
/J

STATE RESEARCH CENTER OF RUSSIA

INSTITUTE FOR HIGH ENERGY PHYSICS

I I

I"~"1I6'

IHEP 94-117

r

S.A. Sukhov·

pvk~(rI'J I

~BRAP-

ft/l.
"ERMILA~

•

.............••

TECHNIGUE OF BOOLEAN OPERATIONS

OVER POLYHEDRAL OBJECTS

*Telex: 412657 IPHE SU, Fa.x: 007/095/2302337, E-nlail: sllkhov@desert.ihep.su

Protvino 1994

mailto:sllkhov@desert.ihep.su

M-24UDK 519.62

Abstract

Sukhov S.A. Technique of Boolea.n Operations over Polyhedral Objects: IHEP Preprint 94-117.­
Protvino, 1994. - p. 13, figs. 10~

The main part of each mechanical design system is a geometrical Boolean processor. Here
article Boolean operations are considered in a boundary representation approach over objects
bounded by planar faces.

One of the main difficulties in realization of the Boolean processor is the solution of special
cases of intersections and contacts of o1;>jects. A clear classification for the variety of cases of
intersections and contacts is needed to solve this problem. This task has been already solved for
2-manifold objects, however, Boolean operations remain unclosed over 2-manifolds and pseudo­
manifolds may arise at the output.

The approach proposed allows one toexpand a class of input objects. The program has been
realized on the base'of the,presented concepts. .

AHHOTalUUI

CyXOB C.A. ByJIeBCKHe orrepaUHH,3aMKHyThIe Ha,ll OO'beKTaMH: IIpeupHHT HtbB3 94-117. ­
IIpoTBHHo, 1994. - 13 c., 10 pHC.

O,llHOH H3 rJIaBHhIX CJIO)l(HOcTeii: rrpH peaJIH3aUHH oyJIeBCKOro rrpoueccopa .sIBJI.sIeTC.sI paccMo­
TpeHHe CrreUHaJIbHbIX CJIy'tlaeB KaCaHH.sI H nepeCe'tleHH.sI OO'beKToB. liJI.sI peII1eHH.sI 3TOH rrpOOJIeMLI
HeOOXO,llHMa .sICHaJI KJIaCCH<pHKaUI1:.sI TaKHX CJIy-qaeB. 3Ta 3a,lla'tla ObIJIa pellIeHa ,llJIi: 2-manifoid;:
OO'beKTOB, O.IlHaKo "oyJIeBCKIle orrepaUHH oCTaIOTC.sI He3aMKHYThIMH Ha,ll 3THM KJIaCCOM OO'beKTOB,
TaK KaK pseudo-manifolds MoryT B03HHKaTb Ha BbIXO,lle.

IIpe.n:JIaraeMbIH rro,Uxo,ll rr03BOJI.sIeT paCII1HpHTb KJIaCC BXO,llHlIX OO'beKTOB ,llJI.sI oyJIeBCKHX orre­
paUHH. 3KcrrepHMeHTaJIbHaJI BepCH.sI nporpaMMhI OhIJIa pea..'lH30BaUa IIa OCHOBe orrHcaHHbIX KOH­
uenUHH.

© State Research Center of Russia
Institute for High Energy Physics, 1994

Introduction

The main part of each mechanical design system is a geometrical Boolean processor
(GBP), i.e. some software tools that can perform Boolean operations (union, intersection
and difference) over geometrical 3-dimensional objects. These objects must have a finite
volume and must be bounded by a surface. The Boolean operations are considered in a
boundary representation approach over objects bounded by planar faces.

A solution of the special cases of intersections and contacts of objects is one of the main
difficulties in realization of the Boolean processor. The solution of this problem needs a
clear classification of the variety of cases of intersections and contacts. Approaches to
the problem were given in the wonderful work by Mantyla M. [5], and in the work by
D.H Laidlaw, W.B. Trumbore, J.F. Hughes [9]. Algorithm [5] is based on the notion of
2-manifold objects. These objects must satisfy the following criteria:

1. Every edge belongs to exactly two flat faces.
2. Every vertex is surrounded by a single cycle of edges and faces.
3. Faces must not intersect each other except at common edges or vertices.

