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Abstract

Derjagin V.B. et al. Two-dimensional integrable mappings and explicit form of equations of
(142)-dimensional hierarchies of integrable systems: IHEP Preprint 95-26. — Protvino, 1995. ~
p. 9, refs.: 7.

The equations of (1 + 2) integrable systems belonging to Darboux-Toda, Heisenberg and
Lotky—Volterra hierarchies which are invariant with respect to discrete transformations of the
corresponding integrable mappings are represented in the explicit form.
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1. Introduction

In this paper we will investigate (1 + 2)-dimensional integrable systems [1,2] in terms
of their groups properties of integrable mappings [3].

This program has been proposed in [4,5] and consists in the following construction.
With each local invertible substitution of the form

W = g(u) = d(u, ", .. (L)

(where u is the s-dimensional vector function , u' its derivatives of an arbitrary order
with respect to independent arguments) it is possible to connect Frechet derivative [6]

—D*+ ... (1.2)

As it follows from definition of (1.2) ¢’(u) is s X s matrix operator.

Then it is necessary to consider the following functional equation with deviated argu-
ments: -

F = F(¢(u) = ¢'(u)F(u), (1.3)
where F' is unknown s-dimensional vector function, components of which depend on
vector function u and its derivatives up to some limited order.

Equation (1.3) always possesses one ( trivial ) solution F'(u) = u’ in which it is possible
to get convinced by differentiation (1.1) with respect to one of independent arguments of
the problem.

If (1.3) possesses some other solution different from the trivial one such substitution
was called in [3] as integrable substitution or integrable mapping.

With each of solutions of (1.3) it is possible to connect the evolution type equation:

us = F(u), (1.4)

which is obviously invariant relatively to transformation (1.1). In [4,5] hope was expressed
that the background of future theory of integrable systems is the theory of representations
of the groups of integrable mappings.



The goal of the present paper is to investigate of two-dimensional integrable map-
pings and construct on this base the explicit form of integrable systems belonging to the
corresponding hierarchies.

2. Two-dimensional integrable mappings

Below we will discuss three concrete examples of two-dimensional integrable mappings
which can be considered by the similar methods.

2.1. Darboux—Toda substitution

The explicit form of the direct and inverse D-T integrable substitution is the fcllowing:

"I-L- = -1];—’ ; = ’U(UU — (ln 'U):cy)a

2.1)
— 1 -
V=~ u=uy(vu—(lnu)y).

u

The function f(u,v) after application of the s-times direct transformation we will denote
—8 s$— o—-(-—m)

f , after s-times inverse transformation as f, with the following agreement f =
m—

f,m>0.
As a direct corollary of (2.1) there follows an important for our further considerations
Toda-like recurrent relation for function 7y = uv

(InTo)zy = —To + 2T — To. (2.2)

The corresponding to (2.1) Frechet derivative [6] has the form

0 -1
/ _ 2
¢'u) = (v2 2(uv) — R + =D+ %D, — Dzy) ’ (2:3)

where D, = %,Dz =2,

System (1.3) in the concrete case of D-T substitution may be rewritten as

F F=v*F + (2(w) — 22+ %D, + 2D, ~ DR (24)

g 1
F] = —v—z,
It is not difficult to check by the direct computations that Fo = (u, —v) is the solution
of the last equation and so substitution (2.1) is integrable in the sense of [3].
After introducing the new functions Fy = uf;, F, = vf,, the system (2.4) takes the
form of a single equation for only one unknown function f,

(1;))(}; - f2) - (U'U)(f2 - -;;) = --nyf2a fl = _}:; (25)



The meaning of notations in the last equation is explained after formula (2.1).
In further transformations of (2.5) we will use the fact that condition of invariance

of some function ‘with respect to the discrete transformation F = F is equivalent to the
F = const. This is in some sense the analogues of Liouville theorem in the theory of

analicity functions. Using this fact for function T (f, = [ dy(f-— T)) we obtain the Toda
chain-like equation:

T, =T, / dy(T = 2T +T), To=uv. (2.6)

In terms of solution of (2.6) the evolution type equation (1.4) (invariant with respect
to D-T substitution (2.1)) takes the form:

ve= / WT-T) w=u / dy(T - T). (2.7)

2.2. Two-dimensional Heisenberg substitution

Under this term we will understand the direct and inverse transformations of two
functions (u,v) of the form:

-1 1 1 ¢a:y

"l; =9 — = + ) =In v,
’ l+uv 1+uv ¢z, ¢
(2.8)
— 1 1 (1
V= u"l, - = + Y s = Inu.
l+uww  l4+uv P9, v
One can get convinced that functions ¢, [t = 27 = L L
(1+4uv) (U 4u)2 (1+uv)
—QM’-) satisfy the Toda-like recurrent relations
(V4v)2?
(tm)e = tm / dyA,,, (m =1,2), (2.9)

where A, =t;m — 2t,, + tm.
The explicit form of the Frechet derivative operator is the following:

0 —p~2

-1 e - , 2.10
(L) —(1+<%)2+(R1)26(¢;10x+¢;wy—-,;'gnzy)) (210

¢'(u) = (

6:vvxy, R =1+ uv, R=14uw.

