/f

n
L4 STATE RESEARCH CENTER OF RUSSIA
B
tC/

INSTITUTE FOR HIGH ENERGY PHYSICS
IHEP

IHEP 94-141

g/~ 19/

T
0 1160 0049065 0O

'/é"‘_

V.V. Mangazeev!, S.M. Sergeev?, Yu.G. Stroganov®

/

’L'

!
\

Vertex Version of the Bazhanov — Baxter Model

. -ERMILAE
T
‘BRAP !

1E-mail: vvm105@phys.anu.edu.au
?Branch Inst. for Nucl. Phys.,E-mail: sergeev_.ms@mx.ihep.su
3E-mail: stroganov@mx.ihep.su

Protvino 1994



mailto:stroganov@mx.ihep.su

UDK 539.1.01 | - M-24

Abstract

Mangazeev V.V. et al. Vertex Version of the Bazhanov - DBaxter Model: IHEP
Preprint 94-141. — Protvino, 1994. — p. 14, tables 1, refs.: 9.

In this paper we formulate a statistical model on the simple cubic lattice. N-valued spin
variables of the model belong to the edges of the lattice. Boltzmann weights of the model obey
the vertex type Tetrahedron Equation. In the thermodynamic limit our model is equivalent
to the Bazhanov-Baxter Model. In the case when N = 2 we reproduce the Korepanov and
Hietarinta solutions of the Tetrahedron equation as some special cases.

Annoranus

Manrasees B.B. u np. Bepmmaras Bepcus Momenrm Bakanosa — Bakcrepa: Ilpempunt
HPBO 94-141. - IlpoTBuHo, 1994. ~ 14 c., 1 Tabn., 6uGanorp.: 9.

B nmanmnoit pabote Mul GOpMyIUPYeM CTATHCTHYECKYIO MONENb Ha IIPOCTOil KyGHMYecKoil pe-
ureTke. N—-3Ha4yHEIe CIUHOBHE IepeMeHHble MONENN JeXaT Ha peGpax peluieTKH. BonbuManos-
CKMe Beca MOIeIHN YIOBJIETBODAIOT YPABHEHHIO TETPasHpoB. B TepMomMHaMH4ecKOM Npenelie
Hallla MOZENb SKBMBalleHTHa Momenu BaxaHoBa-Bakcrepa. B cinywae N = 2 MbI Bocmpousso-
MM pellleH¥s ypaBHeHuA TeTpasnpos Kopenanosa u XueTapuHTH KaX HEKOTODHIe ClellMabHELe
CIIyYaH.

© State Research Center of Russia
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1. Introduction

Recently two new solutions of the vertex type Tetrahedron equation for the number
of colors N = 2 [1,2] have been obtained. In our previous paper we tried to generalize
these solutions both for N > 2 and for general spectral parameters. We succeeded in
generalization of the Hietarinta solution for the arbitrary N.

Th Hietarinta solution is some special case of the planar limit of the Bazhanov -
Baxter solution (3] in case N = 2. Recall that in Bazhanov - Baxter model [4] (BBM for
shortness) the N—colored spin variables belong to the vertices of the lattice elementary
cubes and Boltzmann weights in the Tetrahedron Equation (TE) are parameterized by
the angles of tetrahedron [5]. In the limit when all four vertices of a tetrahedron belong
to one plane (the planar limit), it is possible to rewrite the Boltzmann weights using edge
variables and as a result to obtain the Hietarinta vertex solution of TE. Note that the
N > 2 - colored solution from Ref. [3] does not coincide with the planar limit of BBM
and seems to be new.

Attempts to remove the planar limit restriction for this solution failed. Instead we
have obtained a complete (i.e. depending on three arbitrary angles) vertex solution of TE
for the general number of colors N, which in case when N = 2 reproduces the solutions
by Korepanov and Hietarinta in the static and planar limits, correspondingly. This new
model in the thermodynamic limit coincides with BBM. Nevertheless, due to the vertex
form, this formulation may be useful for the more careful investigation of the model.
Namely, one can try to formulate the Bethe—Ansatz, construct a functional equation for
the transfer matrices analogously to the two-dimensional case. One can try to construct
a three dimensional generalization of the L operators as well.

