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Abstract 

Mangazeev V.V. et ale Vertex Version of the Bazhanov - Baxter Model: IHEP 
Preprint 94-141. - Protvino, 1994. - p. 14, tables 1, refs.: 9. 

In this paper we formulate a statistical model on the simple cubic lattice. N -valued spin 
variables of the model belong to the edges of the lattice. Boltzmann weights of the model obey 
the vertex type Tetrahe~ron Equation. In the thermodynamic limit our model is equivalent 
to the Bazhanov-Baxter Model. In the case when N = 2 we reproduce the Korepanov and 
Hietarinta solutions of the Tetrahedron equation as some special cases. 

AHHoTanHg 

MaHra.3eeB B.B. H 1lp. BepllIHHHaJI: BepCHjI Mo,neJIH Oa)KaHOBa - oaKcTepa: IIpenpHHT 
H<t>B3 94-141. - IIPOTBlIHO, 1994. - 14 c., 1 Ta6JI., 6H6JIHOrp.: 9. 

B .llaHHOH pa60Te MbI <pOpMyJIHpyeM CTaTHCTH"'leCI(YIO MOJleJIb Ha npocToH Ky6IPlecKoH pe­
IlIeTKe. N -3HaT.JHLIe cnKHOBLIe l1epeMeHHLIe MOJleJIH JIe)KaT Ha pe6pax pemeTKH. OOJILllMaHOB­
CKHe Beca MOneJIH ynOBJIeTBOpjlIOT ypaBHeHKIO TeTpa3JlpOB. B TepMOJlHHaMHqeCKOM npeJleJIe 
Hama MOJleJIb 3KBHBaJIeHTHa MOneJIH na)KaHOBa-oaKcTepa. B CJIyqae lV = 2 MbI BocnpoH3Bo­
,llHM pemeHHjI ypaBHeHHjI TeTpa3,llpOB KopenaHoBa H XHeTapHHTLI KaK HeKOTopLIe CneUHaJIbHLIe 
CJIyqaH. 
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1. Introduction 

Recently two new solutions of the vertex type Tetrahedron equation for the number 
of colors N = 2 [1,2] have been obtained. In our previous paper we tried to generalize 
these solutions both for N > 2 and for general spectral parameters. We succeeded in 
generalization of the Hietarinta solution for the arbitrary N. 

Th Hietarinta solution is some special case of the planar limit of the Bazhanov ­
Baxter solution [3] in case N = 2. Recall that in Bazhanov - Baxter model [4] (BBM for 
shortness) the N -colored spin variables belong to the vertices of the lattice elementary 
cubes and Boltzmann weights in the Tetrahedron Equation (TE) are parameterized by 
the angles of tetrahedron [5]. In the limit when all fOUf vertices of a tetrahedron belong 
to one plane (the planar limit), it is possible to rewrite the Boltzmann weights using edge 
variables and as a result to obtC\ill the Hietarinta vertex solution of TE. Note that the 
N > 2 - c.olored solution from Ref. [3] does not coincide with the planar limit of BBI\1 
and seems to be new. 

Attempts to remove the planar limit restriction for this solution failed. Instead we 
have obtained a cornplete (i.e. depending on three arbitrary angles) vertex solution of TE 
for the general number of colors N, which in case when N = 2 reproduces the solutions 
by Korepanov and Hietarinta in the static and planar limits, correspondingly. This new 
model in the thermodynamic limit coincides with BBM. Nevertheless, due to the vertex 
form, this formulation may be useful for the more careful investigation of the model. 
Namely, one can try to formulate the Bethe-Ansatz, construct a functional equation for 
the transfer matrices analogously to the two-dimensional case. One can try to construct 
a three diInensional generalization of the L operators as well. 