VgUy




By a short calculation it is possible to show that equation (1.3) possesses nontrivial
solution Fy = u, F; = —v and so Heisenberg substitution by definition is integrable.
Now we can rewrite equation (1.3) in more observable form. Let us denote F} =

uB, F, = vA. From the first equation (1.3) we obtain immediately B = —A. The second
equation after some transformations may be rewritten in the form of a single equation for
function A:

w uv 1/ Py Py _
(T wy (A=A = (b:) (2 A4 224, - ). @211
As we know from introduction the main equation (1.3) always possesses the trivial

solution Fy = ug, (uy); F2 = vz, (vy) or A = ¢, (#,). Let us look for the solution of (2.10)
in the form A = ¢,c. Instead of (2.10) we obtain the equation for a:

(A - A) -

(- - g = (. =% en
Resolving (2.12) by the substitution:
| (F)e=T-T
we obtain the equation for determining T
T, = Tp / dy[60(T —T) - 6(T — T, (2.13)
where _—
To = Tt u)?

2.3. Lotky-Volterra substitution
In this case direct and inverse transformations, have the form
U=y + (Inv),, V=04 (In U)y,,
(2.14)
U=y — (nv),, v=v-— (Inu),.
As in the previous case the functions t; = uv, t; = uy Toda-like recurrent relations
(2.9).
The Frechet operator in this case has the form:

, 1 Dyv!
#lu) = (Dy(‘a)—l 1+ Dy(‘ﬁ)—lpzv-l)

By the same technique as in the previous subsections we obtain the single equation for
the unknown function 7" and expressions of the equations of hierarchy via this solution

T, =v [ do[W(T = T) + u(T - T) (2.16)

(2.15)

and at last

—

ue=uwT—T), v =D,T.



3. Solution of the main equation

In spite of an essential difference of Frechet operators in the three above cases the main
equations of problems (2.6),(2.14) and (2.16) have the same structure and may be solved
by the similar methods. We shall demonstrate these methods on the more complicated
example of Heisenberg substitution and represent the results of calculations for other
cases.

First of all let us notice that equation (2.14) has the partial solution
T - To

in what one can get convinced with the help of the below equality which is the direct
corollary of (2.8) and (2.9)

1 b 1 bey b . B,

f—T:'zz"__—z 2zy_"_—"— z e .
0 0 ¢( )+ ¢ 1+uv+¢(¢’x¢y ¢'y ¢3

1+ wuv y
Let us seek now the solution of (2.14) as T = Tp f dyao. Instead of equation (2.14) we
obtain equation for determining the ap function

)x - ¢wy

(a0)z + aO/dy[E —t + t_; —t] = {;/dy(&—o — ) + t—;/dy(&;) — ap). (3.1)

As it will be shown below this equation will arise many times and thus for us two possible
ways of its further evolution will be important. Let us use the following ansatz

ap = tiag + t2f.

After substituting these expressions into (3.1) and equating in front of the term t1,%2 to
zero coefficients (this is some additional assumption ) we come to equations for unknown
functions ay, B1:

—2 — - —
(an)s+ o [dyltr =ttt =13 = [ dy(Ssc0),
(3.2)

(ﬂl)z + ,31 /dy[g -t + 2t—; - t—;] = /dy(&-;) —_ ag).

Summarizing the second equation (3.2) shifted by the direct transformation with the first

one we obtain - - 2 e - )
(a1 + Br)s + (on + ﬁl)/dy[tl —ti4t2—1t]=0

and we see that the system (3.2) has the partial solution BTﬁl = 0, which we will use in
what follows.



For this solution system (3.2) is equivalent to a single equation for the unknown
function ai:

—2 — — -2 —1 =
(1) + 1 /dy[t1 —ti+t2—t)) = /dy[(h a1 — o) — (fraq — )]

The last equation has the obvious solution a; = 1. As a corollary we obtain the second
partial solution of our main equation:

T, = TO/dy(;f_l ~ 1),

A further evolution of equation for a; is connected with the representation of unknown
function in integral form a; — f dya; ( we conserve the same symbol for unknown function
because it can’t lead to misunderstanding in below considerations

—2 — — —2 — - —
(1)z + 1 / dy[ti —t1 +t2—t) =t /dy(al —a1) + t2/dy(al — a1), (3.3)

— —2
which up to obvious replacement t1 — %1 coincide with the equation for ao (3.1).
We can repeat the same trick with this equation as with the equation for ao and after
k steps will come to substitution

’—(k+1) - o
ar = b1 agppr — 20k
and equation for a1
—k+2 —k+1 — —k+2 —k+1 -
(ths1)e+ a1 [dy 1 — 1 +la—t)] = /dy[( t1 kg1 —taar) — ( t1 o — t2en)]
with the obvious solution a1 = 1.