This paper is organized as follows. In Section 2 we recall the conventional notations
for the functions on Zy which will be used to construct the Boltzmann weights. In Section
3 we give the explicit form of the vertex weight function and show the equivalence of our
vertex model with BBM in the thermodynamic limit. The symmetry properties of the
vertex weight we list in Section 4. There we also give some exotic forms of the gauges and
write the inversion relation for the weight. The case when the number of colors N = 2 is
considered in some special gauge in Section 5, where we show the equivalence of our vertex
weight in the statistic limit with the Korepanov solution of TE. Section 6 is devoted to




the sketch proof of TE for our vertex weight. At last, in Appendix we present the most
useful formulae for w — hypergeometric series.

2. Notations and Definitions
The list of definitions and notations is chosen to be the shortest. Denote
w'/? = exp(xi/N). (1)

Taking p to be a point on a Fermat curve T, so that there defined three complex numbers
z(p), y(p), 2(p), constrained by the Fermat equation

z(p)" +y(p)" = z(p)" (2)
and a to be an element of Zy, define

a

w(pla) 7 __ ()
= SRS\ o SE— 3
w(p|0) 1;11 2(p) — z(p)w* (3)
The absolute value of w(p|0) we define through
N-1

a=0

Branches of y(p) and w(p|0) are arbitrary in general, but it is convenient to choose them
appropriately. Below all points p-s will be defined so that (when it is possible, we will
omit the argument p for the shortness)

— 27 /N < Arg(z/z) < 0and — /N < Arg(y/z) < = /N. (5)

This subregion in T we call To. For p € Ty we define w(p|0) as follows:

N-1

w0 = (1) 7 gt = (2) T etdeere) ©)
where (N — 1NN — 2
®y = exp(m( —6127( — ))4 (7)
and Nt
d(z) =exp ). %log(l — zw®). (8)
It is implied in (8) that
— 7 < Imlog(z) < . 9)

Defined w functions have the following property:

w(pla)w(Op| — a)®(a) =1, a € Zy, (10)



where automorphism O : T¢ — Ty is defined as

z(0p) = 2(p), y(Op) = w'y(p), 2(0Op) = wz(p), (11)
and
®(a) = WM 2 ex (EW——(]—V———-—I—Z), II ®(a) =1. (12)

a€ZN
It is convenient to define the normahza,tlon of w for some other useful subreglons of T
through

w(z™,y,2[0) = w(z,y,2|n), (z,y,2) €Ty (13)
and ‘
w(w,wy,zIO) = (12
w(z,y,2|0) ’

U)((I),w_ly’ ZIO) — —w1/2
w(z,y, 2|0) ’
(a:,y,z) € To. (14)

The reader can find a set of the most useful formulae and identities for the w function in
Appendix.

3. The Vertex Weight

For the given spherical triangle with the angles 6,,0,,0; and the corresponding linear
angles (i.e. sides of the spherical triangle) a;, a2, a3 define four points on Fermat curve (2)

- .a sin sina
z(p1) = P exp(i) 1 == ﬂl, y(p1) = exp(i ) = ﬂa
sin ,32 sin sinag
2(p2) = w2 exp(iz) /= s g, Y(p2) = exp(i ) o
- .a3, yfsin fBs B3, y/sinaz
() = 7 exp(i ) /s, v(po) = exp(—i50) {5
sin ,30 W E! sinag
2(pe) = w™ exp(ize) { = g, VP = exp(—z o
z(p.) —1,i=1,2,3,4 (15)
where $; being usual linear excesses
ﬁo=7f—w, Bi=m — Po — a;. (16)

