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Abstract

Derjagin V.B. and Leznov A.N. Two-Dimeusional Lotky-Volterra Integrable Mapping and Cor-
responding Integrable Hierarchy in (142) Space: IHEP Preprint 95-27. — Protvino, 1995. — p. 5,
refs.: 5. ‘

An explicit form of hierarchy of integrable systems in (14+2) dimensions is represented. These
equations are invariant with respect to discrete transformation described by the Lotky-Volterra
integrable substitution

AuxHoTauus

Hepsrun B.B., JlesnoB A.H. - IlBymepHas mHTerpupyemas monctanoBka JloTku-BombsTeppa u
COOTBeTCTBYOIas Mepapxus B (2+1)-npocrpancrse: Ilpenpunr MPBD 95-27. — IpoTsimio,
1995. - 5 c., 6ubnnorp.: 5.

B cratpe mpencraBieHa sfBHas Gopya HepapXuM HHTErpupyeMbix cucrteM B (2+1)-
NIPECTPAHCTBE. JTH YPaBHEHUA ABIAIOTCA MHBAPHAHTHBHIMU 1O OTHOMUIEHMIO K IUCKPETHOMY
npeoGpa3oBaHUIo, ONMMCHIBAEMOMY HHTErpUpyeMoit noncranoskoi Jlanku-BosbTeppa.
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1. Introduction

In papers [1,2,3] a new approach to the theory of integrable systems when the main
subject of investigation became the discrete integrable substitution with respect to which
the concerned equations are invariant was proposed. This approach in principle is inde-
pendent of the dimension of the space under consideration. The criteria of the choice
of integrable mapping among the arbitrary possible ones is the condition of resolution
of functional equation with shifted arguments [3]. This equation always possesses some
trivial solution (and so is self-consistent). It allows one to answer two main questions
of the theory: to choose the integrable substitution by itself and to construct the whole
hierarchy of evolution type equations for a given integrable mapping. These equations
are invariant with respect to this transformation.

The aim of the present paper is to solve the second part of the problem: to construct
(142) equations which all are invariant with respect to the Lotky-Volterra two-dimentional
integrable substitution.

2. Lotky-Volterra Integrable Mapping and the Main Equation

Under this term we will understand the direct and inverse mapping of two functions
u,v of independent variables x,y
U=yt (Inv), v=up4 (ln;l-)y,
(2.1)
U=y — (ln;),: V=9 (Inu),

s-times application of the direct (inverse) discrete transformation to some function f(u,v)

——3 s—

—s

we will denote as f and f = f,if s =1 we will omit index 1. As a direct corollary of
1

(2.1) we have Toda-like recurrent relations for functions t; = uv, t; = v

(Intm)oy = tm — 2m +tm  (m =1,2). (2.2)



Corresponding to (2.1) the Frechet derivative operator calculated by usual rules [4],

takes the form . Dy
/ xv
—_— -—— -—— . 2-3
¢ (Dyu ! 1+ D,u lev'l) (2:3)

Each solution of the equation

F = Flp() = ¢'(w)F(u) (2.4)
is connected with the evolution type equation
us = F(u), (2.5)

which is invariant with respect to transformation ¢(u), in our case (2.1).
Now let us rewrite equation (2.4) with ¢'(u) given by (2.3) in more observable form.
We have successively

R R =D, (v'Fy) F—F=D,(%)" ),

the second equality may be resolved by substitution

F=u(5-5), F=D,S), (2.6)
after that we have for unknown function S from the first one

D,§ = / dz[e(S — §) — u(S — 5)]. (2.7)

3. Solution of the main equation

First of all let us notice that equation (2.7 ) has solution So = v . This became obvious
after substituting this expression into (2.7) and using (2.1 ).

Now let us seek the solution of (2.7) in the form S = v [ dz(ap), where ¢ is unknown
function. After substituting this expression into (2.7) and some trivial transformations
we come to the equation for ag

-

Dyao + ao/dw[;{; - ‘tl + E; - tz] = {;/dx(&—o - Clo) + Z; /d.’l:(ag e ao). (31)

It is necessary to emphasize that this construction is correct in the direction: if oy is the
solution of (3.1 ) then S is the solution of (2.7). All operations are well defined only in
this direction. Let us try to seek the solutions of (3.1) by anzats

Qg = 2;01 + t—::ﬂl, (3.2)

where a; and B; are unknown functions. Having compared coefficients in front of t1 ,t2
to appear after substitution (3.2) into (3.1), we obtain system of equations for a;, £

«—2 — -— —2 — — —
(ca)y + 0! [dalty +12—ty — 11 = [da[tr& + a1 — bron — L),



(3.3)
— 2— — —_ 2— — - —
(B1)y + Ba /dw(tl +t2 —ta—ty) = /dw(tlal + t2 51 — tiay — t231).