Collecting all the results together we obtain the partial solution of the main equation
in the following formal formulae

n

T, = T [1(1 - Liexpl—Gi + )di = 3 d]) /dytl/dytl ...... dyti,  (34)

i=1 k=i+1
where symbol expd, means the shift by unity of the argument of s- repeated mtegral

(.... [ dy t1 Lo fdy t1 ..) in (2 13) and symbol L, means the exchange t1 on the 2
in the p-repeated integral ... f dy t1 v = . [ dytar....

Expression (3.4) is directly applicable to Heisenberg and Lotky-Voltera integrable
hierarchies. In the case of D-T hierarchy it is necessary to put all operators L; = 1 and
keep in mind the equality ¢, = t; = Tq.

4. Examples

In this section we represent the simplest integrable systems in usual unknown functions

u,v corresponding to the lowest solutions T}, of the main equation for D-T, Heisenberg
and L-V substitutions.



4.1. Darboux—Toda substitution
4.1.1. n=0

To = wv, u =auz+buy,, v;=avy+ by,
In the examples below we shall choose a = 1,b = 0 keeping in mind that it is alvays
possible to add the term (with arbitrary numerical coefficient) in which x is changed by
y and vise versa.
4.1.2. n=1
T\ = vuz — vyu,

U = Ugg — u/dy(uv)x, —Vf = Vgy — v/dy(uv)x.

This is the Davey-Stewartson equation in its original form [5].

4.1.3. n=2

T = (uv)zr — 3u,v, — 3uv / dy(uv)z,
Ut = Ugzy — Uz / dy(uv), — 3u/dy(u,,v),,,

Vi = Vggz — 31),,/dy(uv)1c — 3v/dy(v,,u)z.

This is the equation of Veselov-Novikov [6].

4.1.4. n=3

T3 = —(T1)zz — 2(UgVpgy — VzUzs) + 2uv/dy(T1 )z + 4T /dy(uv),,
Vi = —VUggrzs + 4vu/dy(uv), - 2vz(/ dy(T1)z — 2/dy(uv)u) + 2v(/ dy(uv) zex—

[ dyluzvo) + [(wven)e = (f dy(o)es — [ [ dy(uo)e]?).

Equation for u may be obtained from the equation for v under the changing of u — v,v —
u,t — —t.



4.2. Heisenberg substitution
4.2.1. n=0

v = —vu-l-QUz/dy uvy )T_, —uy = —uu+2u,/dy( )

1+ uv
4.2.2. n=1
Vt + Vezr — 3'01;3; / dy( va + 3'0;;[/ d'y( ]2
uzvy /d uvy
vzu vu -
+3uz/dy Ty v /dy( vy o

4.3. Lotky—Volterra substitution
4.3.1. n=0
In the case of T = v we obtain the trivial system with the help of (2.2)

Ut = Uyy Vg = Vy

4.3.2. n=1

In this case - .

S = v/dx(tl —t3) = v, + 02 + 2v/d:c(uy) .
The corresponding integrable system has the form
Up = —Uyy + 2(uv)y + 2u, / dz(u,) v, = (v:+v, + 2v/d:c(uy))y

In one dimensional case D, = D, this system is a partial case of a wider integrable system
described in [7].
4.3.3. n=2

In this case

Sz = v + 3vvy + vy + 3vD; (uv)y + 3(vy + v2) DS (uy) + 3v(D; (uy))%
The corresponding integrable system is the following
ug = Dy(uyy — 3(vuy) + 3v?u — 3(uy — uwv) D7 (u), )+

+Dz(3D;1 (uy)D;l(uv)y + (D;l(uy))3),
Ut = Dy(v3 + 3vvy + vy + 3'UD:c_1("v)y + 3(vy + UZ)D;I (“y) + 3”(D;1 (“y))2)



5. Conclusion

In order to appreciate the results of the present paper let us come back to the main
equation (1.3). This equation contains two unknown s—dimensional vector functions ¢(u)
and F(u). The principle problem connected with this equation is to find substitution ¢(u)
in such a way that equation (1.3) would have some other solution except the trivial one.
This problem has not been considered in this paper. We have taken at hoc integrable
substitutions (Darboux-Toda, Heisenberg and Lotky—Volterra) and found for them the
solution) for equation (1.3). This is only the second part of the problem as it has been
formulated in [4,5].

From the explicit form of integrable equations we see that for their construction of
them it is only necessary to know maximally two functions ¢; 5. The only thing we need
besides this is to have explicit formulas for multi-times discrete transformations and the
technique of repeated integrals. We have also seen also that in the usual variables u,v
all formulas became much more complicated and unobservable. So we may conclude that
the discrete transformations are the principal point of the theory of integrable systems.
We can suppose that in order to understand finally the theory of integrable systems it
is necessary to have (or create) the complete theory of representations of the group of
integrable mappings.

For one of the authors (A.N.L.) the research in the present publication partially was
possible due to the Grant N RMMO000 of International Sceintific Foundation.
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