2

In this paper we will regard system (15) as the definition of functions p; = p;(ay, as, as).
With these notations the vertex weight function is

islin=in) W(P1lir = i2)w(pals — ja) an

R]l ’.72 .73
Sirtsn iatis w(ps|ty — j2)w(paljs — 12)

11,92,83




and all five space permutations are given by

F1® F '@ F'R(a;,a3,a3)F @ F @ F = ny3Pi3R' (a3, az,a,) Pis,
J®JQ® FR(a;,as,a3)J ® J @ F~! = Pi3R!(az, a1,a3)Pra.
F®1®1R(a,a2,a3)F! ® 1 ® 1 = ny3Pa3R'(a1,as, az) Pas, (28)
F1Q® F'Q® JR(a1,az,a3)F ® F ® J = no3PpaPraR(as, a1, a2) Pia Py3,
J® F @ FR(ay,a3,a3)J @ F~! ® F~' = ny3P12P)3R(as, as, a1) Py Pr2,

where the normalizators are

. N-1 . N-1

sina;\ ' ¥ sinay\ ¥ )

n3 =\ = y Nz == . (29)
sin as sin a3

Combining Fourier transformations with diagonal gauge transformations, one can ob-
tain other forms of the R — matrix. Note that these Fourier and combined transformations
are the gauge transformations of the lattice, but not the gauge transformations of the
Tetrahedron equation in general.

Note that there exists the conservation law i + i3 = j2 + j3 for weight (17). Below
we write out some combined transformations which lead to the other forms of the spin
conservations laws:

. . (D ¢
]Vm1 Z wa3.73 - ﬁ323 (_—~(a"3)) Rz::;?::gas (als az, (13) =
a3vﬁ3 Q(ﬂ3)
= 6(ja + j1 — i3 — 11 — €(ja — 42))D(j2 — iz)"w—z:"(J2 —12)
w(Pl(“l, az, as)lil - i2)w(P2(al, asz,as)|j — jz)

- ; : 2). %
w(Ps(al,az, a3)|21 - J2)w(p4(a1,a2,a3)|]l —iy) ( )
N-2 3 ot = Bris+ eajs = Bt $(a2)\" poanss )
’ 3(8) 81,82,i3 (ah (12,(13) ==
o 3(8)

= 6(ja + J1 — 12 — 81 — €(jz — i3))D(js — is)ﬁwh(’s —Jj3)
w(pl(ah as, (12)l - jl - j3)'(1)(p2((ll, as, az)l -1 — 1,3)
w(ps(a1, as, az)| — j1 — ia)w(ps(as, as, a2)| — 41 — j3)’

n23

(31)

- ] had ; 6(a ) 1,9, QY
N7 Z (H wmIm ,Bmzm) (__‘('Iv)(ﬂl)) Rg 508, (a1,a2,a3) =
B ™ 1)
=6(ji+Jj2—t1 — 12— €(Ja— ia))‘i’(js - i:s)—cwzl(l3 ~J3)
ww(Pl(as’ as, a1)|j3 — g2)w(pz(as, az, a1)|iz — i,)
w(pa(as, az,a1)|jz — t2)w(pa(as, az, a1)lis — j2)’

(32)

where 6(a) = 6,0, the symbol &(a) is defined by (12) and € is an arbitrary integer. Other
choices of the diagonal @ factors lead us to complicated nonmultiplicative expressions for
the v. 2zights without any conservation laws. The exception is the case when N = 2.



5. Case N =2

In the case when N = 2 the list of suitable Fourier transformations enlarges. Namely,

~

3 . - O(Bm oo
N2y 3 (IT womin = Bnin 26o) porgan(a, an,00) =

am,fm \m=1 Q(am)
=6+ +iz+ gz —i2— jg)w(i3 — Ja)(i2 — Ja)
w(ry| — i + ja — ja)w(rsliy — i3 + ja3) _ Jrinis (33)

w(Orolty — iz + ia3)w(Ora| — 4y + jz —13)  wizis?