This paper is organized as follows. In Section 2 we recall the conventional notations 
for the functions on ZN which will be used to construct the Boltzmann weights. In Section 
3 we give the explicit form of the vertex weight function and show the equivalence of our 
vertex model with BBM in the thermodynamic limit. The symmetry properties of the 
vertex weight we list in Section 4. There we also give some exotic forms of the gauges and 
write the inversion relation for the weight. The case when the number of colors N= 2 is 
considered in some special gauge in Section 5, where we show the equivalence of our vertex 
weight in the statistic limit with the Korepanov solution of TE. Section 6 is devoted to 
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the sketch proof of TE for our vertex weight. At last, in Appendix we present the most 
useful formulae for w - hypergeometric series. 

2. Notations and Definitions 

The list of definitions and notations is chosen to be the shortest. Denote 

W 
1

/
2 = exp(1rijN). (1) 

Taking p to be a point on a Fermat curve 1, so that there defined three complex numbers 
x(p), yep), z(p), constrained by the Fermat equation 

(2) 

and a to be an element of ZN, define 

w(pla) a yep) 
(3)

w(pIO) = !! z(p) - x(p)ws ' 

The absolute value of w(pIO) we define through 

N-1

IT w(pla) = l. (4) 
a=O 

Branches of yep) and w(pIO) are arbitrary in general, but it is convenient to choose them 
appropriately. Below all points p-s will be defined so that (when it is possible, we will 
omit the argument p for the shortness) 

- 21rjN < Arg(xjz) < 0 and -1rjN < Arg(yjz) < 1rjN. (5) 

This subregion in T we call To. For pET0 we define w(pIO) as follows: 

(Y) N;l 1 (x) N;l -1 

w(pIO) = -; d(wxjz) = y <1>0 d(zjx), (6) 

where 
n,. 

'J!o = 
(i1r(N-l)(N-2), 

exp 6N jrl (7) 

and 

d(x) = 
N-1 a 

exp L N loge! - xw a 
). (8) 

a=l 

It is implied in (8) that 
- 1r < Imlog(z) ~ 1r. (9) 

Defined w functions have the following property: 

w(pla)w(Opl- a)~(a) = 1, a E ZN, (10) 
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where automorphism 0 : To -+ To is defined as 

x(Op) = z(p), y(Op) =w1
/ 

2 y(p), z(Op) =WX(P)1 (11) 

and 
- a(N)/ i1r(N2 

- 1)()(a) = w a- 2 exp( 6N ), (12) 

It is convenient to define the normalization of w for some other useful subregions of T 
through 

w(xn,y,zIO) = w(x,y,zln), (x,y,z) E T" (13) 

and 

w(x,wy, zlO) = _w I / 2 , 

w(x, y, zlO) 
w(x,w-1y,zIO) = _w1/ 2 , 

w(x, y, zlO) 
(x, y, z) E To. (14) 

The reader can find a set of the most useful formulae and identities for the w function in 
Appendix. 

3. The Vertex Weight 

For the given spherical triangle with the angles 91,82 ,03 and the corresponding linear 
angles (i.e. sides of the spherical triangle) at, a2, as define four points on Fermat curve (2) 

-1/2 (.as) N sin 131 () (./31) N sin a3 x (PI) = w exp ~ N -:--;.;-, y PI = exp zN -=---r.;-;
SIn fJ2 SIn 1-'2 

1/2 .a3 sin /32 ./32 sinasX(P2) = w- exp(~-) N -.-, y(P2) = exp(z-) N -.-;
N SIn /31 N SIn /31 

-1 ( . as) N sin P3 () (. /33) N sin a3 
() = w exp z- -.--, y 1'3 = exp -z- -.--;x P3 

N SIll /30 N SIn Po 
-1 (.a 3 ) N sin /30 () (.Po) N sin a3

X(P4 ) = w exp zN -=--{3' Y P4 = exp -zN ~{3; 
SIn 3 SIll s 

Z(Pi) = 1, i = 1,2,3,4; (15) 

where l3i being usual linear excesses 

at + a2 + as
130 = 1f' - 2 ' l3i = 1f' - 130 - ai· (16) 

In this paper we will regard system (15) as the definition of functions Pi = Pi(al, a2, as). 
With these notations the vertex weight function is 

R41t!2·i3 = D' . i i w-13(il-idw(Pllil - i2 )w(P2Iil - i2). (17)
'lJ'2.'3 32+33.2+ 3 w(p3li1 - i2)W(p4Iil - i2 ) 
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and all five space permutations are given by 

F-l 0 F-l 0 F-1R(al' a2, a3)F 0 F 0 P = nl3P13Rt (a3,a2, al)PI3, 

J @ J @ F R(at, a2, a3)J 0 J ® p-l = P12Rt (a2' al, a3)Pl2 . 

