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Abstract 

Derjagin V.B. et aI. Two-dimensional integrable mappings and explicit form of equations of 
(l+2)-dimensional hierarchies of integrable systems: IHEP Preprint 95-26. - Protvino, 1995. ­
p. 9, refs.: 7. 

The equations of (1 + 2) integrable systems belonging to Darboux-Toda, Heisenberg and 
Lotky-Volterra hierarchies which are invariant with respect to discrete transformations of the 
corresponding integrable mappings are represented in the explicit form. 

AHHoTaUlul 

nepKrIfH B.B. If .llp. nByMepHhIe HHTerpHpyeMhIe nO.llCTaHOBKH H KBHaK <popMa ypaBue­
HHH (2+1)-MepHhIx Hepapxllll HHTerpHpyeMhlx CHCTeM: IIpenpHHT HcpB3 95-26. - IIpoTBHHo, 

1995. - 9 c., 6H6JIlIOrp.: 7. 
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npHHa.llJIeIKaIUHX K HepapxuKM nap6y-TO.llhI, raii3eH6epra H JIOTKII- BOJIhTeppa If KBJIKIOIUUeCK 
HHBapHaHTHhIMH OTHOCliTeJIhHO .llHCKpeTHoro npe06pa30BaHUK cooTBeTcTBylOIUeH HHTerpHpye­
MOH nO.llCTaHOBKH. 
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1. Introduction 

In this paper we will investigate (1 + 2)-dimensional integrable systems [1,2) in terms 
their groups properties of integrable nlappings [3]. 
This program has been proposed in [4,5] and consists in the following construction. 

With each local invertible substitution of the form 

tf/ - ) (1.1)u= - A.(U ) - tf/""'(U, U ,,,, U , ... 

(where U is the s-dilnensional vector function, U'· .. its derivatives of an arbitrary order 
with respect to independent arguments) it is possible to connect Frechet derivative [6] 

'( 84> 84> 84> 24> u) = -8 + -8D + -8,D + ..... (1.2) 
U u' u' 

As it follows from definition of (1.2) </>' (u) is s x s matrix operator. 
Then it is necessary to consider the following functional equation with deviated argu­

ments: 
F -=F(4)(u)) = 4>'(u)F(u), (1.3) 

where F is unknown s-dimensional vector function, components of which depend on 
vector function u and its derivatives up to some limited order. 

Equation (1.3) always possesses one ( trivial) solution F(u) = u' in which it is possible 
to get convinced by differentiation (1.1) with respect to one of independent arguments of 
the problem. 

If (1.3) possesses some other solution different from the trivial one such substitution 
was called in [3) as integra.ble substitution or integrable mapping. 

With each of solutions of (1.3) it is possible to connect the evolution type equation: 

Ut = F(u), (1.4) 

which is obviously invariant relatively to transformation (1.1). In [4,5] hope was expressed 
that the background of fut1-1re theory of integrable systems is the theory of representations 
of the groups of integrable mappings. 
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The goal of the present paper is to investigate of two-dimensional integrable map­
pings and construct on this base the explicit form of integrable systems belonging to the 
corresponding hierarchies. 

2. Two-dimensional integrable mappings 

Below we will discuss three concrete examples of two-dimensional integrable mappings 
which can be considered by the similar methods. 

2.1. Darboux-Toda substitution 

The explicit form of the direct and inverse D-T integrable substitution is the f~lowing: 

+- 1 +­
u = -, v = v(uv - (In v)Xy), 

v 

(2.1) 

-+ 1 -+ 
v = -, u = u(vu - (In u)Xy). 

u 

The function /(u, v) after application of the s-times direct transformation we will denote 
+-8 8-+ +-(-m) 
/ ,after s-times inverse transformation as /, with the following agreement / _ 
m-+ 

/ ,m ~O. 
As a direct corollary of (2.1) there follows an important for our further considerations 

Toda-like recurrent relation for function To = uv 

+- -+ 

(In To)xy = -To + 2To - To. (2.2) 

The corresponding to (2.1) Frechet derivative [6] has the form 

¢/(u) = (~2 2(uv) _ + :~ + 'l.JLD - D ), (2.3)
VzVy 

v 2 v Y v x xy 

-oD-oh D y = oy' x = ox'were 
System (1.3) in the concrete case of D-T substitution may be rewritten as 

+- 2 (() vxVy Vx Vy )P2 = V F I + 2 uv - -2- + -Dy + -Dx - Dxy F2. (2.4)
V V V 

It is not difficult to check by the direct computations that Fo = (u, -v) is the solution 
of the last equation and so substitution (2.1) is integrable in the sense of [3]. 

