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Abstract 

Minaev N.G. I/,rro separation in shower maximum detector using neural network algorithm: 
IHEP Preprint 94-142. - Protvino, 1994. - p. 8, figs. 9, refs.: 10. 

Procedures of 1/7r 0 separation based on a multilayered perceptron algorithm are suggested. 
Recognition capacities of these procedures and one of the CDF separation methods have been 
examined. The procedures were tested with the simulated data from one EMC + S M D tower 
of the STAR experiment. 

AHHoTa:QHB: 

MHHaeB H.r. Pa3.tleJIeHHe 1/7r° B ,neTeKTope MaKcHMyMa JIHBH.sI c rrpHMeHeHHeM aJIrOpHTMa 
HeHpoHHoH ceTH: IIperrpHHT H<I>B3 94-142. - IIpoTBHHo, 1994. - 8 c., 9 pHC., 6H6JIHOrp.: 10. 

IIpe,nJIo)l(eHhI rrpoue.nypLI pa3.neJIeHH.sI i / 1r0 , OCHOBaHHhIe Ha aJIrOpHTMe MHOrOCJIOHHOrO rrep
uerrTpOHa. IIpoBeneHo HCCJIenOBaHHe crroco6HOCTH pacrro3HaBaHH.sI 3THX rrpoue.nyp H O,llHOrO H3 
MeTo.nOB CDF. IIpouenyphI pa3neJIeHH.sI TeCTHpOBaJIHCb Ha CMOneJIHpOBaHHbIX ,llaHHbIX CO,llHOH 
6aIIlHH EMC + SMD yCTaHoBKH STAR. 
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Introduction 

When reconstructing direct photon spectra, a problem, how to separate single photons 
from those produced by decays of hadrons such as 7f'0 mesons, arises. Methods of I j1r0 

separation crucially depend on the characteristics of devices adapted for photon detec
tion [1]. Here we consider possibilities of the I j'lf'0 separation in the 8TAR experiment [2] 
applyingsome kinds of separation procedures. 

A proposed 8TAR setup to detect photons incorporates an electromagnetic calorirne
tel' (EMG) equipped with shower maximum detector (SMD) [3]. The EMG includes 
barrel and endcap parts. The barrel EMG is a lead-scintillator sampling calorimeter 
segmented into 1200 towers.. 

In this paper the procedures of Ij'lf'° separation by applying neural network algorithm 
are suggested. A CDF separation procedure is considered as well. In order to study and 
compare the separation procedures, electromagnetic showers of single photons and 'If'°'S 

simulated in one tower of the barrel EMC were only implemented. The features of the 
barrel EMC tower and the 8MD part embedded into this tower are described below. 

1. Simulation procedure 

To simula.te electromagnetic sh.owers in one barrel EMC tower the GEANT pack
age [4] and subroutines forming a response of the 8MD to the electromagnetic shower 
have been adapted. The I or 'If'0 event output has the following quantities: E is the energy 
deposited in the tower of EMC, Ai are amplitudes from strips and wires of SMD. 

The layout of the tower and sizes used in simulation are shown in Fig.I. The 8MD 
is a gas multiwire proportional chamber provided with wire and strip readouts to obtain 
a transverse shape of the electromagnetic shower for both X and Y coordinates. 
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III 

II Fig. 1. Geometry of the EMC tower 
x equipped by SMD: XY trans

verse section - 24 x24 cm2 ; 

I - 20 mm SCI + 20 mm Al +
It'z 4 (5 mm Ph + 5 mm SCI); II 

SMD; III - 16 (5 mm Ph +5 mm 
SCI). 

The SMD construction is similar to CES in CDF experiment [5]. The wire and strip 
pitches are equal to 7 mm. Wires are located in the center of aluminium channels of 6x6 
mm2 transverse size and 1 mm wall thickness. 

A quality of simulation routine was tested by experimental and simulated data compar
ison for 26 GeVelectrons. The experimental data were obtained by I HEP STAR/EMC 
group [6] using the proportional chamber filled with Argon bearing about 30% of CO2• 

The energy resolution (J'ESMD/ESMD was found to be precisely the same value as that in 
the experiment, and the simulated shape of the shower profile is closely matched by the 
experimental one ( Fig.2). 