(For more detailed discussion on 2-manifolds see [1], [4], [5]).
The main defect of GBP [5] is that Boolean operations remain unclosed over this

class of objects. So, the input objects a.re 2-manifolds, but the output objects may be
pseudomanifolds. That is, the surface of the resulting object may contact itself at some
edges or vertices, but does not intersect itself properly [5].

In [9] more strict restrictions are imposed on the faces of the polyhedra and weaker
restrictions on the polyhedra than in [5]. So the faces of the objects for GBP [9] must be
convex and have no holes. This causes many unnecessary splittings of the faces.

The a.pproach proposed allows one to expand a class of the input objects. The major
difference [5] lies in the different choice of the base operation. The intersection edge and
the face are chosen as base operation [5], but the intersection of face - face is taken here.
The notion "vertex neighborhood classification" loses its importance due to such choice of

1

the base operation, and one can manage with the notion of the adjace~t faces. The work
~ith faces gives more information for solving the special cases of the intersections and
contacts and makes faster some elements of the algorithm.

Offered methods exist to solve the problem of the Boolean operations with non­
manifolds. So, among non-manifolds one may define a subclass of objects (so called r-sets
[10], [2]) that may be represented as a composition of 2-manifolds. Thus, the problem
is reduced to the solved task. The approach now described may be considered as an
alternative one to such attempts.

1. Statement of the problem

1.1. Major notions

Let us assume, we have objects A and B. Our task is to devise an algorithm that can
perform Boolean operations (union, intersection and difference) over these objects and
calculate object C at the output.

The objects are accepted to represent a finite volume bounded by a surface consisting
of planar faces. The face may be represented by an unconnected polygon with holes.
This polygon must be bounded by a set of properly oriented contours. In moving along
contour from the outer side of the polyhedron an inner field of the polygon must be on
the left side (so called counterclockwise direction.) Accordingly, all face normal vectors
point consistently to the outside. Since, the faces of the objects form a surface, each face
at each edge has an adj acent face.

So the objects must satisfy the following criteria:

1.	 The surface of the object bounds a finite volume. (Here the object is alse assumed
to have no dangling faces, because such faces don't bound a volume.)

2.	 The normal vectors point to the outside at each point of the surface belonging just
to one face. (Choosing a direction of normal vectors is of no principal importance.
It is determined by the used software.)

3.	 The surface of the object may contact itself at some edges or vertices, but does not
intersect itself properly.

4.	 The polyhedron must not have the glued fa.ces. (Here the faces of surface are
assumed to be related as two sides of a sheet.)

5.	 The faces must not have glued edges, zero length edges. (The glued edges are the
edges intersected at more than one point, see fig.2).

6.	 The faces are in the correct agreement at the adjacent edges.

The correct agreement of the faces is understood here as follow~:

1.	 The adja.cent faces in the edge of contact have the edges of equal length.
2.	 The coincident vertices for the adjacent edges have equal numbers.

The coinciding edges of adjacent faces must be necessarily contrary pointed, otherwise
the normal vectors of these faces will be pointed to different sides from the surface of the

2

object. Fig.ia illustrates faces with the correct agreement, and figs.lb,c illustrate faces
with the wrong agreement.

3__------,2.-----.........5 3r- __.2__------.;S 3r- __.2__-----.-S

00 00
4 1 6 4 1 6 4 1 6

a) bl c)

Fig. 1.

1 2
4-1-2-1-3 1-2-3, 4-5-6, 7-8-9

Fig. 2.