Having shifted the last equation by direct discrete transformation and summarizing with
the first equation (3.3) we obtain

- by —2 — —
(ar +B), + (a1 +B1) [ dalty + 8 to 1] = 0.

It is possible to find the general solution for this equation, however it will be sufficient for
our purposes to have the partial one for which #; = —aj;. Under this condition the first
equation (3.3) takes the form

«—2 —_ - —2 — -,
(e)y + a1/dx[t1 +la—t—t]= /dm[h a1 — taoy — tiay + t2a). (3.4)
Equation (3.4) has the obvious partial solution a; = 1 and as compared with (3.2)
Si=v / dz(ty — ts). (3.5)
Let us change in (3.5) the known function a; for fdz(a,). After that equation (3.4) is
changed on
—2 — — -2 - — —
(a1)y + /da:[t1 tla—ty—th]=1 /d:c(al —a)+ t2/dx(al - ). (3.6)
Compare (3.6) with (3.1) we see that they coincide up to the relation of equivalence.
So we can represent ¢, in the form
—2 —y
o1 = tiag +taf,
The (3.3) has the partial solution

012/(?12_;;) ﬂl‘—‘/(zt;"%—l)

Keeping in mind all the previous changings of variables we obtain for S;

S=olfit [t~ [4 [t~ [t[i+ &[4

Let us assume that equations to determine o, * have the form

—(k+1) —k ‘—(k+1) —k — —
(ar)y+ax [dz] t1 — 01 —t2+ t2] = dz(ak ti  —arti + Brty — Bita]m,

(3.7)
—(k-1) 2o o o e(k=-1) o2

—k
(Be)y + ﬂk/dw[tl - t 4ty —t) = [ dr[—ox AR + Btz — Bita).

Then it is possible to verify this assumption by induction. For solutions S; we have

ar = —fr = 1 and the explicit expression for Sk in the formal form
Sn = So [[(1 = Ly exp—(k +1) dk— d)/dyh/dyh ...... /dytl. (3.8)
k=1 Jj=



4. The simplest examples
In the case of Sy = v we obtain the trivial system with the help of (2.6)
U = Uy U = 0y
In the case of n =1
S = v./da;(ﬁ — {;) = v, + 0¥+ 2v/da:(uy),
the corresponding integrable system has the form
Up = —Uyy + 2(uv)y + 2uy/d.z'(uy) v = (v + v, + 2v/da:(uy))y.

In one dimensional case D, = D, this system is a partial case of a wider integrable system
described in [4].
In the case n = 2 we obtain

Sy = v® 4 3vv, + vy + 3vD; (uv), + 3(v, + v?) D (vy) + 3v(D; 1 (uy))?
The corresponding integrable system is the following:
uy = Dy(uyy — 3(vuy) + 3v?u — 3(u, — uwv) D (u),)+

D; +3D; " (uy) D7 (wv), + (D7 (w))?),
ve = Dy(v® + Bvvy + vy + 30D (wv)y + 3(vy +v*) D7 (uy) + 3v(D; (uy))?).

5. Conclusion

The main result of the present paper is contained in formulas (3.8) which allow one to
construct with the help of (2.6) (2+1) dimensional integrable equations of L~V hierarchy.
Each of these systems is invariant with respect to transformations of the discrete Lotcky-
Volterra substitution. We specially emphasize that our expression for S contains only two
functions t;,t,, shifted multi-times by means of direct or inverse discrete transformations
and operation of repeated integrations. From this form we can synonymously conclude
that discrete transformation have to play the fundamental role in the whole theory of
integrable systems. From the considered examples (section 4) we see that the explicit
form of the equations in variables u,v is much more complicated than the corresponding
expressions in terms of multi-times shifted background functions t;,¢;. There arises the
question: is it possible to conserve the language of discrete shifts to describe equations
by itself and find their solutions? We don’t know the answer to such question now.

By part the research of this problem for one of the authors (A.N.L) was possible due
to grant RM00O of International Scientific Foundation.
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