40 O't/E =0.26 (Experiment) 

e 26 GeV O'JE = 0.26 (Monte-Carlo) 

20 

10 

o 0 20 24 
WIRE NUMBER 

Fig. 2. Simulated (so
lid) and expe
rimental (das
hed) sho
wer profiles for 
wire plane of 
SMD. 
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To examine different, j 1r
0 separation methods the samples of data for 6 energies were 

generated: 10, 15, 20,26, 30, and 40 GeV both for ,'s and 1r°'s. The spacing between 
the source of 1r°'S decayed into 2, and the tower front surface is determined by the tower 
disposition over the interaction point. The shortest distance of 220 cm and only the 
symmetric decays of the 1r°'S have been chosen, so that to create more rigid conditions for 
the 1r

0 recognition. The number of computed events for each sample was equal to 2000. 

2. Methods of ,/7r0 separation 

With.samples of photon and 1r
0 candidates, we can estimate a genuine number of ,'s 

and 1r°'s. For this goal one should solve the following equation: 

(1) 

where N's with the upper index are the numbers of , and 1r0 candidates, whereas N's 
without the upper index signify the genuine number of ,'s and 1r°'s. The €1'(7l"O)is an 
efficiency of the true recognition (a fraction of correctly recognized events) for ,(1r

0 ). To 
evaluate the efficiencies f,,(7l"O) only a Monte Carlo study is operable. 

In order to split a sample of events into two classesof candidates it is necessary to use 
a decision rule, which assigns every event to the photon candidate or to the 1r

0 candidate. 
Having.applied such a decision rule, we obtain the samples of , and 1r0 candidates. Below 
we" shall use the overdetermined meaning of the €7l"0: €7l"0 = 1 - €7l"0' now €7l"0 is an efficiency 
of a false recognition for 1r°'s. 

Let us consider the concrete methods of the ,j1r0 separation. 

2.1. CDF method 

Here we have to deal only with one of the CDJi' separation methods that is called 
"transverse shower profile nlethod" [7]. The decision rule for this method is the following: 

(2) 

It means that 4 is a threshold and if X2 is less than the threshold then an event will be 
classified as a photon otherwise as 1r0 • The X2is defined by expressions 

2 X~ + X~v (3)X = 2 ' 

A.
·aJ = 4(10jE)Q(jJ, (4)Pi=EA/' . 

where X~(W) are the" individual contributions from strips (wires) and (j; denote dispersions 
determined from Pi distributions. The Pi are normalized strip (wire) amplitudes and Yi 
are the expected amplitudes of the shower profile for the single photons. The tower 
energy deposit E is measured in GeV, and the value of ex = 0.27 was chosen for €I' to be 
approximately 0.8" for all energies. 

Under X2 estimation a shower fit is performed over 11 wires and 11 strips (a win
dow placed around a maximum amplitude of the shower). Fig.~ demonstrates the X2 
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distributions for single photons and 1ro's at the energy of 30 GeV. The enhancement of 
energy leads to a greater distributions overlapping thus increasing the number of false 
recognized 1ro's. 
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Fig. 3. X2 distribution for 30 GeV photons (solid) and 1r°'S (dashed). 

2.2. Methods with application of neural network algorithm 

In general terms, neural networks are represented as data processing architectures 
composed of the large number of interconnected functional units named neurons. 

Neural network algorithms are widely employed in high energy physics (see, for ex
anlple, [8],[9]). A multilayered perceptron (MLP) will suffice for our purposes. The 
multilayered perceptron incorporates one input layer, several hidden layers of neurons, 
and one output layer of neurons. The MLP architecture applied to the present 'Y/1r0 sep
aration is shown in Fig.4. The output 0i of each neuron is obtained by sigmoid function 
acting on the weighted sum of its inputs inp;: 

0i = f(L wijinp;) , f(x) = 0.5(1 + tanh(x)). (5) 

Input layer 

hidden layer 

o input node Fig. 4. Scheme ofoutput layerT~neuron node MLP neutral~ connection 
0,1 network. 

-The vector P is a coded pattern of the event which must be classified by neural network.� 
When operating the network evalu(;l.tes a class number for the input pattern: 0 for the� 
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I and 1 for the 11"0. The dimension N of the vector Pis equal to the number of nodes in 
the input layer. There are 2N + 1 nodes in the hidden layer and one node in the output 
layer. 