The above ~riteria correspond to the notion of pseudomanifold objects [5].
Let us expand this class of the objects in the following way: the objects are to be

able to have some cycles of faces and edges·at one vertex. In other words one vertex can
hav-e some open disks from E2 [4]. Let us call such' objects v-manifolds. In the terms
of data stru.cture the difference between v-manifolds and pseudomanifolds consists in the
following: the vertex having some cycles of the faces and edges may have one number
and one representation in the coordinates array of vertices but for pseudomanifolds such
vertex is considered as having several coincident vertices, which must have their own
different numbers, equal coordinates but different representation. (Below we will describe
an exemplary representation of the objects.)

The work with v-manifolds leads to the complication of the algorithm as compared with
the algorithm for pseudomanifolds. It may seem to be an excess in practical realization,
that is why we will note possible simplification for work with pseudomanifolds.

1.2. Structure of data

Many different representations of objects exist. To understand the discussed subject
better we ha.ve chosen one of them.

Representations of objects are divided into internal and external ones. The external
representation is used to st.ore objects and exchange with other programs. It is n10re

3

compact in comparison with the internal one. The internal representation is used to
make the program work. It contains some auxiliary information.

We will present only the external representation.
The representation of an object includes three parts: the description of the object, the

representation of faces and the array of vertices coordinates.
The description of the object includes the nunlber NV of the vertices of the object,

the number of faces NF, the reference to the descriptions of faces RF, the reference to the
array of the vertices coordinates RV, attributes of th~ object An. The list of attributes
may be expanded.

The representations of the faces are stored subsequently one after another. So, each
face has its own number, which may be used as a name of the face. Each face consists of
contours.

The representation of each face includes the description of'the face, which includes
the number of contours NC and attributes of the face AFn. Every contour is preceded by
the number of vertices NVC of this contour. The contours are divided into external and
internal. The external contours bound the face, the internal bound holes of the face. We
don't make difference between them, thus the contours may be arranged in an arbitrary
order.

Each contour consists of vertices Vn, each vertex i3 followed by a type VTn of the edge
emerging from this vertex and by the number of the face adjacent at this edge IVn. The
visibility of the edge in drawing is determined by the type of the edge.

The representation of the faces is followed by the array of the coordinates of the
vertices X, Y, z.

The object may be represented in the following form:

NF, NV, RF, RV, An.

NC1, AFl

NVCl

Vl, VT1, IFl

Vnvcl, VTnvcl, IFnvcl

NVCncl

NCnf, AFnf

Xl, Yl, 21

Xnv, Ynv, Znv

4

1.3. Major stages of the algorithm

The work of GBP may be splitted onto the following steps:

1.	 Preliminary optimization. Here we put aside the faces wittingly unparticipating in
a crossing of the objects surfaces.

2. Search for face-face intersections.	 The results of intersection and other useful infor­
mation are stored for th.e future formation of new faces.

3.	 Formation of new faces.
4.	 Shaping of the output object.

Further we will describe our concepts according to the above stages.

2. Preliminary optimization

At the stage of the preliminary optimization we put aside the faces wittingly unpar­
ticipating in a crossing of the surfaces of the objects.

Let us describe this procedure as follows:
Compute the extends Al and Bl of the objects. Search for the intersection of this

extends (1. For objects A and B make lists of the faces LAI and LSI, which have extends
intersected by (1. For sets of the faces from lists LAI and LSI figure out new extends A2
B2. Search for the intersection of these extends C2. Compare (1 and (2, if (1 is equal to
(2, complete optimization; if (2«1, then make the next iteration. In the output of this
procedure we h&.ve two lists of the faces which may be crossed by the faces of the other
object.

Fig.3 illustrates the work of this procedure for 2-dimensional case.

Fig. 3.

The resembling algorithm was proposed by M.l. Shamos [8] for the fast search of the
overlapping polygons. This algorithm is not digestible for the practical search for the
overlapping polygons, however, it turns out to be convenient for the optimization.

