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Abstract

Leznov A.N. and Yuzbashyan E.A. Two-Dimensional integrable Darboux-Toda substitution and
Davey—-Stewartson hierarchy of integrable systems: IHEP Preprint 95-28. — Protvino, 1995. -
p. 7, refs.: 7.

The equations of (1 + 2) integrable systems belonging to Davey-Stewartson hierarchy are
represented in an explicit form.

AHHOTaLIMA

Jlesuos A.H. mn IO36amssn O.A. JIBymMepHas muTerpupyemas moacTaHoska IapGy-Tombr u
Hepapxus MHTerpupyeMmux cucreM Isu-CtioapTcoHa: IIpenpunr UPBOI 95-28. — IlpoTsuHO,
1995. — 7 c., 6ubnuorp.: 7.

B craTbe mpencTaBiIeHEl B ABHON (popMe ypaBHeHHS (2+1)-MepHHIX MHTErPHPYEMEIX CHCTEM,
npuHauIexamux X nepapxuu Ispu-CrioapTcoHa M ABASIONIMECS HABAPUAHTHHIMH 10 OTHOILE-
HHIO K NUCKPEeTHOMY IpeoOpa3oBaNUIO NByMepHO# MHTerpupyeMoit moncranoBku Hap6y-Tonsl.
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1. Introduction

In the case of (1 + 1) integrable systems the Hamiltonian formalism has played the
fundamental (background role for many years). However the situation in (1 + 2) case
changes essentially. In this case the Hamiltonian formalism (in the usual sense) does
not work at all and many alternative methods to construct integrable systems and their
solutions [1], [2] have been proposed.

The goal of the present paper is to demonstrate that the condition of equations invari-
ance with respect to two-dimensional integrable mapping (discrete substitution, trans-
formation) [3,4,5] allows one to construct equations of the corresponding hierarchy in an
- explicit form. Moreother it is possible to obtain a wide class of exact solutions, including
soliton ones [3).

The fundamental role in our construction will play the functions which, with respect
to discrete transformation, are shifted on two-dimensional divergence with respect to
space coordinates of the problem. We conserve for these functions (for a while) the
term Hamiltonian keeping in mind that in one-dimensional limit they indeed go over to
the corresponding Hamiltonians (up to nonessential divergence) of the (1 + 1) integrable
system.

We restrict ourselves in this paper by the case of the Darboux—Toda two-dimesional
integrable mapping which is directly connected with (1 + 2) Davey-Stewartson hierar-
chy [7].

2. Discrete Darboux—Toda (D-T) transformation

The explicit form of the direct and inverse D-T integrable substitution is the following:

1

2’ v= v(uv — (Inv)gy),

—
U =

(2.1)




v = l, U = u(vu — (Inu)zy).
u

=J
The functions on variables f(u,v) after j-times direct transformation will be denoted f,
i (=) io
after j-times inverse transformation as f ( f =7 .
The condition of invariance with respect to transformation (2.1) of evolution type
equation

Uy = F(u) (2.2)

(u is vector function (u,v), F(u) is also two-dimensional vector function (F1, F3) each
component of which depends on (u,v) and their space derivatives up to some definite
order) may be written as [3]

F = F(¢(u)) = ¢'(u)F(u), (2.3)
where ¢'(u) is corresponding to (2.1) Frechet derivative [6]
#w =2 s ) (2.4
W=\ v? 2uv -2 4+ %D, +2D, — D, )’ '
3

— 3 —
where Dy = 5, Ds = 5.

System (2.3) in the concrete case of D-T substitution may be rewritten as

= 1 = 2 Ugly = Uy vy
Fl = _;EF2 F2 =7 Fl + (QU’U - 02 + ?Dy + ?Dz - .D;-y)FQ. (25)

It is not difficult to check by the direct computations that Fp = (u, —v) is the solution
of the last equation and so substitution (2.1) is integrable in the sense of [3].

After introducing the new functions Fy = uf;, Fy = vf; system (2.5) takes the form
of a single equation for only one unknown function f,

(wv)(fe = f2) — (w)(fo — f2) = —Duy fo, fr = —Ffa. - (2.6)
The meaning of notations in the last equation is explained after formula (2.1).

In further transformations of (2.6) we will use the fact that condition of invariance
of some function with respect to the discrete transformation F' = F is equivalent to the
F = const. This is in some sense the analogue of Liouville theorem in the theory of
analicity functions. Using this fact for function fo = [ dy(T — T') we obtain the Toda-like
chain equation

T, =T / dy(T — 2T +T), To=uv. (2.7)

In terms of solution of (2.7) evolution type equation (2.2) (invariant with respect to
D-T substitution (2.1)) takes the form

v = v / dy(T-T), w=u / dy(T —T).) (2.8)



3. Solution of the main equation

Using (2.1) one can get convinced that T' = T, is the solution of (3.1). Let us seek
solution of (2.8) in the form

T=%/@%. (3.1)

After substitution of this expression into (3.1) and some trivial computations we find the
equation for ap

_%=%/@@Lﬂ@+%/@@Lw@-%/@aw4%+iy (3.2)

Let us try to solve the last equation with the help of the following substitution (with
notation A = (To —2To + To))
ao = Toa; + Top;.