where w = —1,
N=-1

_ sin az s
s = (2\/sin Bo...oin 33) (34)

and four points r; are given by

z(r;) = exp(—iBi/N), y(r:) = w/* {/2sin B,
z(r;) = exp(if;/N), 1 =10,1,2,3. (35)

Due to the total symmetry, this transformation is the gauge transformation of the Tetra-
hedron equation, so this weight R obeys the Tetrahedron equation (sec Section 6).
When N = 2 the function w is very simple:

—_— L = exp(iz) tan —. (36)

\/tan% —t i=0,1,2,3, (37)

we can represent the weights (33) by the almost compact table.
The weight, defined by this table, differs from that defined by (33) in unessential
normalization. Using the following property of a spherical triangle:

Defining for shortness

; ; a o ..
tan % tan %— = tan —;k- tan -éi, {:,7,k,1} = {0,1,2,3}, (38)
where a; are the angle excesses of the spherical triangle, we can easily obtain the static
limit of the R (the case when oo = 0). This static limit appears to be the Korepanov
solution of Tetrahedron equation [1]. Moreover, in the planar limit when B; = 0 the
vertex weight (33) coincides with the N = 2 solution by Hietarinta [2,3].




Table 1.

-Ro,o,o _ o H101 HL1,0 1

0,00 — 0,11 — 1,01 = 11,0 ~
—=1,1,1 —=1,00 —=0,1,0 =0,0,1
Ry = Ripo = 0,10 = 0,010 = Tlotitats
=0,1,0 ==0,0,1 —1,0,0 —=1,1,1
Ro,o,1 = RO,I,O = "Rl,m = "Rl,o,o = 1ot
—1,0,1 —=1,1,0 —=0,1,1 =0,0,0 ‘

1,10 = R1,o,1 = —Ryoo = —Ro,l,l = lols

S

—=1,1,1 —1,0,0 ~=0,0,1 .

0,10 — 001 = —Rigo = "R1,1,1 = oty
—0,0,0 —0,1,1 —=1,1,0 =1,0,1 .

1,010 = Rl,x,o = "‘Ro 11 = _Ro 0,0 = —this
—0,0,1 —=1,1,1 —1,0,0 —0,1,0
R1,1,1 = RO,O,I = 0,1,0 — 1,00 — tols
—1,1,0 —=0,0,0 —=0,1,1 —1,0,1
Ro,o,o = Rl,l.o = RI,O,I = 01,1 = 13143

6. The Tetrahedron Equation

The vertex form of TE is the following:

Z Rkhﬂz'ka j1ka ks "mqks R’”JaJst —

11,12,13 kxuls k2kyig kakske —
ky,k2 k3,
k4 k5 kg
tka,ks ke pattk2kade ki jads Jx.izis
- Z R, 13,15,%6 R,12i4ks Rlilhks kikaks * (39)
ky,k2,k3,
kg4 k5 kg

A complete solution of this equation is parameterized by six angles of a tetrahedron (five
of them are independent)s

R = R(6,,6,,03),
R' = R(6,,84,05),
= R(m — 05,04, 06)
R" = R(03,7 — 0s,06). (40)

The ordering of the dihedral angles is natural with respect to numeration of the spaces
and differs from that in the standard equation (2.2) in Ref. [8].

R i ad W



For each vertex in (39) let a; be the corresponding planar angles:

(01, 92,03) - (a1’a27a3)1
(61,04,05) — (a;’a;aag)’
(7r — 6,0y, 06) — (allla a'2" ag)a

(03,7 — 05,06) — (ay’, a3, ag). (41)

Four vertex weights (17) with the angles defined by (41) obey this Tetrahedron equa-
tion. In this section we give a sketch proof of this proposition.

Substitute (17) in (39). Due to the spins conservation laws, six summations in both
sides reduce to three summations. It is useful to choose the indices ki, k;, ks as the
independent spins of the summation. The summands in the left and right hand sides
are the products of the phase factors w and w functions. Gather in both sides all the
factors depending on the spin k;. The sums over k; have the form ¥, (see Appendix). As
the first step apply to these ¥, (7p)? transformations (see formula 50 from Appendix).
As a result there appear extra w functions, depending on k; — k4, and we demand the
cancellation of these extra factors with the similar w-functions in the left and right hand
sides.