Due to this procedure one can avoid excess comparisons of the faces extends. Although
the comparing of the extends is a fast operation itself, but for smooth objects approxi­
mated by a great number of planar faces such comparison may take more time then the
searching for the faces intersections. Though the main aim achieved by preliminary op­
timization is not to increase speed, but to cutdown the number of faces translated into
internal representation.

5

3. Classification of special cases of intersections and contacts

Let us consider the variety of special cases of intersections an.d contacts. Our task
consists in the following: the parts of the faces and edges of one object lying at the
surface of the other object must be reclassified as disposed inside or outside the other
object. It's necessary to consider three cases:

1. Overlapping of the faces of the objects.
2. Overlapping of the edge of one object and the face of the other object.
3. Overlapping of the edges of the objects.

To solve these points let us use rules presented in work [5]. The result of Boolean
operation is built from the necessary parts of the A and B surfaces. The parts of the
surfaces of A disposed outside the object B are denoted as AoutB. The parts of the
surfaces of A disposed inside the object B are denoted as AinB. The parts of the surfaces
of A lying at the surface B are denoted as Aon B. By analogy the parts of the surface of
the object B are marked in BoutA, BinA, BonA.

So, the result of the Boolean operation can be computed as follows:

A U B - AoutB & BoutA & AonB+

A n B - AinB & BinA & AonB+ (1)

A \ B - AoutB & -BinA & AonB-

Here" +" and "-" denote the following:

0+ normal vectors codirected,

0- normal vectors opposite1y directed,

- 0 inverse orientation of contours.

The rules of classification for the overlapping faces follow immediately from the above
rules.

U n \
AonB+ AoutB AinB AinB

(2)AonB- AinB AoutB AoutB
BonA+ BinA BoutA BoutA
BonA- BoutA BinA BinA

Let us consider a case when an edge lies on a face and a case of overlapping edges.
These two cases differ slightly.

Let us consider the first case (see figsAa and b). The faces adjacent in the edge lain
on a plane of a face of the other object form a surface. This surface crosses the face of
the second object in a seglnent, which should be attributed to one of these adjacent faces.
We must find to which one.

6

a) bl cJ

Fig. 4.

To shape output object correctly and avoid the formation of extra glued edges this
segment must belong to the face participating in the output object shaping. Each adjacent
face contacts the other object at this segment either inside or outside. (The cases ON have
already been changed in IN or OUT.) According to th,s, we will call them the face of the
class either IN or OUT. The face participating in the output object shaping is determined
by the rules of objects shaping (1). The face, is as though cut by this segment, thus the
contacted face and its edge of contact must be oppositely disposed in relation to the other
object. If the adjacent faces are of the same class, then surfaces of the objects have no
intersection, but only contact (fig.4b).

To figure out the adjacent face participating in the surfaces crossing we propose the
following rules:

u n \
A OUT

IN
no
yes

yes
no

no
yes (3)

B OUT
IN

no
yes

yes
no

yes
no

These rules follow immediately from the rules of the output object shaping (1).

The same rules are used to solve the overlapping edges case, (figAc).

The difference consists in the following: to figure out the class of faces contacting with

the other object at the edge we must consider a solid angle formed by two halfplanes.
This procedure must be executed for adjacent faces of both objects.

4. Intersections of faces

Having the face lists produced by the preliminary optimization one may search for
faces intersections. \Ve will search for intersection of each face of the list LA with each
face of the list LB.

We describe this procedure as follows:

Search for the intersection of the face A with a plane of the face B. If the intersection
exists, it represents itself as a segment or a set of segments lying at one straight
line.

7

Search for the intersection of the face B with a plane of the face A.
Intersecting two sets of the segments we have a required set, which is the intersection of

the faces A and B.

Fig.5 illustrates the work of this procedure. Overlapping faces are ignored by this
procedure, because after reclassification of the ON cases a split has as though arisen
between them.

A
r----..---~ ,

I

A I

81 0
ir---~-~i

I I I
I I I

I I 1 I
l ~1__~~I----J

B C

Fig. 5.