At first we will assume that «, § are some numerical constants. From (3.2) we immediately
obtain a; = —p; = 1 and as corollary we find a partial solution of our main equation
(3.1) in the form

Now let us consider a;, ; in the previous expression for ap as unknown functions repre-
senting them in the integral form: (we keep the same letters for convenience)

%:Rf@m+n/@m. (3.4)

Keeping in mind that —(7o), = To [ dyz we can rewrite equation (3.2) (cquating to zero

coefficients before To and To terms) as

—al—To/dyal—al+To/dy(ﬂ1+a1 T [dy(Bi+ ) - o [dy(A+2),

8 =T [dy(Bi - )+ To [ dy(@ + B) ~To [ dy(Bi + an) = B [ dy(B + ).

Summarizing equation for (3, shifted by direct transformation with equation for a4, after
simple calculations we find

Cc

[+ ==,  [dy(h+a)=—=—,
Tolo (TOTO)

where ¢ is an arbitrary constant. Substituting these expressions into the last equation for
a; we obtain (below we put ¢ = 0)

—a'1=—a1/dyA+A +T0/dy(011—al +T0/dya1—a1) (3.5)
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This equation is absolutely the same as equation (3.2) with obviously changing To on
—2
To. Let us take o; in the form ,
ay = Toaz + Tofs.

Assuming that ay,; are the numerical parameters, from (3.5) we obtain immediately
a3 = —fB; = 1 and finally the next partial solution of our main equation is

— —2 — e — — —_ 2—
T, = To/dy[To | dyTo — To/dyTo - To/dyTo + To | dyTo). (3.6)

In the case when as, B2 are unknown functions, using the same trick (as in the case with
ay, By ) we will (after substituting [ dya; instead a3 and the corresponding expression for

,32) get

—2 — 3 — - : —
—af = —az/dy(A +A+A)- To/dy(az —az) + TO/dy(a2 — az)

and the corresponding equation for £3,.
In the general case it can be proved by induction using every time substitution:

4—k+1

ay = / dyary + To / dyBr+1

on the n-s step we will have the following equation for o,

—n+1l

_a:‘:—an/dy(To—-To—fo-i- To +T0/dy(an—a +T0/dy(a"’an) (3.7)

This equation possesses the obvious partial solution of the form (compare with the corre-
sponding solutions in the cases a3 3)

—n+1 1—

o, = To —T. (3.8)

After this explicit expression for T, may be reconstructed in the form of the sum of 2"
terms, which can be written in following symbolical form:

T, = To [[(1 — expl—(i+ D = 3 di]) [T / dyTo...... [aTo,  39)

i=1 k=i+1

where symbol exp d, means the shift by unity of the argument of p-repeated integral
—p+1

—p
(... fdyTo... — ... fdy To ...) in (3.9).
Substituting this expression for T, in (2.8) we'll find the equation of order (n + 1) of
the Davey-Stewartson hierarchy.



4. Recurrent formulas for 7,-functions

We may assume that the following recurrent pure algebraic relation connecting Hamil-
tonian functions T;, takes place

1 n+1 _ _ n-1
Toss = 5 LI 4 Fp Bl 4+ S T4 [ dyTooses. (4.1)
k=0 =0

We have checked this relation by direct computations up to n = 4. But we don’t know
now if this relation is a direct corollary of our general formulae (4.1) for T}, or not.

5. Conserved values

We have checked also that all the constructed Hamiltonian functions T, (3.9) up to
n = 3 are the conserved quantities which in one dimensional limit (8, = 8,) up to
all unessential derivatives go to Hy,4+; —hamiltonian functions of equations of the one-
dimensional nonlinear Schrédinger hierarchy. All functions T, are shifted with respect to
D-T discrete transformations (2.1) on divergence in two-dimensional space.

6. Examples

In this section we represent the simplest integrable systems for unknown functions u, v
corresponding to Hamiltonian functions T, with n =0,1,2,3,4

6.1. n=0

To = uv, wu;=auz+buy, vi= av;+ bvy.

In examples below we shall choose a = 1,b == 0 keeping in mind that it is always possible
to add the term ( with arbitrary numerical coefficient) in which x is changed by y and
vise versa.

6.2. n=1

T, = vuy — vzu,

Ut = Ugg — u/dy(uv),:, —Vy = Vgy — v/dy(uv)x.

This is the Davey-Stewartson equation in its original form [7].



6.3. n=2

Ty = (uv)zz — uzvy — Juv / dy(uv)z,
Us = Uggr — Uz / dy(uv); — 3u/dy(uzv),,

Vg = Vggy — Vs / dy(uv), — 3v / dy(vsu)y.

This is the equation of Veselov-Novikov.

6.4. n=3

T3 = —(T1) 2z — 2(UzVzz — Volzz) + 2uv/dy(T1)$ + 4T, /dy(uv)z,
Vy = —Vpgre + AMJ”/dy(Lw);,c - 2v,,.(/ dy(T1)s — 2/ dy(uv)zz) + 2v(/ dy(uv)zer—

[ dyuaa)s + [(uvns)e = (1 f dy(uo)Pes = 1 [ dywo)]?).

The equation for u may be obtained from the equation for v under changing v — v,v —
u,t — —t.

7. Conclusion

The main concrete result of the present paper consists in the explicit form of equations
of the (1 + 2) dimensional Davey-Stewarson hierarchy which are invariant with respect
to transformation of corresponding integrable mapping (2.1). We want to emphasize that
finally result uses knowledge only of Tp Hamiltonian function and some general properties
of discrete transformation (2.1). Our calculations were purely technical and we are very far
from the understanding of their connection with the theory of representations of discrete
mapping, which as it follows from the results of the present paper plays the fundamental
role in the problem under consideration. We invite all mathematicians to help us in the
solution of this interesting problem.

For one of the authors (A.N.L.) the research of this paper partially was possible by
Grant N RMMO000 of International Science Foundation.
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