After introducing the new functions FI = UtI, F2= V/2, the system (2.4) takes the 
form of a single equation for only one unknown function /2 

+- +- -+ -+ 

(UV)(f2 - f2) - (UV)(f2 - /2) = -Dxy / 2, /1 = -/2. (2.5) 
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The meaning of notations in the last equation is explained after formula (2.1). 
In further transforma.tions of (2.5) we will use the fact that condition of invariance 

of some function 'with respect to the discrete transformation F -= F is equivalent to the 
F =const. This is in some sense the analogues of Liouville theorem in the theory of 

analicity functions. Using this fact for function T (/2 = Jdy(T -- T)) we obtain the Toda 
chain-like equation: 

- Tx = To f dyer - 2T + T), To = uv. (2.6) 

In terms of solution of (2.6) the evolution type equation (1.4) (invariant with respect 
to D-T substitution (2.1)) ta.kes the form: 

Vt = v f dyer - T) Ut = u f dy(T - T). (2.7) 

2.2. Two-dimensional Heisenberg substitution 

Under this term we will understand the direct and inverse transformations of two 
functions (u, v) of the form: 

- -1 1 1 ¢Xy 
U = V , ---- +-- ¢ = In v,

1 + Uv 1 + uv ¢x¢Y , 

(2.8) 

- -1 1 1 1/JXY
V U= , ---+-­ 1/J = In u. 

1 + 'iw 1 + uv 'ljJx1/Jy' 

Vy1LzOne can get convinced that functions tm (t 1 = (1;::)2 ­ (1+uv)2 ­

- (~)ZVy) satisfy the Toda-like recurrent relations 
(V +v)2 

(2.9) 

where ~m = t-m - 2tm + tm . 

The explicit form of the Frechet derivative operator is the following: 

0 2 
-v- )

I U _ +-1 -1 (2.10)rjJ()- (vJ!)2( -(1 + (vuRR)2 + (R)28(¢;;t Dx + ¢;1 Dy - v:yDxy ) , 

R = 1 + uv, -R = 1 +Uv . 
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By a short calculation it is possible to show that equation (1.3) possesses nontrivial 
solution F1 = U, F2 = -v and so Heisenberg substitution by definition is integrable. 

Now we can rewrite equation (1.3) in more observable form. Let us denote F1 = 
uB, F2 = vA. From the first equation (1.3) we obtain immediately B = -A. - The second 
equation after some transformations may be rewritten in the form of a single equation for 
function A: 

Uv ) +- uv - -1 ¢xy ¢xy( (1 +UV)2 (A - A) - (1 + uv)2 (A - A) = (¢X¢y) (~Ax + ~Ay - Axy ). (2.11) 

As we know from introduction the main equation (1.3) always possesses the trivial 
solution F1 = Ux, (u y); F2 = Vx, (vy) or A = ¢x, (¢y). Let us look for the solution of (2.10) 
in the form A = ¢xo. Instead of (2.10) we obtain the equation for 0: 

UxVx ) +- Uxvx Oy
( 

1-+ 
(2.12)(1 + UV)2 (0 - 0) - (1 +UV)2(0 - 0) = (7f)x, 

Resolving (2.12) by the substitution: 

(Oy)x = f - T 
B 

we obtain the equation for determining T: 

Tx = To Jdy[B(T - T) - 8(T - T)], (2.13) 

where 
,." _ UxVx 
.10 - •

(1 +UV)2 

2.3. Lotky-Volterra substitution 

In this case direct and inverse transformations, have the form� 

U= U + (In v )x, v= v + (In u)y,� 

(2.14) 

u:;= U - (In v)x, v = v - (In u)y. 

As in the previous ca.se the functions t1 = UV, t2 = Uv Toda-like recurrent relations 
(2.9). 

The Frechet opera.tor in this case has the form: 
1

4>'() (1 Dxv- ) ( )u = Dy(ii)-l 1 + Dy(ii)-l Dxv-1 '. 2.15 

By the same technique as in the previous subsections we obtain the single equation for 
the unknown function T and expressions of the equations of hierarchy via this solution 

Ty = v Jdx[u\f - T) +u(T - T)] (2.16) 

and at last 
-+ 

Ut = u(T - T), Vt = DyT. 
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3. Solution of the main equation� 

In spite of an essential difference of Frechet operators in the three above cases the main 
equations of problems (2.6),(2.14) and (2.16) have the same structure and may be solved 
by the similar methods. We shall demonstrate these methods on the more complicated 
example of Heisenberg substitution and represent the results of calculations for other 
cases. 