To build the more effective algorithm the order of the tests (a face A in reference to
the plane B, or a face B in reference to the plane A) is of importance, so the simpler test
with the face having fewer vertices must be done first.

To figure out a direction of received segments of intersection one needs to note that the
intersection of a plane and a contour is characterized by changing position of the contour
relative to the plane. Nine cases may occur. They are combinations of the possible
positions IN, ON, OUT. Fig.6 depicts different cases of intersection plane and contour.
The case ON arises when an edge lies at a plane. This case has been reclassified to IN or
OUT by the above rules. The four cases left are combinations of IN and OUT positions.
The cases IN-IN and OUT-OUT are ignored, because contour and plane only contact. This
means two cases remained - IN-OUT and OUT-IN.

OUT

IN
Fig. 6.

The direction of a segment is determined depending on whether a contour intersects
a plane IN-OUT or OUT-IN by the following rules:

8

u n \

A IN-OUT B E B

OUT-IN E B E (4)

B IN-OUT E B E
OUT-IN B E B.

Here B denotes the beginning of a segment, x is the end of it. For the faces of the
output object to be right agreed the stored segments of intersection must be opposite in
direction.

If an edge is intersected by a face in an internal point, a new vertex must be included
in this edge. (Each edge is represented in every of two adjacent faces, thus the vertex
must be included in every representation of the edge.)

The received segments will be used to form faces of the output object. The simplified
form of stored segments is the following:

VI, FI, V2, where

VI - vertex number of the segment beginning.
FI - number of intersecting face of the other object.
V2 - vertex number of the segment end.

To speed up the formation of a face it would be desirable to store the number of a
face of the other object F2, which is adjacent to the crossing face. If such a face doesn't
exist, then F2=O.

5. Formation of output faces

At the stage of searching for the intersections face-face for each face intersected by
the other object the list of segments has been formed. To form a new face one needs to
connect these segments into new contours.

Let us describe ·here the procedure of connecting contours. According to present rules
of shaping the output object (1) to subtract A-B, the faces of the object B must be taken
with reverse orientation of contours. In this case the orientation of these faces must be
prior changed. Fig.7 illustrates the face forming.

I

• ,J. I".a.---­ ---­ _ ..,'
b

Fig. 7. Fig. 8.

9

Take the first segment from the list of segments, mark it as current and as first.
Search for a segment, whose beginning vertex number is equal to the end vertex number

of the current segment. This segment must be a prolongation of the built contour.
For pseudomanifolds each vertex has only one cycle of faces and edges, as a result,
the current segment has the only prolongation, which is either a segment or an edge
of a face. The important case for v-manifolds is that a current segment has some
possible prolongations (fig.S).

The vertex having some possible prolongations will be referred to as special.
If the special vertex is not at a contour of the face, then the number of segments
entering this vertex must be equal to the number of segments emerging from it. As
this takes place, the entering and emerging segments Inust alternate, because when
going around the special vertex and intersecting the surface of the other object our
position changes to the opposite (IN to OUT, OUT to IN).

The choice of the prolongation is determined by the criterion that contours of
the face must not be self-intersecting. To satisfy this criterion the segment must
be chosen as the prolongation of the built contour either at minimal or maximal
angle to the current segment. According to the accepted rule there arises either one
self-contacting contour or some contacted at the special vertex contours (fig.9).

[>
C>[>

Fig. 9.

If the special vertex lies at the contour of the face, then to search for the prolongation, the
emerging segments must be supplemented with the face edges, which exit from the
special vertex. The prolongation must be chosen f..om this new variety of enlerging

segnlents.
If the segrnent-prolongatioll has been searched for the final vertex of the current segment

is substituted by a reference to the first vertex of this prolongation. The segment­
prolongation is marked as connected and becomes a current segment.

If the segment-prolongation is the first segment we have a closed contour. Move in t~e
list of segments to the first segment, which is no~ marked as connected. Mark thIS
one as first and as current segment.