F 01 ® 1R(a}, a2, a3)F-l ® 101 = n23P23Rt(aI, a3, a2)P23, (28) 
F-1 ® F-1® J R(al, a2, a3)F ® F ® J = n23P23 P12R (a3, aI, a2)P12P23, 

J ® F ® F R(at, a2, a3)J @ F-l ® F-l = n13P12P23R(a2, a3, adP23P12 , 

where the normalizators are 
N-l • N-l 

sinal )1r SIn a2) N
n13 = ( -.-- , n23 = ( -.-- . (29) 

Slna3 SIna3 

Combining Fourier transformations with diagonal gauge transforn1ations, one can ob­
tain other forms of the R - matrix. Note that these Fourier and combined transfonnations 
are the gauge transformations of the lattice, but not the gauge transfonnations of the 
Tetrahedron equation in general. 

Note that there exists the conservation law i 2 + i 3 = j2 + j3 for weight (17). Below 
we write out some cornbined transformations which lead to the other forms of the spin 
conservations laws: 

N-1 ~ wQ3j3 - f33 i3(!(0'3))f R~1,j2,0:3(a a a) = 
L.J <p(13 ) *l,12,f33 1, 2, 3

0:3,133 3 

= 8(j3 + it - i3 - i 1 - f(i2 - i2))~(i2 - i 2)-fW-i3(i2 - i2 ) 

W(PI(at, a2,a3)li1 - i2)w(P2(al,a2,a3)lil - i2) 
(30)

w(p3(at, a2, a3)/i1 - i2)w(P4(al, a2, a3)lil - i2)' 

Rcx1N- 2 ~ wO'lil - fJli l + Q2i2 - f32 i2 (!(Q2)) f ,Ot2,j3 (a a, a ) == 
L.J <p«(3 ) 131t132,l3 l, 2, 3 

O:m,l3m 2 

= 8(i2 + it - i 2 - i l - f(j3 - i3))~(i3 - i3ywi2 (i3 - i3) 
w(pt(at, a3,a2)1- il - i3)w(P2(at,a3,az)l- it - i3)

23 (31) 
n w(P3(al,a3,a2)1- it - i3)w(P4(al,a3,a2)1- i 1 - i3)' 

lV-3 ~ (IIwQmim - f3m im) (!(Qd)f RCII1,C112,CV3(a a a) = 
L..i q> (;3 ) 1310132,133 ' 1, 2, 3 

(Xm,t3m m 1 

= 8(il + j2 - it - i2 - f(i3 - i3))~(j3 - i3)-fwi1(i3 - i3) 

W(pt(a3, a2, adlj3 - i2)W(P2(a3' a2, al)li3 - i 2)
t3 (32)

n W (P3(a3,a2,al)li3 - i2)w(P4(a3,a2,adli3 - i2)' 

where h(a) == ha,o, the symbol (1)(a) is defined by (12) and f is an arbitrary integer. Other 
choices of the diagonal q> factors lead us to complicated nonmultiplicative expressions for 
the ". ~ights without any conservation laws. The exception is the case when N = 2. 
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5. Case N = 2� 

In the case when N = 2 the list of suitable Fourier transformations enlarges. Namely, 

N-3 n ~ (rr3 
wCYmJm - f3m im!(Pm») ROtlt0t2 ,!3(a a a) = 

3 L...i ~( ) 131,fh.,13 b 2, 3 
Otm,f3m m=t am 

.~ 8(i t + il + i 3 +i3 - i 2 - J2)w(i3 - i3)(i2 - j3) X 

w(rll- i 1 + j2 - j3)w(r3Iit - i 2 + j3) _ R!17h,i3 
(33)

X w(Oroli1 - i 2 + i3 )w(Or21- i 1 + j2 - i 3 ) = i1,i2,i3 ' 

where w = -1, 

sina3 )¥
n3 = (34)( 2y'sin {30 ... sin /33 

and four points ri are given by 

1x(ri) = exp(-iPi/N), y(ri) = w / 
4 f/2 sin Pi, 

z(ri) = exp(iPi/N), i = 0,1,2,3. (35) 

Due to the total symmetry, this transformation is the gauge transformation of the Tetra­
hedron equation, so this weight R obeys the Tetrahedron equation (see Section 6). 