First of all let us notice that equation (2.14) has the partial solution 

T= To 

in what one can get convinced with the help of the below equality which is the direct 
corollary of (2.8) and (2.9) 

1: ( 1 ) 2A.. <Px 1 A.. ( <PXY ) A.. <Px <p;Y 
o - To = 2<px 1 +uv x+ tpxy <PY 1 +uv + tpx <Px<py x - tpxy ¢y + <P; • 

Let us seek now the solution of (2.14) as T = To! dyaD. Instead of equation (2.14) we 
obtain equation for determining the aD function 

As it will be shown below this equation will arise many times and thus for us two possible 
ways of its further evolution will be important. Let us use the following ansatz 

ao = i1a1+ t 2131' 

After substituting these expressions into (3.1) and equating in front of the term t 1,t2 to 
zero coefficients (this is some additional assumption ) we come to equations for unknown 

functions aI, 131: 

(3.2) 

(81)" + (31 Jdy[~ - t1 + 2£; - t;] = Jdy(ao - ao). 

Summarizing the second equation (3.2) shifted by the direct transformation with the first 

one we obtain 2 
(a1 + fi,)" + (a1 + fi,) Jdy(i1 -;;: + t; - t21=0 

and we see that the system (3.2) has the partial solution t7131 = 0, which we will use in 

what follows. 
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For this solution system (3.2) is equivalent to a single equation for the unknown 

function a1: 

J 
-2 - -+ -2 - -1 -+-+J� 

(a1)x + a1 dy[t1 - t1 + t 2 - t2] = dy[( t1a1 - t2ad - (t 1a1 - t2a 1)] \ 

The last equation has the obvious solution a1 = 1. As a corollary we obtain the second 

partial solution of our main equation: 

T1 = To Jdy(~ - t;)1 

A further evolution of equation for a1 is connected with the representation of unknown 
function in integral form a1 ~ Jdya1 ( we conserve the same symbol for unknown function 
because it can't lead to misunderstanding in below considerations 

(3.3) 

_ -2 

which up to obvious repla.cement t1 ~ t1 coincide with the equation for ao (3.1). 
We can repeat the same trick with this equation as with the equation for ao and after 

k steps will come to substitution 

-(k+1) -+ -+ 

ak = t1 ak+1 - t2a k+1 

and equation for ak+1 

J 
-k+2 -k+1 -+ -k+2 - -k+1 -+ -+J 

(ak+dx + ak+1 dy[ t1 - t1 + t 2 - t 2] = dy[( t 1 ak+1 - t2(1) - ( t1 a1 - t2a 1)] 

with the obvious solution ak+1 = 1. 
Collecting all the results together we obtain the partial solution of the main equation 

in the following formal formulae 

n n J -1 J -2 J_n
Tn = To n(l - Liexp[-(i + l)di - ~ dk]) dy t1 dyt1 ...... dy t1 , (3.4) 

t:::1 k:::~+l 

where symbol exp ds means the shift by unity of the argument of s-repeated integral 
h-+ h+ 1-+ r-+ r-+

(.... Jdy t 1 '" ~ ... Jdy t1 ...) in (2.13) and symbol L p means the exchange t1 on the t2 
r-+ 

in the p-repeated integral ... Jdy t1 ... ~ ... Jdyt 2r .... 
Expression (3.4) is directly applicable to Heisenberg and Lotky-Voltera integrable 

hierarchies. In the case of D-T hierarchy it is necessary to put all operators L i = 1 and 
keep in mind the equality t1 = t2 = To. 

4. Examples 

In this section we represent the simplest integrable systems in usual unknown functions 
u, v corresponding to the lowest solutions Tn of the main equation for D-T, Heisenberg 
and L-V substitutions. 
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4.1. Darboux-Toda substitution 

4.1.1. n=O 

To = 1tV, Ut = aux + buy, Vt = avx + bvy. 

In the examples below we shall choose a = 1, b = 0 keeping in mind that it is alvays 
possible to add the term (with arbitrary numerical coefficient) in which x is changed by 
y and vise versa. 