If the prolongation is an edge of the face, then the end vertex of the current segment is
substituted by a reference to this edge. Move along the contour while an emerging
vertex will be found.

If the old face has some contours not participating in the intersection, then to form
the new face one needs to figure out the positions of these contours in relation to the

10

other object. These contours are included in the new face depending on their positions
according to the above rules for object shaping (1).

The formed faces may have glued edges, thus each new face must be treated as follows:

1. Search for glued and partially glued edges.
2.	 In the case of partially glued edges one is to insert new vertices in such a way as to

extract glued parts into separate edges.
3.	 The faces adjacent with the given face at the glued edges must be glued to each

other by changing the corresponding references to the given adjacent face.
4.	 Remove the glued edges and connect new contour.

6. Object sllaping

Having formed new faces one may shape the output object. A position of each face
must be determined in relation to the other object. It could be done for some faces already
at the first step of the preliminary C'ptimization. Besides, all faces participating in the
intersection have been searched for, and positions of their parts are determined. To figure
out positions of other fa.ces the following procedure is used:

Let us define four classes of the faces: IN, OUT, CROSS, QUEUE
IN a face is entirely inside the other object.
OUT a face is entirely outside the other object.
CROSS a face is broken down into some parts by the other object.
QU EU E a face is placed in a queue to figure out its position.

Once all cases ON have been reclassified the rules for shaping the output object appear
as:

AUB - AoutB & BoutA
AnB - AinB & BinA (5)
A\B - AoutB & -BinA.

Attention is drawn to the fact that the two given adjacent faces not intersected by
the other object must be located in the same rela.tion to the other object. They are both
inside or outside.

Search for a face, which stands out of these four classes. Mark this face as current. Assign
the current face to the class QUEU E and write the number of this one to the queue.
Get around the neighbors of the current face checking their class. If the class of
the adjacent faces is not deternlined, this adjacent face is placed to the queue and

II' related to the class QUEUE. Move to a next adjacent face if such exists.
If all the neighbors of the current face have been looked through and their position has

not been determined, then move to the next face in the queue. Mark this face a.s
current and get around the neighbors of new current face.

If the end of the queue has been reached and position of these faces has not been
determined, i.e. we have either a closed cavity or unconnected part of object. In
such an event, take an arbitrary vertex of an arbitrary face of the queue, figure out

11

a position of this vertex in relation to the other object, assign all QU EU E faces to
the corresponding class, clear the queue, return to the searching for an undefined
face in the list of faces.

If a face of the classes IN or OUT has been found, then all the QUEUE faces are assigned
to the corresponding class. Clear the queue, return to the searching of an undefined
face in the list of faces.

If a face of the class CROSS has been found, then check the class of the part of this face
adjacent to the current face. All the QUEUE faces are assigned to 'the corresponding
class. Clear the queue, return to the searching for an undefined face in the list of
faces.

This procedure is completed by looking through the total list of faces and uses the
fact that an object consists of adjacent faces and owing to this the necessity of testing
each face position in relation to the other object is removed.

Having determined the class of each face of both objects, the output object must be
shaped by rules (5).

Conclusion

Only the references to adjacent faces separate v-manifolds from non-manifolds, but for
non-manifolds with the correctly agreed faces these references may be easily reconstructed.
After that these objects may be used for Boolean operations.

In conclusion it should be noted that the criterion for the non-self-intersecting objects
surface has not been used above, so one may construct polyhedra with a self-intersecting
surface but satisfying other criteria (fig. 10).

__--=-l--_~,4

Fig. 10.

The self-intersected objects may arise as a result of Boolean operations over such
expanded class of the objects and Boolean set operations remain closed. One can legiti­
mately doubt if such self-intersected objects have the right to exist. The question remains
open. Here we give the reference to the wonderful book by I.Lakatos [11].

The program has been realized on the base of the described concepts. To gain a better
understanding of these concepts and for brevity we recede from the concrete technical
decisions of the program realization.