When N = 2 the function w is very simple: 

(36) 

Defining for shortness 

~ t . 0 1 ? 3Vtan 2"" = i, Z = , ,--, , (37) 

we can represent the weights (33) by the almost compact table. 
The weight, defined by this table, differs from that defined by (33) in unessential 

normalization. Using the following property of a spherical triangle: 

(3i (3j ak at {' . k I} { }tan 2 ta11 2 = tan 2 tan 2' '1"),, = 0,1,2,3 , (38) 

where ai are the .angle excesses of the spherical triangle, we can easily obtain the static 
limit of the R (the case when 0'0 = 0). This static limit appears to be the Korepanov 
solution of Tetrahedron equation [1]. Moreover, in the planar limit when 132 = 0 the 
vertex weight (33) coincides with the N = 2 solution by Hietarinta [2,3]. 
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Table 1. 

It,o,o 
0,0,0 

R l ,l,l 
1,1,1 

= 

= 

It,I,I 
0,1,1 

R1,O,O 
1,0,0 

= 

= 

R1,o,1 
1,0,1 

It,I,O 
0,1,0 

= 

= 

R l ,1,O 
1,1,0 

It,O,l 
0,0,1 

= 

= 

1 

t Ot l t2t3 

-­
It,l,O 

0,0,1 

R1,O,1 
1,1,0 

= 

= 

It,O,l 
0,1,0 

R l ,l,O 
1,0,1 

= 

= 

_R1,O,O 
1.1,1 

_RO,l,l 
0,0,0 

= 

= 

_Rl ,l,l 
1,0,0 

-It,O,O 
0,1,1 

= 

= 

tOtl 

t 2t3 
/ 

Rl ,l,l 
0,1,0 

It,O,O 
1,0,1 

= 

-­

R1,O,O 
0,0,1 

It,l,l 
1,1,0 

= 

= 

_It,O,l 
1,0,0 

_Rl,l,O 
0,1,1 

= 

= 

_It,I.0 
1,1,1 

_R1,O,l 
0,0,0 

= 

= 

itOt 2 

-it l t 3 

It,O,l R 1,l,1 R1,O,O It,l,O 
1,1,1 = 0,0,1 = 0,1,0 = 1,0,0 = tOt 3 

R l ,l,O It,O,O It,l,l R1,O,1 
0,0,0 = 1,1,0 = 1,0,1 = 0,1,1 = t 1t2 

6. The Tetrahedron Equation 

The vertex form of TE is the following: 

(39) 

A complete solution of this equation is paranletedzed by six angles of a tetrahedron (five 
of them are independent). 

R = R(Ol, O2 , ( 3 ), 

R' = R(01, (}4, 05)' 
R" = R( 1r - O2 ,04 , ( 6 ) 

Rill = R(03 , 1r - 05,86 ), (40) 

The ordering of the dihedral angles is natural with respect to numeration of the spaces 
and differs from that in the standard equation (2.2) in Ref. [8]. 
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For each vertex in (39) let ai be the corresponding planar angles: 

(41) 

. Four vertex weights (17) with the angles defined by (41) obey this Tetrahedron equa­
tion. In this section we give a sketch proof of this proposition. 