After this the summation over k; and k4 becomes independent. Moreover, there are
no phase factors, depending on k; and k4, and we can sum over k; and k4 using the “Star
— Square” relation (see formula 53 from Appendix). The final sums over k; are of the ,¥,
type and both have the same spin structure, so we regard the equality between the right
and left hand sides as tautology. TE is proved.

The restrictions arising when we prove TE (namely, cancellation of the w functions,
depending on k; — k4, the “Star — Square” applicability conditions and the coincidence of
the final expressions) are satisfied automatically by parameterization (15) and (41).
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Appendix

In thisTAppendix we have collected formulae used in the theory of w — hypergeometric
series. These formulae appeared in many papers devoted to the Chiral Potts Model and
to TE. Following conventional notations, define , ¥, series as

v, ((pl, m,l) ...{pr,m,) ) _ Z w(p'llmll +0)...w(p-|m, + o) wna. (42)
(p’hml) e (p:-’m:-) 0EZN w(pllml + 0') v w(p:-lm:- + 0') \/-1v

Spin independent factors in all identities are given for the case when all arguments of
the w functions in the left hand sides belong to the region (5) and the phases of ws are
chosen according to (6-9). If we abandon restriction (5) then the phases of ws can be
chosen so that the formulae would still remain correct.

For the sake of shortness we omit the argument in the components of point p and
regard

pi = (i, i, %) (43)
for every :. There will appear many new points on the Fermat curve in the right hand
sides of formulae in this Appendix. In these cases we have to introduce new letters for y
components. They have to be defined by (2) (and by (5) according to our convention).

All the formulae in this Appendix are the formulae of summation (they exist for
r =1,2,3) and symmetry transformation (they exist for r = 1,2,3,4).
We begin with the Ramanujan summation formula for r = 1:

17y ((p"m‘) n) =

(pz,m'z) /
N-1
= /2 (_f__) P mnmy
Y1Y2

w(zly2a £, ylz2| - n)w(wlzz,ﬁ,wzlmglml - mz) _ (44)
w(Z1y2, , wy1T2|m1 — ma —n)

—1/2¢\ 5
Yi1y2

w(y172,w M2, T1y2|mg — my + n)
w(ylzz/W, w_l/zf, 21y2|n)w(21$2, w™1/2¢, Z122|lmg — my) ’

where —7/2 < Arg(21/?) < 7/2.

For the proof of this formula see, for example, Ref. [9]. As the partial case of (44)
it is easy to obtain the inversion relation which is to be used when one proves inversion
relation (24):

5 w(z,y, zlmy + o) — Némy,mq (wy .1:) . (45)

7 w(z,y,wz|m; + o)

10



To obtain symmetry formulae for higher r, we use the following trick. Let ¢; and g, be
arbitrary functions on Zy. If

ko
ah = ¥ al) e, (46

o€EZN
then

Y. q1(0)g2(0) = Y G1(0)g(—0).

(47)
0€ZN oc€ZN

Using this, it is easy to obtain the following symmetry transformation for , ¥,

R ((pl, ml)(pB, m3) n) =, U, ( (ql, 0) (q3,7n4 —ms + n) g — m3)
(P2, m2)(pa, ma) (g2,n) (qa,my —my)
) 48
w(z3x4,§43, $324|m4 — m,3) ( )

N-1
( €12843 ) : w-—nmsw(wlz27€12,wzlx2|ml_771'2)
Y1Y2Y3Y4

where

@ = (Zlyz,flz,ylzz),
g2 = (y32a/w, €3, 23Y4),
g3 = (Y34, €43, T3Ya),

g1 = (212, €12, WY172). (49)

This relation originally appeared as the (7p) transformation in Ref. [6] for the BB weight
function. Note that (7p)® = 1. In this paper we have used (7p)? transformation:

") -

U, ((Pl, m1)(ps, ms)

(p2v m2)(p4am4) i
)0 - -
=9 ‘112 ( (Sl ) (33, e 4 n) mga — m4)
(82, m2 — m3) (84, —n)
N1
w—m2 — (mz — m3)(myg — m3) ( I ) ’
&12€43Y1Y2Y3Y4
w(y 2, €12, wz12a|my — ma)  w(z123y2Ya, T, 22249193 — 1) (50)
w(23m4, €13, -"0324|m4 - ma) u’($1I3y2y4, I, W$21‘4?/1?/3| - ﬁ) ’
where
m=n—m; —msz+mo+my (51)
and
S$1 = (9122543, L, 23!/4«512)’
S = (y1$2f43, 1,'", 5533!4512),
s3 = (192643, I, yazai2),
s = (21y2643, T’ y324€12). (52)

11



We finish the list of the symmetry formulae for 2¥; in the T = (7p)>

" ((thl)(l’a,m:a) ) — ((?17 —m3)(P3, —m1) _)
2¥2 n| =2 ¥ — _ n
(P2, m2)(Ps, m4) (P2 —m4)(Py, —m2)

N-~1
oMz — My (512543532541) T w($122,§12, wzla:3|m1 - mz)
rT w(23%4, €43, T3z4|my — M3)
w(?lzayzm, T, z22491y3| — n) w(zazs, €32, w2z3z2|ms — my)
w(T1T3Y2yYa, IV, wT2Tay1ys| — B) w(z124,€01,T124|mg — 1)’

(53)
where

Py = (23l", &32€a3yn, xal),
Py = (24]",w€aéasyz, wz4l),
P3 = (21l", €nérays, :T),
Py = (221", €a2612y4, waoT). (54)

Note that in the case when 8% = w#%, (53) becomes the Star — Star relation for BBM,
and p; = p;.

To obtain a summation formula for ; W5, consider (48) and suppose n = 0 and ¢q; = ¢,.
Then applying (44) to the right hand side of (48), we obtain the “Star — Square” relations

N-1
2\112 ((pla ml)(p3’m3) 0) — ( wl/2I‘l ) : w—(mz - ma)(ml -_ m2)
(Pz, m2)(1’4, m4) Y1Y2Y3ya,

q)(l)/2w(332134y1y3’ w VY z123y2ya|mg + My — my — m3)

w($122, &2, wzlfvzlml - mz) w($322,€32,wz'3$2|m3 - mz)

: 55
w(23T4, €43, T3z4|my — m3) w(2124, €01, T124lMmy — my) (55)
where the parameters in the left hand side have to obey the special restriction?
%2
Yiys _ L% (56)
Y2Ya 2224
and the phases in the right hand side are connected by
éﬁ = y122v gﬁ = Y2 ’ P’ = w_1/2£l2£32yi° (57)
€3 yazz' a Y421 22

Hence forth we will try to avoid such long notations as in (53) and in (55). Extra w
multipliers in all consequent formulae will have the same structure as in the right hand
side of (53) and so we will use only ¢;; to denote the whole argument dependence of w.

Consider now r = 3. A summation formula can be obtained by summing (53) over n
with the help of the Ramanujan formula. The result reads

(P1,m1)(p3, m3)(q1, m2 + mqg — A)
*¥s ((m,mz)(P4,m4)(¢Iz,m1 +m3 — A) 0)

12



N1
_ gl (512543632541) 2
® \ nivavsyeE
w(m4 — A)(my + m3 — my — my)

w($1$32224, E,w2w2x4z123|m1 + mgz — Mg — TTl4)
w(€iz|m1 — ma)w(€aa|lma — m2) w(p,[A — m3)w(Ps|A — m1)

, 58
w(€az|ma — ma)w(€ai|ma — mq) w(B|A — ma)w(Py|A — mo) (58)
where w(¢;;) and w(P;) are the same as in (53) and

@1 = (w224l Y2ys=, 22241,

g2 = (2123, Y1932, wz1 z31Y). (59)

Note, that formula (58) is symmetric with respect to any permutation of py,ps, ¢ and
P2, P4, q2. The Star — Triangle equation for the Chiral Potts Model is a special case of
(58).