Now we draw our attention to the input patterns represented by vectors P,.- Two 
types of the input vectors are used 

It means that two types of M LP architectures with different numbers of neurons have 
been used. We shall refer to the neural network with the input vector Pt as PI and the 
other network as P2 • 

The components of the vectors P, - are defined as 

Dc =1 J1.tS - maX$ 1'+ I J1.tW - maxw I, (6) 

Mk =1 M kS II/k + IMkw 1
1/k, (7) 

where J1.tS(W) is the center of gravity of the strip (wire) amplitudes whereas maXS(W) is 
an estimate of the shower profile maximum position. The MkS(w) are the moments about 
maxs(W) for the strip (wire) signals. Finally, X2 and the energy deposit E are the same 
as in the CDF method. 

For the strip plane the quantities J1.1S, maxs, and MkS are given by 

1

E Xm+iAm+i"x·A·L..J J J i=-1maxs = ~'=""'1--- (8)J1.1S = E A 
j

, 
EAm+i

.=-1 

E(Xj - maxs)kAj (9) 
M kS = EAj , 

where Xj is the coordinate of the center of the strip with the amplitude Aj. The Am is 
a maximal amplitude of the shower, and X m is the coordinate of the ,center of the strip 
with this amplitude. 

For the wire plane the quantities with the W subscript are written analogously. 
The Dc points to asymmetries about maxS(W) for the strip (wire) shower profiles 

as the M3 does. The Dc,M2 , and M3 distributions for single photons and 1I"°'S at the 
energy of 30 GeV are shown in Fig.5,6 and 7. The behaviour of these distributions with 
augmented energy is the same as for the X2 distributions. 

Neural networks were trained by backpropagation algorithm. The training consisted 
in modifying the weights Wij in response to its action on given input vectors from I and 
11"0 training samples. This was made by applying the FORTRAN subroutine package 
JETN ET2.0 [10]. The training quality was checked using test patterns not included in 
the training samples. 
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Fig. 5. Dc distribution for 30 GeV photons (solid) and 1("°'S (dashed). 
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Fig. 6. M 3 distribution for 30 GeV photons (dashed) and 1("°'S (solid). 
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Fig. 7. M3 distribution for 30 GeV photons (dashed) and 7r°'S (solid). 

2.3. Results 

To estimate the efficiencies of recognition 'Y and 1r
0 samples with the equal number of 

events(lOOO) have been employed. 

6 



• • • 

A comparison between the CDF separation .procedure and the one which exploits 
Dc < T(E) decision rule is presented in Fig.B. The T(E) is an energy dependent threshold 
chosen for the I efficiency to be about 0.8. The 7r0 efficiency means a fraction of 7r0 events 
classified as I events. A poor recognition of 7r°'S by the CnF method .at 10 GeV is 
associated with the limited window of strips and wires over which the shower fit was 
performed. Diminution of the correctly classified 1r°'S ranging from 20 to 40 GeV is due 
to the decayed photons coming together. 

The ability of the neural networks to separate I and 7r0 events is illustrated in Fig.9. 
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Fig. 9. Efficiency for passing a recognition procedure. 

One can see that neural network P2 recognizes 1['°'S better than other procedures. A 
relative variation of the fraction falsely recognized 7r°'S while passing from the pure CDF 
method to the neural network classifier P2 are represented in the following table: 

E(GeV) 10 15 20 26 30 40 
(fCDF _ f1"'2) / fCPF

1r0 ·1r0 ",0 0.70 0.42 0.27 0.30 0.28 0.22 



'"� 
Conclusion� 

From the above, the implementation of neural networks can be expected to appreciably 
improve the 1/1r0 separation in the shower maximum detector. In the energy range from 
10 to 40 GeV the proposed separation procedure based on multilayer perceptron algo
rithm, that includes the CDF separation method, reduces the fraction of falsely classified 
?r°'s by "'-J 30% on the average as against the pure CDF method. This enhancement of 
the recognition capaGity is due to more complete utilization of information about the elec
tromagnetic shower images,which are produced by the shower maximum detector, when 
classified by the neutral network P2. 

The author is grateful to A.A.Derevschikov and A.N.Vasiliev for support of this work. 
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