Substitute (17) in (39). Due to the spins conservation laws, six summations in both 
sides reduce to three summations. It is useful to choose the indices k1 , k2 , k4 as the 
independent spins of the summation. The summands in the left and right hand sides 
are the products of the phase factors w·o. and w functions. Gather in both sides all the 
factors depending 011 the spin k1 • The sums over k1 have the form 2 '11 2 ( see AppendLX). As 
the first step apply to these 2'1J2 (rp)2 transformations (see formula 50 from Appendix). 
As a result there appear extra w functions, depending on k2 - k4 , and we demand the 
cancellation of these extra factors with the similar w-functions in the left and right hand 
sides. 

After this the summation over k2 and k4 becomes independent. Moreover, there are 
no phase factors, depending on k2 and k4 , and we can sum over k2 and k4 using the "Star 
- Square" relation (see formula 53 from Appendix). The final sums over k1 are of the 4 W4 

type and both have the same spin structure, so we regard the equality between the right 
and left hand sides as tautology. TE is proved. 

The restrictions arising when we prove TE (namely, cancellation of the w functions, 
depending on k2 - k4 , the "Star - Square" applicability conditions and the coincid~nceof 
the final expressions) are satisfied automatically by parameterization (15) and (41). 
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Appendix 

In this-Appendix we have collected formulae used in the theory of w - hypergeometric 
series. These formulae appeared in many papers devoted to the Chiral Potts Model and 
to TE. Following conventional notations, define r Wr series as 

W (pl,md (pr,mr)1 ) - L: w(ptlmt+O') w(Prlmr+O')wnO' (42) 
r r (p~,mD (~,m~) n - (1EZN w(p~lm~ +O') w(~lm~ +0') Vfi· 

Spin independent factors in all identities are given for the case when all arguments of 
the W functions in the left hand sides belong to the region (5) and the phases of ws are 
cJ10sen according to (6-9). If we abandon restriction (5) then the phases of ws can be 
chosen so that the formulae would still remain correct. 

For the sake of shortness we omit the argument in the components of point p and 
regard 

Pi = (Xi, Yi, Zi) (43) 

for every i. There will appear many new points on the Fermat curve in the right hand 
sides of formulae in this Appendix. In these cases we have to introduce new letters for y 
components. They have to be defined by (2) (and by (5) according to our convention). 

All the formulae in this Appendix a.re the formulae of summation (they exist for 
r = 1,2,3) and symmetry transformation (they exist for r = 1,2,3,4). 

We begin with the Ramanujan summation formula for r = 1: 

t \}J1 (PI, m t) Inl = 
(P2' m2) ) 

N-l 

= ~~/2 (_e_) -2- w - nm2 

YIY2 

W(ZlY2,e,Yt Z21- n)W(XtZ2,e,WZtX2/ml - m2) - (44)
W(XtY2,e,WYIX2Iml - m2 - n) 

= if);;1/2 (w-1/2e) N;l w-nml 
YIY2 

W(YIX2,W- 1!2e, XtY21m2 - ml + n) 

where -1r /2 < Arg(zl/2) < 1r /2. 
For the proof of this formula see, for example, Ref. [9]. As the partial case of (44) 

it is easy to obtain the inversion relation which is to be used when one proves inversion 
relation (24): 

1/2 )N-l
'"'"' X,Y,Z ml + 0'W ( I) _ N C ~ (45)LJ ( I ) - °ml, m2 ( .

(1 W X, Y, wz m2 + 0' Y 
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To obtain symmetry formulae for higher r, we use the following trick. Let 91 and 92 be 
arbitrary functions on ZN. If 

(46) 

then 
L 91(a)92(a) = L 91 (a)92( -a). (47) 

UEZN UEZN 

Using this, it is easy to obtain the following symmetry transformation for 2 'l1 2 : 

where 

ql = (ZlY2, e12, YIZ2),� 

q2 == (Ya Z4/W, e4a, ZaY4),� 

qa = (Ya X4, e4a, XaY4),� 

q.. = (XIY2,e12,WYIX2). (49) 

This relation originally a.ppeared as the (r p) transformation in Ref. [6] for the BB weight 
function. Note that (rp)6 = 1. In this paper we have used (rp)2 transformation: 

