of statistics and this approximation is better
if s¥ have comparable values. Thus ansatz (3) with corresponding formula (4) in many
cases can not only improve dispersion of estimator, but provide its efficiency.

If the effect of the systematics reduction is large, the data reanalysis with full treatment
of correlations can also lead to a significant shift of the parameters. This shift is of the
order of value of systematic error evaluated with the simplest estimator and since the
dispersion of the new estimator is reduced, the new value of the parameter comes closer
to the true value. The effect is more pronounced if the simplest estimator suffer from
the bias. One can hope that the described statistical approach can help resolve some
contradictions in the particle phenomenology.

The author is grateful to A.S.Nikolaev for reading the manuscript and valuable com-
ments.
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