To obtain symmetry relations for r = 3 and r = 4, we use (47), make the Ramanujan
summation or T transformation, cancel extra w factors (this gives some constraints) and
then, using (47) again, obtain the corresponding ,V, in the right hand side. The formula
for r = 3 reads

0) =

(p1,m1)(ps, m3)(q1, lh)
s ((Pz,mz)(l’4,m4)(92a lz)

N-1

_ ( 128438328 ) 2 Wl —m2)(m1 + m3 — my — my)
I'2Ty(q1)y(g2)
w(é12|m1 — mo)w(€zz|ms — ma) w(é|la + ma + my — Iy — my — my)
w(a3|ma — m3)w(€ar|ms — my) w(Allz — h)

(-p-lv —m3)(ﬁ37 _ml)(ql, ll —m3 — m4)
3\113 —_ — —
(Pay —ma)(Py, —m2)(Ta Iz — 2 — ms)

0), (60
where the connection between arguments in the left hand side is

ylysy((h) — wzlz3z(QI)
Ya2Y4y (42) 22242 (Q2) ’

2224Y1Y3
z(q1)y(q2)

r
3= (61)

and new arguments in the right hand side of (60) are

(&) = (wzazaz(q2)y193y(q1), §; wr1237(q1)Y2Y4y(q2)),
(A) = (2(q1)y(g2), A, 2(q1)2(g2)),
71 = (2(q1)y(@2)T", &, wAz2z49193),
7, = (y(q1)2(g2)T", €, wAz123Y2Y4)- (62)

Note that this formula is a symmetry transformation for something. Denote (60) as ps.
Let 73 be the permutation transformation, reordering the columns in 3¥3 as 73(1,2,3) =

(2,3,1). Then (m3p3)% = 1.
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The last formula is the symmetry transformation for 4¥,4. A derivation of it is described
before formula (60). Let the structure of a set ¢;,;, xij, A, A’ be defined identically to

that of p;,P;, &, ', I'. Then

(pl’ml)(p31m3)(qla 11)(Q3, 13) _
¥ ((P2vm2)(1’4,m4)(qm12)(«14,14) O) = (63)

N-1
) 7 yll2—m2)(mi1+ma—ma2—m,)

I"TA'A ff)(ml +m3z —my — m4)
w(§12|m1 - mz)w(fazlms - mz) w(X12|11 — lz)w(X32|ls — 12)
w(€aalmy — ma)w(€a|ma — m1) w(xas|ls — b)w(xalls — L)

v ( (By, —m3)(P3, —m1) (@, i — ma2 — m4)(Gs, Is — ma2 — my)
al _ _ —
(Pas —m4)(p4, —r’z2)(‘ha lp — my — m3)(qy, la — my — m3)

— ( 1284383281 X 12X43X32X41

0).

where the connections are

y(P)y(p)y(a)y(es)  _
y(p2)y(pa)y(92)y(94)

z(p1)z(p3)2(q1)2(q3)
Z(Pz)z(P4)Z(Q2)2(<](4) )
—12(p1)z(p3)z(gq1)x(gs ‘
z(p2)z(pa)z(g2)2(qa) (64)

and
1/28(P1)y(p3)z(p2)2(p4)

r

AT z(q1)2(g3)y(q2)y(qs)’

I _  1p¥(P)y(ps)e(p2)e(ps) (65)
A z(q1)z(g3)y(g2)y(qa)’

and the spins in (63) are not independent:

mi+mz+h+ls=me+mi+ L+ (66)

Note that if we tried to obtain any ,_; ¥,_; identity from a , ¥, one as a partial case,
then we would get some more restricted variant of the lower identity.
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