2'l1 ((pI, md(Pa, ma) In) = 
2 

(P2,m2)(P4,m4)� 

_ ,T, ( (Sb 0) (sa, ml - m .. - 11,) I )�
-2 '1.'2 ma - 11~4

(S2' m2 - rna) (S4, -11,) 
N-l 

W- nl1!2 - (m2 - m3)(m4 - rna) ( rf' ) --2 

e12e4aYIY2YaY4 
W(XIZ2, ~12, WZIX21mt - 1n2) W(ZIZaY2Y4, f, Z2 Z 4YIY31- 11,) 

(50)
W(Za X4' e43, Xa Z41 rn4 - rn3) W(XIX3Y2Y4, r', WX2.T4YIY31 - IT)' 

where 
(51) 

and 

81 = (YIZ2e43, f', Z3Y4~12), 

82 = (VIX2e43, r', X3Y4e12), 

83 = (XIY2e43, r', V3 X4eI2), 

$~ =: (ZlY2e43, r, Y3Z4~12). (.52) 
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We finish the list of the symmetry formulae for 2 W2 in the T = (T P)3 

2W2 (Ph mt)(P3, m3) In) =2 W2 (~l' -m3)(~3' -ml)·1 n)
(P2, m2)(P4, m4) (P2, -m4)(P4, -m2) 

N-l -nrn2 - m4n (eI2e43e32e41) -,-- W(XIZ2,e12, WZIX2I m l - m2) 
W ff' W(Z3 X4, e43, X3Z4\m4 - m3) 

W(ZIZ3Y2Y4,f,Z2 Z4YIY31- n) W(X3Z2,e32,WZ3X2Im3 - m2) 
(53)

W(X;X3Y2Y4, f', WX2X4YIY31 ~ n) W(ZIX4, e41, Xt Z41 m4 - ml) , 

where 

PI = (Z3f ', e32e43YI, X3f ), 

P2 = (Z4 f ',We4Ie43Y2, WX4f ), 

P3 = (zlf', e41e12Y3, xlf), 

P4 = (Z2 f ', e32eI2Y4, WX2f ). (54) 

Note that in the case when ~ = w~, (53) becomes the Star - Star relation for BBM,
:1:2:1:, %2%' 

and Pi = Pi· 
To obtain a summation formula for 2'112, consider (48) and suppose n = 0 and ql = q2. 

Then applying (44) to the right hand side of (48), we obtain the "Star - Square" relation:, 

l 2 N-l 

2'112 (PI, ml)(P3, m3) 0) = ( w / f' ) -2- w-(m2 - m3)(mt - m2) 
(P2,m2)(P4,m4) YtY2Y3Y4. 

CI>~/2W(X2X4YIY3,W-1/2r/, XIX3Y2Y4\m2 +m4 - ml - m3)� 
W(XIZ2,eI2, WZ1X2Im l - m2) W(X3 Z2,e32, WZ3X2\m3 - m2)� 

(55)
W(Z3 X4, e43, X3 Z41 m 4 - m3) W(ZIX4' e41, XIZ41m4 - ml) , 

where the parameters in the left hand side have to obey the special restriction: 

YIY3 ZlZ3--=W-- (56)
Y2Y4 Z2Z4 

and the phases in the right hand side are connected by 

el2 _ YIZ2 
(57)

e43 - Y4 Z3' 

Hence forth we will try to avoid such long notations as in (53) and in (55). Extra W 

multipliers in all consequent formulae will have the same structure as in the right hand 
side of (53) and so we will use only eij to denote the whole argument dependence of w. 

Consider now r = 3. A summation formula can be obtained by summing (53) over n 
with the help of the Ramanujan formula. The result reads 
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N-l 

= ~OI/2 (e12e43e32e;'l) -2­

YIY2Y3Y4::" 
W(m4 - A)(ml +m3 - m2 - m4) 

W(XtX3Z2Z4,S,W2X2X4z1z3Iml + m3 - m2 - m4)� 
W(el2lml - m2)W(e32 1m 3 - m2) w(ptl A - m3)w(p3IA - ml)� 

(58)
W(e431m4 - m3)W(e41Im4 - ml) w(p2lA - m4)w(p4IA - m2)' 

where W(eij) and W(Pi) are the saine as in (53) and 

qt = (WX2X4f , Y2Y4S , Z2Z4f '),� 
q2 = (XIX3f,YIY3S,WZIZ3f'). (59)� 

Note, that formula (58) is symmetric with respect to any permutation of PI,P3, ql and 
P2,P4, q2. The Star - Triangle equation for the Chiral Potts Model is a special case of 
(58). 