4.1.2. n=1 

T1 = VUx - VxU, 

'lLt = Uxx - u / dy(uv)x, -Vt = Vxx - v / dy(uv)x. 

This is the Davey-Stewartson equation in its original form [5]. 

4.1.3. n=2 

T2 = (uv )xx - 3uxvx - 3uv Jdy(uv )x, 

Ut = 'lLxxx - 3ux / dy(uv)x - 3u / dy(UxV )x, 

Vt = Vxxx - 3vx / dy(uv)x - 3v / dy(vxu)xo 

This is the equation of Veselov-Novikov [6]. 

4.1.4. n=3 

T3 = -(T1)xx - 2(uxvxx - vxuxx ) +2uv / dy(Tt}x +4T1/ dy(uv)x, 

Vt = -vxxxx +4vxx / dy(uv)x - 2vx(/ dy(Tt}x - 2 / dy(uv)xx) +2v(/ dy(uv)zzz~ 

/ dy(uxvx)x + /(UVxx)x - ([/ dY(UV)]2)xx - [/ dY(UV)x]2). 

Equation for u may be obtained from the equation for v under the changing of u -+ v, v -+ 

u, t -+ -to 
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4.2. Heisenberg substitution 

4.2.1. n=O 

VUyuVy )
Vt = -Vxx + 2vx dy( 1 x, -Ut = -Uxx + 2ux dy ( )x.

/ +uv / 1 + uv 

4.2.2. n=1 

UVy [/ (uvy )]2Vt + Vxxx - 3vxx dy( 1 )x + 3vx dy 1 +
/ + uv +uv x 

UXvy ) / (uvy )
+3vx dy( (1 +uv)2 x - 3vx dy 1 + uv xx/ 

Ut + Uxxx - 3uxx / dy( 1vU
y 

)x + 3ux[/ dy( 1vU
y 

) ]2+
+ uv + uv x -4, 

VxUy / (vuY )
+3ux dY((l +UV)2)X - 3ux dy 1 +uv xx ./ 

4.3. Lotky-Volterra substitution 

4.3.1. n=O 

In the case of To = v we obtain the trivial system with the help of (2.2)� 

Ut = uyf Vt = vy •� 

4.3.2. n=1 

In this case 
51 = v / dx(l;. - t;) = vy + v2+ 2v / dx(uy) • 

The corresponding integrable system has the form 

Ut = -Uyy + 2(uv)y + 2uy / dx(uy) Vt = (v 2 + vy + 2v / dx(uy))y . 

In one dimensional case D x = D y this system is a partial case of a wider integrable system 
described in [7]. 

4.3.3. n=2 

In this case 

52 = v3 + 3vvy + Vyy + 3vD;1(UV)y + 3(vy + v2)D;1(Uy) + 3v(D;1(Uy))2. 

The corresponding integrable system is the following 

Ut = Dy(uyy - 3(vuy) + 3v2u - 3(uy - UV)D;1(U)y)+� 

'f" Dx(3D;1(U y)D;1(UV)y + (D;1(U y))3),� 

Vt = Dy(v3 + 3vvy + Vyy + 3vD;1(UV)y + 3(vy + v2)D;1(Uy) + 3v(D;1(Uy))2).� 
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5. Conclusion� 

In order to appreciate the results of the present paper let us come back to the main 
equation (1.3). This equation contains two unknown s-dimensional vector functions ¢(u) 
and F(u). The principle problem connected with this equation is to find substitution ¢(u) 
in such a way that equation (1.3) would have some other solution except the trivial one. 
This problem has not been considered in this paper. We have taken at hoc integrable 
substitutions (Darboux-Toda, Heisenberg and Lotky-Volterra) and found for them the 
solution) -for equation (1.3). This is only the second part of the problem as it has been 
formulated in [4,5]. 

From the explicit form of integrable equations we see that for their construction of 
them it is only necessa.ry to know maximally two functions t 1,2. The only thing we need 
besides this is to have explicit formulas for multi-times discrete transformations and the 
technique of repeated integrals. We have also seen also that in the usual variables u, v 
all formulas became much more complicated and unobservable. So we may conclude that 
the discrete transformations are the principal point of the theory of integrable systems. 
We can suppose that in order to understand finally the theory of integrable systerils it 
is necessary to have (or create) the complete theory of representations of the group of 
integrable mappings. 

For one of the authors (A.N.L.) the research in the present publication partially was 
possible due to the Grant N RMMOOO of International Sceintific Foundation. 
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