The author would be happy to answer aU questions and any discussions are welcome.
The best way to contact is bye-mail SUKHOV@MX.IHEP.SUorSUKHOV@DESERT.IHEP.SU.

12

mailto:SUKHOV@MX.IHEP.SUorSUKHOV@DESERT.IHEP.SU

Acknowledgements

We would like to thank E.Chernaev for the algorithm of hidden line removal ~7}, [6]
used for debugging the Boolean pi"ocessor. Thanks also go to V.Gusev, V.Kochm, for
reading early versions of the paper and also to L.Milichenkv for preparing the paper.

References

[lj	 Requicha A.A., Voelcker H.B. Boolean Operations in Solid Modeling: Bounda.ry
Evaluation and Merging Algorithms. - Proceedings of IEEE, V. 73, Nl, January

1985, pp.30-44.

[2J	 Requicha A.A.G. Mathematical Models of Rigid Solid Objects: Thec.Memo. n-O 28
Production Automation Project, University of Rochester, June 1977.

[3J	 Tilove R.B. Set Membership Classification: An Unified Approach to Geometric In­
tersection Problem$: IEEE Trans.Computers, V. C-29, NI0, Oct.1980, pp.874-883.

.. _,""_,.~~,,,,,,""''''''_'Jft_~· ­
• #1

\ [4J Mantyla M. A Note on the Modeling Space of Euler Opera.tors. Computer Vision,,. Graphics and Image Pro~~~I..Y:1.~1.1984, pp.46-60. "'-'
.;	 ~...~....., ,'" - -~- -"'--~""'<-~-'
.; [5J	 Mantyla. M. Boolean Operations of 2-manifolds though Vertex Neighborhood Classi­

fica.tion: ACM Transactions on Graphics, V. 5, Nl, January 1986, pp.1-29. -_..---.-- ­ .

[6J	 Chernyaev E., Obraztsov V., Petrovykh Y., Samarin A. Detector Visua.lization Pack­
age: DELPHI note 87-30, PROG 74, CERN, 1987. .

[7}	 Cherna.ev E. Algorithm for Hidden Lines Removal: IV Soviet Union Conference for
Computer Graphics. Serp11khov, 1987.

[S]	 Shamos M.l. Geometric Complexity: Proc. Seventh Annual ACM Symposium on
Theory of Computing. 1975, pp.224-233.

[9J	 Laidlaw D.H., Trumbore W.B., Hughes J.F. Constructive solid geometry for polyhe­
dral objects./ /Computer graphics, 20 (4) 1986, pp. 161-170.

• - p : ••----....-....,-_.........,......,.

[10]	 Faicidieno B., Ratto O. Two-manifold cell-decomposition of r-sets: EUROGRAPH­
ICS'92 Volume 11, number 3, 1992.

[11]	 Lakatos 1. Proofs and Refutations: The Logic of lVlathema.tical Discovery: Cambridge
University Press, 1976.

Received October £8, 1994

..
"	 CyXOD C.A.

nynencIme onepanllJl,3aMKHyTLle Han 06'beKTaMlt.

OPllrs[HaJI-~{aKeT nOltroTOBJICH C nOMoUlbIO CIICTeMLl 14,TEX.

PeltaKTOp E.H.fopIIHa. TeXIrIl'recKllit peltaKTop H.B.Opnoaa-.

ITOJlnllCaHQ K nellaTIl 02.11.1994 r. <I>opMaT 60 x 84/8. 0<t>ceTHaJl ne'laTL.

IIell.n. 1,62: YlI.-1l3.ll.n. 1,24. Tllpa.JK 210. 3aKa3 175. HHlteKC 3649.
np N!020498 06.04.1992.

rHU P<t>, HHcTUTyT ¢l!3HKU ablCOKIlX 3Heprllli

142284, ITpoTBllHO MOCKOBCKOli o6lI.