To obtain symmetry relations for r = 3 and r = 4, we use (47), make the Ramanujan 
summation or T transformation, cancel extra W factors (this gives some constraints) and 
then, using (47) again, obtain the corresponding r '11 r in the right hand side. The fonnula 
for r = 3 reads 

3'113 (PI, ml)(P3, m3)(qI, 11) I0) = 
(P2' m2)(P4, m4)(q2, 12) 

N-l 

= ( e12e43e32~41e ) -2- w(l1 - m2)(ml + m3 - m2 - m4) 
f'2fy(ql)Y(q2) 

W(el2lm t - m2)W(e32Im3 - m2) w(e112+ m2 + m4 -11 - ml - m3) 
W(e431 m4 - m3)W(e41Im 4 - mt} w(A112 - It) 

\l1 (PI' -m3)(P3, -mI)(ql' 11 - m2 - m4) 0) (60) 
3 3 (P2' -m4)(P4, -m2)(q2, 12 - mt - m3) , 

where the connection between arguments in the left hand side is 

f Z2Z4YtY3 (61)
A = z(qt}y(q2) 

and new arguments in the right hand side of (60) are 

(e) = (WX2X4X(q2)YIY3y(ql),e;WXIX3X(qt}Y2Y4y(q2», 
(A) = (z(Qt}Y(Q2)' A, x(Qt}Z(Q2», 

ql = (x(Qt}Y(Q2)f',e, WAX2X4YtY3), 
q2 = (y(Ql)X(Q2)f', e, WAXIX3Y2Y4). (62) 

Note that this formula is a symmetry transformation for something. Denote (60) as P3. 
Let 7"3 be the permutation transformation, reordering the columns in 3W3 as 7"3(1,2,3) = 
(2,3, 1). Then (7"3P3)3 = 1. 
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The last formula is the symmetry transformation for 4 'II4. A derivation of it is described 
before formula (60). Let the structure of a set qi, 7ii' Xij, t1, tJ/ be defined identically to 
that of Pi, Pi' eij, f, f'. Then 

4W4 (Ph mt)(P3, m3)(qt, It )(q3, 13 ) I0) = (63)
(P2' 7n2)(P4, m4)(q2, 12)(q4, 14) 

N-l 

= (eI2e43e32e41X12X43X32X41) -2- ~(12-m2)(ml+m3-m2-m4) 

r'rt1't1 ~(ml +m3 - m2 - m4) 
W(el2l ml - m2)W(e32 1m 3 - m2) W(X121/1- 12)w(x32113 -12) 
W(e431 m4 - m3)W(e41Im4 - mt) w(x43114 - h)W(X41114 -It) 

W (Pt' -m3)(P3, -ml)(7il, 11 - m2 - m4)(7i3'13 - m2 - m4) I0) 
4 4 (P2' -m4)(P4' - n12)(7i2 , 12 - ml - m3)(7i4, 14 - mt - m3) , 

where the connections are 

Y(Pl)Y(P3)y(ql)y(q3) 
Y(P2)Y(P4)Y(Q2)y(q4) 

(64) 

and 

.!:. = w1/2Y(PI )Y(P3)Z(P2)Z(P4) , 
t1 Z(Ql)Z(Q3)y(q2)Y(Q4) 
r' = w t/2Y(Pl)Y(P3)X(P2)X(P4) , (65)
t1' X(Ql)X(Q3)Y(Q2)Y(Q4) 

and the spins in (63) are not independent: 

(66) 

Note that if we tried to obtain any r-l Wr-l identity from a rWr one as a partial case, 
then we would get some more restricted variant of the lower identity. 
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